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We consider the classes𝑀𝑝 (1 < 𝑝 < ∞) of holomorphic functions on the open unit disk D in the complex plane. These classes
are in fact generalizations of the class𝑀 introduced by Kim (1986). The space𝑀𝑝 equipped with the topology given by the metric

𝜌𝑝 defined by 𝜌𝑝(𝑓, 𝑔) = ‖𝑓 − 𝑔‖𝑝 = (∫
2𝜋

0
log𝑝(1 +𝑀(𝑓 − 𝑔)(𝜃))(𝑑𝜃/2𝜋))

1/𝑝

, with 𝑓, 𝑔 ∈ 𝑀𝑝 and 𝑀𝑓(𝜃) = sup
0⩽𝑟<1
|𝑓(𝑟𝑒
𝑖𝜃
)|,

becomes an 𝐹-space. By a result of Stoll (1977), the Privalov space𝑁𝑝 (1 < 𝑝 < ∞) with the topology given by the Stoll metric 𝑑𝑝
is an 𝐹-algebra. By using these two facts, we prove that the spaces𝑀𝑝 and 𝑁𝑝 coincide and have the same topological structure.
Consequently, we describe a general form of continuous linear functionals on𝑀𝑝 (with respect to the metric 𝜌𝑝). Furthermore, we
give a characterization of bounded subsets of the spaces𝑀𝑝. Moreover, we give the examples of bounded subsets of𝑀𝑝 that are
not relatively compact.

1. Introduction and Preliminaries

Let D denote the open unit disk in the complex plane and let
T denote the boundary of D. Let 𝐿𝑞(T) (0 < 𝑞 ≤ ∞) be the
familiar Lebesgue spaces on the unit circle T .

Following Kim ([1, 2]), the class 𝑀 consists of all holo-
morphic functions 𝑓 on D for which

∫

2𝜋

0

log+𝑀𝑓(𝜃) 𝑑𝜃
2𝜋
< ∞, (1)

where log+|𝑎| = max{log 𝑎, 0} and

𝑀𝑓(𝜃) = sup
0⩽𝑟<1


𝑓 (𝑟𝑒
𝑖𝜃
)
 (2)

is the maximal radial function of 𝑓. The Privalov
class 𝑁𝑝 (1 < 𝑝 < ∞) consists of all holomorphic
functions 𝑓 on D for which

sup
0<𝑟<1

∫

2𝜋

0

(log+ 𝑓 (𝑟𝑒
𝑖𝜃
)

)
𝑝 𝑑𝜃

2𝜋
< +∞. (3)

These classes were firstly considered by Privalov in [3, page
93], where𝑁𝑝 is denoted as 𝐴𝑞.

Notice that for 𝑝 = 1, the condition (3) defines the
Nevanlinna class 𝑁 of holomorphic functions in D. Recall
that the Smirnov class 𝑁+ is the set of all functions 𝑓
holomorphic on D such that

lim
𝑟→1
∫

2𝜋

0

log+ 𝑓 (𝑟𝑒
𝑖𝜃
)


𝑑𝜃

2𝜋
= ∫

2𝜋

0

log+ 𝑓
∗
(𝑒
𝑖𝜃
)


𝑑𝜃

2𝜋
< +∞,

(4)

where 𝑓∗ is the boundary function of 𝑓 on T ; that is,

𝑓
∗
(𝑒
𝑖𝜃
) = lim
𝑟→1−
𝑓 (𝑟𝑒
𝑖𝜃
) (5)

is the radial limit of 𝑓 which exists for almost every 𝑒𝑖𝜃. We
denote by𝐻𝑞 (0 < 𝑞 ≤ ∞) the classical Hardy space on D. It
is known (see [4, 5]) that

𝑁
𝑟
⊂ 𝑁
𝑝
(𝑟 > 𝑝) , ⋃

𝑞>0

𝐻
𝑞
⊂ ⋂

𝑝>1

𝑁
𝑝
,

⋃

𝑝>1

𝑁
𝑝
⊂ 𝑀 ⊂ 𝑁

+
⊂ 𝑁,

(6)

where the above containment relations are proper.
The study of the spaces𝑁𝑝 (1 < 𝑝 < ∞)was continued in

1977 by Stoll [6] (with the notation (log+𝐻)𝛼 in [6]). Further,
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the topological and functional properties of these spaces were
studied in [4, 5, 7–14]; typically, the notation varied and these
spaces are called the Privalov spaces in [12–15].

It is well known [16, page 26] that a function 𝑓 ∈ 𝑁+ if
and only if 𝑓 = 𝐼𝐹, where 𝐼 is an inner function on D and 𝐹
is an outer function given by

𝐹 (𝑧) = exp(∫
2𝜋

0

𝑒
𝑖𝑡
+ 𝑧

𝑒𝑖𝑡 − 𝑧
log 𝐹

∗
(𝑒
𝑖𝑡
)


𝑑𝑡

2𝜋
) , (7)

where log |𝐹∗| ∈ 𝐿1(T).
Privalov [3, page 98] showed that 𝑓 ∈ 𝑁𝑝 if and only if

𝑓 = 𝐼𝐹, where 𝐼 is an inner function on D and 𝐹 is an outer
function as given above with log+|𝑓∗| ∈ 𝐿𝑝(T).

Stoll [6, Theorem 4.2] showed that the space 𝑁𝑝 (with
the notation (log+𝐻)𝛼 in [6]) with the topology given by the
metric 𝑑𝑝 defined by

𝑑𝑝 (𝑓, 𝑔) = (∫

2𝜋

0

(log (1 + 𝑓
∗
(𝑒
𝑖𝜃
) − 𝑔
∗
(𝑒
𝑖𝜃
)

))
𝑝 𝑑𝜃

2𝜋
)

1/𝑝

,

𝑓, 𝑔 ∈ 𝑁
𝑝

(8)

becomes an𝐹-algebra. Recall that the function𝑑1 = 𝑑defined
on the Smirnov class 𝑁+ by (8) with 𝑝 = 1 induces the
metric topology on 𝑁+. Yanagihara [17] showed that, under
this topology,𝑁+ is an 𝐹-space.

Furthermore, in connection with the spaces𝑁𝑝 (1 < 𝑝 <
∞), Stoll [6] (also see [7] and [12, Section 3]) also studied
the spaces 𝐹𝑞 (0 < 𝑞 < ∞) (with the notation 𝐹1/𝑞 in [6]),
consisting of those functions 𝑓 holomorphic on D for which

lim
𝑟→1
(1 − 𝑟)

1/𝑞log+𝑀∞ (𝑟, 𝑓) = 0, (9)

where
𝑀∞ (𝑟, 𝑓) = max

|𝑧|≤𝑟

𝑓 (𝑧)
 . (10)

Stoll [6,Theorem 3.2] proved that the space𝐹𝑞 with the topol-
ogy given by the family of seminorms {‖ ⋅ ‖𝑞,𝑐}𝑐>0 defined for
𝑓 ∈ 𝐹

𝑞 as


𝑓

𝑞,𝑐 =

∞

∑

𝑛=0


𝑓 (𝑛)

𝑒
−𝑐𝑛
1/(𝑞+1)

< ∞, (11)

for each 𝑐 > 0, where 𝑓(𝑛) is the 𝑛th Taylor coefficient of 𝑓,
becomes a countably normed Fréchet algebra. By a result of
Eoff [7, Theorem 4.2], 𝐹𝑝 is the Fréchet envelope of 𝑁𝑝, and
hence 𝐹𝑝 and𝑁𝑝 have the same topological duals.

Here, as always in the sequel, we will need some of Stoll’s
results concerning the spaces 𝐹𝑞 only with 1 < 𝑞 < ∞, and
hence we will assume that 𝑞 = 𝑝 > 1 is any fixed number.

The study of the class𝑀 has been extensively investigated
by Kim in [1, 2], Gavrilov and Zaharyan [18], and Nawrocky
[19]. Kim [2, Theorems 3.1 and 6.1] showed that the space𝑀
with the topology given by the metric 𝜌 defined by

𝜌 (𝑓, 𝑔) = ∫

2𝜋

0

log (1 +𝑀(𝑓 − 𝑔) (𝜃)) 𝑑𝜃
2𝜋
, 𝑓, 𝑔 ∈ 𝑀 (12)

becomes an 𝐹-algebra. Furthermore, Kim [2, Theorems 5.2
and 5.3] gave an incomplete characterization of multipliers of
𝑀 into 𝐻∞. Consequently, the topological dual of𝑀 is not
exactly determined in [2], but, as an application, it was proved
in [2, Theorem 5.4] (also cf. [19, Corollary 4]) that𝑀 is not
locally convex space. Furthermore, the space𝑀 is not locally
bounded ([2, Theorem 4.5] and [19, Corollary 5]).

Although the class𝑀 is essentially smaller than the class
𝑁
+, Nawrocky [19] showed that the class𝑀 and the Smirnov

class 𝑁+ have the same corresponding locally convex struc-
ture which was already established by Yanagihara for the
Smirnov class in [17, 20]. More precisely, it was proved in [19,
Theorem 1] that the Fréchet envelope of the class 𝑀 can be
identified with the space 𝐹+ of holomorphic functions on the
open unit disk D such that


𝑓

𝑐 :=

∞

∑

𝑛=0


𝑓 (𝑛)

𝑒
−𝑐√𝑛
< ∞, (13)

for each 𝑐 > 0, where 𝑓(𝑛) is the 𝑛th Taylor coefficient of
𝑓. Notice that 𝐹+ coincides with the space 𝐹1 defined above.
It was shown in [17, 21] that 𝐹+ is actually the containing
Fréchet space for 𝑁+. Moreover, Nawrocky [19, Theorem 1]
characterized the set of all continuous linear functionals on
𝑀 which by a result of Yanagihara [17] coincides with those
on the Smirnov class𝑁+.

Motivated by the mentioned investigations of the classes
𝑀 and 𝑁+, and the fact that the classes 𝑁𝑝 (1 < 𝑝 < ∞)
are generalizations of the Smirnov class𝑁+, in Section 2, we
consider the classes𝑀𝑝 (1 < 𝑝 < ∞) as generalizations of
the class𝑀. Accordingly, the class 𝑀𝑝 (1 < 𝑝 < ∞) consists
of all holomorphic functions 𝑓 on D for which

∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
< ∞. (14)

Obviously,

⋃

𝑝>1

𝑀
𝑝
⊂ 𝑀. (15)

Following [2], by analogy with the space𝑀, the space𝑀𝑝 is
equipped with the topology induced by the metric 𝜌𝑝 defined
as

𝜌𝑝 (𝑓, 𝑔) =
𝑓 − 𝑔

𝑝

= (∫

2𝜋

0

log𝑝 (1 +𝑀(𝑓 − 𝑔) (𝜃)) 𝑑𝜃
2𝜋
)

1/𝑝

,

(16)

with 𝑓, 𝑔 ∈ 𝑀𝑝.
In Section 2, we give the integral limit criterion for a

function 𝑓 holomorphic on the disk D to belong to the class
𝑀
𝑝 (Lemma 3). Furthermore, we prove that the space𝑀𝑝 is

closed under integration (Theorem 4).
In Section 3 we study and compare the uniform conver-

gence on compact subsets ofD and the convergences induced
by the metrics 𝜌𝑝 and 𝑑𝑝 in the space𝑀𝑝, respectively. It is
proved (Theorem 11) that𝑀𝑝 = 𝑁𝑝 for each 𝑝 > 1.
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It is proved in Section 4 that the space of all polynomials
on C is a dense subset of 𝑀𝑝 (Theorem 13). Hence, 𝑀𝑝 is
a separable metric space. We show that the space 𝑀𝑝 with
the topology given by the metric 𝜌𝑝 becomes an 𝐹-space
(Theorem 15). As an application, we prove that the metric
spaces (𝑀𝑝, 𝜌𝑝) and (𝑁

𝑝
, 𝑑𝑝) have the same topological

structure (Theorem 16). Consequently, we obtain a character-
ization of continuous linear functionals on𝑀𝑝 (Theorem 17).
Notice thatTheorem 17 with 𝑝 = 1 characterizes the set of all
continuous linear functionals on the space𝑀, which is in fact
the Nawrocky result [19, Theorem 1] mentioned above.

In Section 5 we obtain a characterization of bounded
subsets of the spaces 𝑀𝑝(= 𝑁𝑝) (Theorem 19). It is also
given another necessary condition for a subset of 𝑀𝑝 (𝑁𝑝)
to be bounded (Theorem 22). Finally, we give the examples
of bounded subsets of 𝑀𝑝 that are not relatively compact
(Theorem 24).

2. The Classes𝑀𝑝 (1 < 𝑝 < ∞)

Recall that, for a fixed 1 < 𝑝 < ∞, the class𝑀𝑝 consists of all
holomorphic functions 𝑓 on D for which

∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
< ∞. (17)

Combining the inequalities log(|𝑎| + 1) ≤ log+|𝑎| + log 2 and
(|𝑏| + |𝑐|)

𝑝
≤ 2
𝑝−1
(|𝑏|
𝑝
+ |𝑐|
𝑝
), we obtain log𝑝(|𝑎| + 1) ≤

2
𝑝−1
((log+|𝑎|)𝑝 + (log 2)𝑝) (𝑎, 𝑏, 𝑐 ∈ C). The last inequality

implies the fact that the condition (17) is equivalent to

𝑓
𝑝 := (∫

2𝜋

0

(log (1 +𝑀𝑓 (𝜃)))𝑝 𝑑𝜃
2𝜋
)

1/𝑝

< ∞. (18)

Lemma 1. The function ‖ ⋅ ‖𝑝 defined on𝑀𝑝 by (18) satisfies
the following conditions:

𝑓 + 𝑔
𝑝 ≤
𝑓
𝑝 +
𝑔
𝑝 ∀𝑓, 𝑔 ∈ 𝑀

𝑝
, (19)

𝑓𝑔
𝑝 ≤
𝑓
𝑝 +
𝑔
𝑝 ∀𝑓, 𝑔 ∈ 𝑀

𝑝
. (20)

Hence,𝑀𝑝 is an algebra with respect to the pointwise addition
and multiplication of functions.

Proof. Combining the inequality

log (1 +𝑀(𝑓 + 𝑔) (𝜃))

≤ log (1 +𝑀𝑓 (𝜃)) + log (1 +𝑀𝑔 (𝜃)) ,

𝑓, 𝑔 ∈ 𝑀
𝑝

(21)

with Minkowski’s integral inequality (with the power 𝑝), we
immediately obtain (19). Similarly, combining the inequality

log (1 +𝑀(𝑓𝑔) (𝜃))

≤ log (1 +𝑀𝑓 (𝜃)) + log (1 +𝑀𝑔 (𝜃)) ,

𝑓, 𝑔 ∈ 𝑀
𝑝

(22)

with Minkowski’s integral inequality (with the exponent 𝑝),
we obtain (20).

Theorem 2. The function 𝜌𝑝 defined on𝑀𝑝 as

𝜌𝑝 (𝑓, 𝑔) =
𝑓 − 𝑔

𝑝

= (∫

2𝜋

0

log𝑝 (1 +𝑀(𝑓 − 𝑔) (𝜃)) 𝑑𝜃
2𝜋
)

1/𝑝

,

𝑓, 𝑔 ∈ 𝑀
𝑝

(23)

is a translation invariant metric on𝑀𝑝. Further, the space𝑀𝑝
is a complete metric space with respect to the metric 𝜌𝑝.

Proof. If we suppose that 𝜌𝑝(𝑓, 𝑔) = 0, for some 𝑓, 𝑔 ∈ 𝑀𝑝,
then by (23) it follows that𝑀(𝑓 − 𝑔)(𝜃) = 0 for almost every
𝜃 ∈ [0, 2𝜋]. Hence, 𝑓∗(𝑒𝑖𝜃) = 𝑔∗(𝑒𝑖𝜃) for almost every 𝑒𝑖𝜃 ∈ T ,
and, by Riesz uniqueness theorem, we infer that 𝑓(𝑧) = 𝑔(𝑧)
for all 𝑧 ∈ D. As, by (19), the triangle inequality is satisfied,
it follows that 𝜌𝑝 is a metric on𝑀𝑝. Finally, by the obvious
inequality

𝜌𝑝 (𝑓 + ℎ, 𝑔 + ℎ) = 𝜌𝑝 (𝑓, 𝑔) , 𝑓, 𝑔, ℎ ∈ 𝑀
𝑝
, (24)

we see that 𝜌𝑝 is a translation invariantmetric.This concludes
the proof.

For simplicity, here as always in the sequel, we shall write
𝑀
𝑝 instead of the metric space (𝑀𝑝, 𝜌𝑝). For a function 𝑓

holomorphic in D and for any fixed 0 ≤ 𝜌 < 1, denote by
𝑓𝜌 the function defined on D as 𝑓𝜌(𝑧) = 𝑓(𝜌𝑧), 𝑧 ∈ D.
Furthermore, for a given holomorphic function 𝑓 on D, let

𝑀𝑓
𝜌
(𝜃) = sup

0≤𝑟≤𝜌

𝑓𝑟 (𝜃)
 = sup
0≤𝑟≤𝜌


𝑓 (𝑟𝑒
𝑖𝜃
)

, 0 ≤ 𝜌 < 1.

(25)

Lemma 3. A function 𝑓 holomorphic on the unit disk D

belongs to the class𝑀𝑝 if and only if it satisfies

lim
𝜌→1
∫

2𝜋

0

(log+𝑀𝑓
𝜌
(𝜃))
𝑝 𝑑𝜃

2𝜋

= ∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
< ∞.

(26)

Proof. The condition (26) implies that 𝑓 ∈ 𝑀𝑝. Conversely,
assume that 𝑓 ∈ 𝑀𝑝. Then

𝑀𝑓𝜌 (𝜃) → 𝑀𝑓 (𝜃) as 𝜌 → 1

for almost every 𝜃 ∈ [0, 2𝜋] .
(27)

Since, by the assumption, 𝑓 ∈ 𝑀
𝑝; that is,

∫
2𝜋

0
(log+𝑀𝑓(𝜃))𝑝(𝑑𝜃/2𝜋) < ∞, using (27) and applying the

Lebesgue dominated convergence theorem, we obtain

lim
𝜌→1
∫

2𝜋

0

(log+𝑀𝑓𝜌 (𝜃))
𝑝 𝑑𝜃

2𝜋
= ∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
,

(28)

which completes the proof.
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Theorem 4. The space𝑀𝑝 is closed under integration.

Proof. For a given function 𝑓 ∈ 𝑀𝑝, define

𝐹 (𝑧) = ∫

𝑧

0

𝑓 (𝑧) 𝑑𝑧 = ∫

𝑟

0

𝑓 (𝑡𝑒
𝑖𝜃
) 𝑒
𝑖𝜃
𝑑𝑡. (29)

It follows that |𝐹(𝑟𝑒𝑖𝜃)| ≤ 𝑀𝑓(𝜃), and thus𝑀𝐹(𝜃) ≤ 𝑀𝑓(𝜃)
for almost every 𝜃 ∈ [0, 2𝜋]. Therefore 𝐹 ∈ 𝑀𝑝, as desired.

3. Convergences in the Space𝑀𝑝

Theorem 5. For each function 𝑓 ∈ 𝑀𝑝, 𝑓𝜌 → 𝑓 in𝑀𝑝 as
𝜌 → 1−.

Proof. Assume that 𝑓 ∈ 𝑀𝑝. Since 𝑓 ∈ 𝑁+, by Fatou’s
theorem, the radial limit 𝑓∗(𝑒𝑖𝜃) = lim𝑟→1−𝑓(𝑟𝑒

𝑖𝜃
) exists

for almost every 𝜃 ∈ [0, 2𝜋]. Hence, for such a fixed 𝜃, the
function 𝑡 → 𝑓(𝑡𝑒𝑖𝜃) is a continuous on [0, 1], and thus it is
uniformly continuous on [0, 1]. Therefore, for such a 𝜃, we
have

𝑀(𝑓 − 𝑓𝜌) (𝜃) → 0 as 𝜌 → 1 − . (30)

By the inequality

log (1 +𝑀(𝑓 − 𝑓𝜌) (𝜃))

≤ log (1 +𝑀𝑓 (𝜃)) + log (1 +𝑀𝑓𝜌 (𝜃))

≤ 2 log (1 +𝑀𝑓 (𝜃)) ,

(31)

in view of the fact that (18) is satisfied for 𝑓 ∈ 𝑀𝑝, we obtain

log𝑝 (1 +𝑀(𝑓 − 𝑓𝜌) (𝜃)) ≤ 2
𝑝log𝑝 (1 +𝑀𝑓 (𝜃)) ∈ 𝐿1 (T) .

(32)

From this and (30), by the Lebesgue dominated convergence
theorem, we obtain

∫

2𝜋

0

(log (1 +𝑀(𝑓 − 𝑓𝜌) (𝜃)))
𝑝 𝑑𝜃

2𝜋
→ 0,

as 𝜌 → 1 − .
(33)

That is, 𝑓𝜌 → 𝑓 in𝑀
𝑝 as 𝜌 → 1−.

For the proof of completeness of the metric space
(𝑀
𝑝
, 𝜌𝑝) we will need the following lemmas.

Lemma 6. If {𝑓𝑛} is a Cauchy sequence in𝑀𝑝, then (𝑓𝑛)𝜌 →
𝑓𝑛 in𝑀𝑝 as 𝜌 → 1−, where this convergence is uniform with
respect to 𝑛 ∈ N.

Proof. Suppose that {𝑓𝑛} is an arbitrary Cauchy sequence in
𝑀
𝑝. Then for a given 𝜀 > 0 there is a 𝑘 ∈ N such that

𝜌𝑝 (𝑓𝑛, 𝑓𝑚) <
𝜀

3
∀𝑛,𝑚 ≥ 𝑘. (34)

So by the triangle inequality, for each 𝑛 ≥ 𝑘, we have

𝜌𝑝 (𝑓𝑛, (𝑓𝑛)𝜌) ≤ 𝜌𝑝 (𝑓𝑛, 𝑓𝑘) + 𝜌𝑝 (𝑓𝑘, (𝑓𝑘)𝜌)

+ 𝜌𝑝 ((𝑓𝑘)𝜌, (𝑓𝑛)𝜌)

≤ 2𝜌𝑝 (𝑓𝑛, 𝑓𝑘) + 𝜌𝑝 (𝑓𝑘, (𝑓𝑘)𝜌)

<
2𝜀

3
+ 𝜌𝑝 (𝑓𝑘, (𝑓𝑘)𝜌) .

(35)

By Theorem 5, there exists 0 < 𝜌0 < 1 sufficiently near to 1,
for which

𝜌𝑝 (𝑓𝑙, (𝑓𝑙)𝜌) <
𝜀

3
for each 𝜌0 < 𝜌 < 1,

for each 𝑙 = 1, . . . , 𝑘.
(36)

Hence, by (35), we immediately obtain

𝜌𝑝 (𝑓𝑛, (𝑓𝑛)𝜌) < 𝜀 for each 𝜌0 < 𝜌 < 1, for each 𝑛 ∈ N.
(37)

This completes proof of Lemma 6.

Lemma 7. For any 𝑝 > 1,𝑀𝑝 ⊆ 𝑁𝑝 and

𝑑𝑝 (𝑓, 𝑔) ≤ 𝜌𝑝 (𝑓, 𝑔) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓, 𝑔 ∈ 𝑀
𝑝
, (38)

where 𝑑𝑝 is the metric of𝑁𝑝 defined by (8).

Proof. The inclusion𝑀𝑝 ⊆ 𝑁𝑝 is obvious, and (38) follows
by the definition of the metrics 𝑑𝑝 and 𝜌𝑝.

Lemma 8. The convergence with respect to the metric 𝑑𝑝 of the
space𝑁𝑝 is stronger than the metric of uniform convergence on
compact subsets of the disk D.

Proof. The assertion immediately follows from the inequality
on [5, page 898], which implies that, for any function 𝑓 ∈ 𝑁𝑝
and 0 ≤ 𝑟 < 1, we have

max
|𝑧|=𝑟

𝑓 (𝑧)
 ≤ exp((

1 + 𝑟

1 − 𝑟
)

1/𝑝

𝑑𝑝 (𝑓, 0)) . (39)

Lemma 9. If {𝑓𝑛} is a Cauchy sequence in the space𝑀𝑝, then
{𝑓𝑛} converges uniformly on compact subsets of D to some
holomorphic function 𝑓 on D.

Proof. From the inequality (38) of Lemma 7, it follows that
{𝑓𝑛} is a Cauchy sequence in 𝑁

𝑝. Therefore, there exists 𝑓 ∈
𝑁
𝑝 such that 𝑓𝑛 → 𝑓 in𝑁𝑝, and so, by Lemma 8, 𝑓𝑛 → 𝑓

uniformly on compact subsets of D.

The following result is a maximal theorem of Hardy and
Littlewood.



The Scientific World Journal 5

Lemma 10 (see [16, page 11]). Let 1 < 𝑝 ≤ +∞ and let 𝜑 be a
function in the Lebesgue space 𝐿𝑝(T). Let

𝑢 (𝑟, 𝜃) =
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
𝜑 (𝑡) 𝑑𝑡, 0 ≤ 𝑟 < 1

(40)

be the Poisson integral of the function 𝜑. Define

𝑈 (𝜃) = sup
0≤𝑟<1

|𝑢 (𝑟, 𝜃)| , 𝜃 ∈ [0, 2𝜋] . (41)

Then 𝑈 ∈ 𝐿𝑝(T) and there is a constant 𝐴𝑝 depending only on
𝑝 such that

‖𝑈‖𝐿𝑝 ≤ 𝐴𝑝
𝜑
𝐿𝑝 , (42)

where ‖ ⋅ ‖𝐿𝑝 is the usual norm of the space 𝐿𝑝(T).

We are now ready to state the following result.

Theorem 11. 𝑀𝑝 = 𝑁𝑝 for each 𝑝 > 1; that is, the spaces𝑀𝑝
and𝑁𝑝 coincide.

Proof. By Lemma 7,𝑀𝑝 ⊆ 𝑁𝑝 for each 𝑝 > 1. For the proof
of the converse of this inclusion, assume that 𝑓 ∈ 𝑁𝑝. We
will show that 𝑓 ∈ 𝑀𝑝. As noticed in Section 1, 𝑓 can be
factorized as

𝑓 (𝑧) = 𝐼 (𝑧) 𝐹 (𝑧) , 𝑧 ∈ D, (43)

where 𝐼(𝑧) is the inner function and 𝐹(𝑧) is an outer function
for the class𝑁𝑝; that is,

𝐹 (𝑧) = 𝜔 exp( 1
2𝜋
∫

2𝜋

0

𝑒
𝑖𝑡
+ 𝑧

𝑒𝑖𝑡 − 𝑧
log 𝑓

∗
(𝑒
𝑖𝑡
)

𝑑𝑡) , (44)

where 𝜔 is a constant of unit modulus. Furthermore,
log+|𝑓∗| ∈ 𝐿𝑝(T). As |𝐼(𝑧)| ≤ 1, for each 𝑧 ∈ D, the previous
factorization and the fact that 𝐹 ∈ 𝑀𝑝 immediately imply
that 𝑓 ∈ 𝑀𝑝. Since

R
𝑒
𝑖𝑡
+ 𝑧

𝑒𝑖𝑡 − 𝑧
=

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
, 𝑧 = 𝑟𝑒

𝑖𝜃
, (45)

from (44), we immediately obtain

log 𝐹 (𝑟𝑒
𝑖𝜃
)


=
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
log 𝑓

∗
(𝑒
𝑖𝑡
)

𝑑𝑡,

0 ≤ 𝑟 < 1,

(46)

whence it follows that, for 0 ≤ 𝑟 < 1,

log+ 𝐹 (𝑟𝑒
𝑖𝜃
)


= (
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
log 𝑓

∗
(𝑒
𝑖𝑡
)

𝑑𝑡)

+

≤
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
log+ 𝑓

∗
(𝑒
𝑖𝑡
)

𝑑𝑡.

(47)

The above inequality yields

log+𝑀𝐹(𝜃) ≤ sup
0≤𝑟<1

(log+ 𝐹 (𝑟𝑒
𝑖𝜃
)

)

≤ sup
0≤𝑟<1

(
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2

× log+ 𝑓
∗
(𝑒
𝑖𝑡
)

𝑑𝑡) .

(48)

From the above inequality and the fact that log+|𝑓∗| ∈ 𝐿𝑝(T),
we conclude by Lemma 10 that log+𝑀𝐹(𝜃) ∈ 𝐿𝑝(T). This
means that 𝐹 ∈ 𝑀𝑝 and therefore 𝑓 ∈ 𝑀𝑝. Thus 𝑁𝑝 ⊆ 𝑀𝑝,
and therefore𝑀𝑝 = 𝑁𝑝. This completes the proof.

Corollary 12. Let 𝑓 ∈ 𝑀𝑝. Then

∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃

≤ 𝐶𝑝 ∫

2𝜋

0

(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝

𝑑𝜃,

(49)

where 𝐶𝑝 is a nonnegative constant depending only on 𝑝.

Proof. Let 𝐹 be the outer factor in the canonical factorization
of 𝑓 ∈ 𝑀𝑝. From the proof of Theorem 11, we see that for the
functions 𝑈(𝜃) = log+𝑀𝐹(𝜃) and 𝜑(𝜃) = log+|𝑓∗(𝑒𝑖𝜃)| the
inequality (42) can be applied from Lemma 10. The obtained
inequality is in fact (49) with 𝐹 instead of 𝑓. Since |𝑓(𝑧)| ≤
|𝐹(𝑧)|, for each 𝑧 ∈ D, it follows that 𝑀𝑓(𝜃) ≤ 𝑀𝐹(𝜃) at
almost every 𝜃 ∈ [0, 2𝜋]; thus (49) is obviously satisfied.

4.𝑀𝑝 as an 𝐹-Algebra

Theorem 13. The space of all polynomials over C is a dense
subset of𝑀𝑝. Hence,𝑀𝑝 is a separable metric space.

Proof. Suppose that 𝑓 ∈ 𝑀𝑝. Since, for a fixed 0 ≤ 𝜌 < 1, 𝑓𝜌
is a holomorphic function on the closed unit disk D : |𝑧| ≤

1, by Runge’s theorem, 𝑓𝜌 can be uniformly approximated
by polynomials on D. This together with the fact that, by
Theorem 5, 𝑓𝜌 → 𝑓 in𝑀

𝑝 as 𝜌 → 1− yields that the space
of all polynomials over C is a dense subset of𝑀𝑝. Therefore,
the set of all polynomials whose coefficients have rational real
parts and rational imaginary parts becomes a countable dense
subset of𝑀𝑝. This concludes the proof.

Theorem 14. 𝑀𝑝 is a complete metric space.

Proof. Let {𝑓𝑛} be a Cauchy sequence in𝑀𝑝.Then since𝑁𝑝 is
complete, there is a 𝑓 ∈ 𝑁𝑝 such that 𝑓𝑛 → 𝑓 in𝑁

𝑝. Since,
by Theorem 11,𝑀𝑝 = 𝑁𝑝, it follows that 𝑓 ∈ 𝑀𝑝, and thus
it remains to show that 𝑓𝑛 → 𝑓 in𝑀𝑝. By Theorem 5 and
Lemma 6, there exist 0 < 𝑟 < 1 and 𝑛1 ∈ N such that

𝜌𝑝 (𝑓𝑟, 𝑓) <
𝜀

3
,

𝜌𝑝 (𝑓𝑛, (𝑓𝑛)𝑟) <
𝜀

3
for each 𝑛 ≥ 𝑛1.

(50)
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Since, by Lemma 9, a sequence {𝑓𝑛} converges uniformly on
each closed disk |𝑧| ≤ 𝜌 < 1 to some function 𝑓, it follows
that there exists 𝑛2 ∈ N such that

𝜌𝑝 ((𝑓𝑛)𝑟, 𝑓𝑟) <
𝜀

3
for each 𝑛 ≥ 𝑛2. (51)

Taking 𝑛0 = max{𝑛1, 𝑛2}, by (50) and (51), the triangle
inequality implies that

𝜌𝑝 (𝑓𝑛, 𝑓) < 𝜀 ∀𝑛 ≥ 𝑛0. (52)

This shows that 𝑓𝑛 → 𝑓 in𝑀𝑝, which completes the proof.

Theorem 15. 𝑀𝑝 with the topology given by the metric 𝜌𝑝
defined by (23) becomes an 𝐹-space.

Proof. By [22, page 51], it suffices to show the following
properties:

(i) 𝜌𝑝 is an additive-invariant metric,
(ii) for any fixed 𝑓 ∈ 𝑀𝑝, 𝑐 → 𝑐𝑓 is a continuous map

from C into𝑀𝑝,
(iii) for any fixed 𝑐 ∈ C, 𝑓 → 𝑐𝑓 is a continuous map from
𝑀
𝑝 into𝑀𝑝, and

(iv) 𝑀𝑝 is a complete metric space.

The assertion (i) follows fromTheorem 2.
By the Lebesgue dominated convergence theorem, we

have

𝜌𝑝 (𝑐𝑓, 0) = (∫

2𝜋

0

log𝑝 (1 + |𝑐|𝑀𝑓 (𝜃)) 𝑑𝜃
2𝜋
)

1/𝑝

→ 0

as 𝑐 → 0.

(53)

Let 𝑘 ∈ N such that |𝑐| ≤ 𝑘. Then the triangle inequality
yields

𝜌𝑝 (𝑐𝑓, 0) ≤ 𝜌𝑝 (𝑘𝑓, 0) ≤ 𝑘𝜌𝑝 (𝑓, 0) , (54)

whence we see that 𝑓 → 𝑐𝑓 is a continuous map from𝑀𝑝
into𝑀𝑝.

The assertion (iv) is in fact the assertion of Theorem 14.
This concludes the proof.

We are now ready to prove that the (metric) spaces
(𝑀
𝑝
, 𝜌𝑝) and (𝑁

𝑝
, 𝑑𝑝) have the same topological structure.

Theorem 16. For each 𝑝 > 1, the classes𝑀𝑝 and𝑁𝑝 coincide,
and the metric spaces (𝑀𝑝, 𝜌𝑝) and (𝑁𝑝, 𝑑𝑝) have the same
topological structure.

Proof. Consider the identity map 𝑗 : 𝑀𝑝 → 𝑁
𝑝. Then,

by the inequality (38) of Lemma 7, 𝑗 is continuous. Since,
by Theorem 11, 𝑀𝑝 = 𝑁𝑝, 𝑗 maps 𝑀𝑝 onto 𝑁𝑝. Since 𝑀𝑝
and 𝑁𝑝 are both 𝐹-spaces, it follows, by the open mapping
theorem [23, Corollary 2.12 (b)], that the inverse map 𝑗−1 of
𝑗 is continuous. Hence, 𝑗 is a homeomorphism, and so the
metrics 𝑑𝑝 and 𝜌𝑝 induce the same topology on𝑁𝑝 and𝑀𝑝,
respectively.

As an application ofTheorem 16 and using the character-
ization of topological dual of the space 𝐹𝑝 (which is by [7,
Theorem 4.2] the Fréchet envelope of 𝑁𝑝) given by Stoll [6,
Theorem 3.3] (cf. also [12,Theorem 3.5] and [13,Theorem 2]),
we immediately get the following result.

Theorem 17. If 𝛾 is a continuous linear functional on 𝑀𝑝,
then there exists a sequence {𝛾𝑛}𝑛 of complex numbers with
𝛾𝑛 = 𝑂(exp(−𝑐𝑛

1/(𝑝+1)
)), for some 𝑐 > 0, such that

𝛾 (𝑓) =

∞

∑

𝑛=0

𝑎𝑛𝛾𝑛, (55)

where 𝑓(𝑧) = ∑∞
𝑛=0
𝑎𝑛𝑧
𝑛
∈ 𝑀

𝑝, with convergence being
absolute. Conversely, if {𝛾𝑛} is a sequence of complex numbers
for which

𝛾𝑛 = 𝑂 (exp (−𝑐𝑛
1/(𝑝+1)

)) , (56)

then (55) defines a continuous linear functional on𝑀𝑝.

Corollary 18. 𝑀𝑝 is an 𝐹-algebra.

Proof. By Theorem 15, 𝑀𝑝 becomes an 𝐹-space. As 𝑁𝑝
is an 𝐹-algebra, by Theorem 16, the multiplication is also
continuous on𝑀𝑝. Hence,𝑀𝑝 is an 𝐹-algebra.

5. Bounded Subsets of𝑀𝑝

It is proved in Section 4 (Theorem 16) that the spaces𝑀𝑝 and
𝑁
𝑝 coincide and have the same topological structure. Since
𝑁
𝑝 and𝑀𝑝 are not Banach spaces, it is of interest to obtain a

characterization of bounded subsets of these spaces in terms
of both metrics 𝑑𝑝 and 𝜌𝑝.

Recall that, for a function 𝑓 ∈ 𝑁𝑝, its boundary function
𝑓
∗ is defined as the radial limit 𝑓∗(𝑒𝑖𝜃) = lim𝑟→1−𝑓(𝑟𝑒

𝑖𝜃
)

which exists for almost every 𝑒𝑖𝜃 ∈ T .
The following result gives a characterization of bounded

subsets of 𝑁𝑝(= 𝑀𝑝). Recall that the assertion (i)⇔(iii)
is analogous to Theorem 1 in [21] that describes bounded
subsets of𝑁+.

Theorem 19. For given set 𝐿 ⊂ 𝑀𝑝, the following conditions
are equivalent:

(i) 𝐿 is a bounded subset of𝑀𝑝;
(ii) for all 𝜀 > 0 there exists 𝛿 > 0 such that

∫
𝐸

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
< 𝜀 ∀𝑓 ∈ 𝐿, (57)

for every measurable set 𝐸 ⊂ T with the Lebesgue
measure |𝐸| < 𝛿;

(iii) for all 𝜀 > 0 there exists 𝛿 > 0 such that

∫
𝐸

(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝 𝑑𝜃

2𝜋
< 𝜀 ∀𝑓 ∈ 𝐿, (58)

for each measurable set 𝐸 ⊂ T with the Lebesgue
measure |𝐸| < 𝛿.
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Proof. (ii)⇒(iii). It follows that from the obvious inequality
|𝑓
∗
(𝑒
𝑖𝜃
)| ≤ 𝑀𝑓(𝜃), 𝑓 ∈ 𝑀𝑝, for almost every 𝜃 ∈ [0, 2𝜋].

(iii)⇒(i). Let

𝑉 = {𝑔 ∈ 𝑁
𝑝
: 𝑑𝑝 (𝑔, 0) < 𝜂} (59)

be an arbitrary neighborhood of zero in 𝑁𝑝. Choose suffi-
ciently small 𝜀 > 0 such that

log𝑝 (1 + 𝜀) + 2𝑝−1log𝑝2𝛿 + 2𝑝−1𝜀 < 𝜂𝑝. (60)

Now it follows that there exists 𝛿, 0 < 𝛿 < 𝜀, such that (iii)
holds. Choose an 𝑛 ∈ N for which 1/𝑛 < 𝛿. Set

𝐸𝑘 = {𝑒
𝑖𝜃
: 𝜃 ∈ [

2 (𝑘 − 1) 𝜋

𝑛
,
2𝑘𝜋

𝑛
)} , 𝑘 = 1, 2, . . . , 𝑛.

(61)

Then |𝐸𝑘| = 1/𝑛 < 𝛿, and thus by (iii) we have

∫

2𝜋

0

(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝 𝑑𝜃

2𝜋

=

𝑛

∑

𝑘=1

∫
𝐸
𝑘

< 𝑛𝜀 ∀𝑓 ∈ 𝐿.

(62)

By (62) and Chebyshev’s inequality, we conclude that for
every function 𝑓 ∈ 𝑁𝑝 there exists a measurable set 𝐸𝑓 ⊂ T

depending on 𝑓 such that


T \ 𝐸𝑓


< 𝛿, (log+ 𝑓

∗
(𝑒
𝑖𝜃
)

)
𝑝

≤
𝑛𝜀

𝛿
on 𝐸𝑓. (63)

From (63), we obtain


𝑓
∗
(𝑒
𝑖𝜃
)

≤ exp(𝑛𝜀

𝛿
)

1/𝑝

= 𝐾 (𝛿) = 𝐾 on 𝐸𝑓. (64)

Choose 𝛼 such that 0 < 𝛼 < 𝜀/𝛿. Then using the inequality

log𝑝 (1 + |𝑎|) ≤ 2𝑝−1 ((log+ |𝑎|)𝑝 + log𝑝2) , (65)

(60) and (iii), for every 𝑓 ∈ 𝐿, we obtain

(𝑑𝑝 (𝛼𝑓, 0))
𝑝

= ∫

2𝜋

0

log𝑝 (1 + 𝛼𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑑𝜃

2𝜋

= ∫
𝐸
𝑓

+∫
T\𝐸
𝑓

≤ ∫
𝐸
𝑓

log𝑝 (1 + 𝜀) 𝑑𝜃
2𝜋

+ 2
𝑝−1
(∫

T\𝐸
𝑓

log𝑝2𝑑𝜃
2𝜋
+ ∫

T\𝐸
𝑓

(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝 𝑑𝜃

2𝜋
)

≤ log𝑝 (1 + 𝜀) + 2𝑝−1log𝑝2𝛿 + 2𝑝−1𝜀

< 𝜂
𝑝
.

(66)

Therefore, 𝑑𝑝(𝛼𝑓, 0) < 𝜂, from which it follows that 𝛼𝐿 ⊂ 𝑉.
Hence, 𝐿 is a bounded subset of𝑁𝑝.

(i)⇒(ii). Assume that 𝐿 is a bounded subset of𝑀𝑝. Then
for any given 𝜂 > 0 there is a 𝛼0 = 𝛼0(𝜂), 0 < 𝛼0 < 1, such
that

(𝜌𝑝 (𝛼𝑓, 0))
𝑝

= ∫

2𝜋

0

log𝑝 (1 + |𝛼|𝑀𝑓 (𝜃)) 𝑑𝜃
2𝜋
< 𝜂
𝑝 (67)

for each 𝑓 ∈ 𝐿 and |𝛼| ≤ 𝛼0. It follows that

∫

2𝜋

0

(log+ |𝛼|𝑀𝑓 (𝜃))𝑝 𝑑𝜃
2𝜋
< 𝜂
𝑝

for each 𝑓 ∈ 𝐿, |𝛼| ≤ 𝛼0.
(68)

Since

log+𝑀𝑓(𝜃) ≤ log+𝛼0𝑀𝑓(𝜃) + log
1

𝛼0
, (69)

we obtain

(log+𝑀𝑓(𝜃))𝑝 ≤ 2𝑝−1 ((log+𝛼0𝑀𝑓(𝜃))
𝑝
+ (log 1

𝛼0
)

𝑝

) .

(70)

For given 𝜀 > 0, choose 𝜂 > 0 satisfying

𝜂 <
𝜀
1/𝑝

2
, (71)

and 𝛼0 = 𝛼0(𝜂) satisfying (67) and so also satisfying (68).
Next, take 𝛿 > 0 such that

𝛿log𝑝 1
𝛼0
<
𝜀

2𝑝
. (72)

Then for each set 𝐸 ⊂ T with |𝐸| < 𝛿, by (68)–(72), for every
𝑓 ∈ 𝐿, we obtain

∫
𝐸

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋

≤ 2
𝑝−1
(∫
𝐸

(log+𝛼0𝑀𝑓(𝜃))
𝑝 𝑑𝜃

2𝜋
+ ∫
𝐸

log𝑝 1
𝛼0

𝑑𝜃

2𝜋
)

≤ 2
𝑝−1
𝜂
𝑝
+ 2
𝑝−1
|𝐸| log𝑝 1

𝛼0

≤ 𝜀.

(73)

Therefore, the condition (ii) of the theorem is satisfied, which
concludes the proof.

Remark 20. Note that the condition (ii) from Theorem 19
in fact means that the family {(log+𝑀𝑓(𝜃))𝑝 : 𝑓 ∈ 𝐿}
is uniformly integrable on T . The same assertion is also
valid for the condition (iii). On the other hand, from the
proof of Theorem 19, we see that (ii) implies that the family
{(log+𝑀𝑓(𝜃))𝑝 : 𝑓 ∈ 𝐿} forms a bounded subset of the space
𝐿
1
(T); that is, there holds

lim sup
𝑓∈𝐿

∫

2𝜋

0

(log+𝑀𝑓(𝜃))𝑝 𝑑𝜃
2𝜋
< +∞. (74)
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Similarly, it follows from (iii) that the family
{(log+|𝑓∗(𝑒𝑖𝜃)|)

𝑝

: 𝑓 ∈ 𝐿} is bounded in 𝐿1(T).

Corollary 21. If 𝐿 is a subset of𝑀𝑝 for which the family

{(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝

: 𝑓 ∈ 𝐿} (75)

is uniformly integrable, then the family

{(log+ 𝑓 (𝑟𝑒
𝑖𝜃
)

)
𝑝

: 𝑓 ∈ 𝐿, 0 ≤ 𝑟 < 1} (76)

is also uniformly integrable.

Proof. The condition of Corollary 21 and (iii)⇒(ii)
of Theorem 19 immediately yield that the family
{(log+𝑀𝑓(𝜃))𝑝 : 𝑓 ∈ 𝐿} is uniformly integrable on the circle
T . This fact and the obvious inequality |𝑓(𝑟𝑒𝑖𝜃)| ≤ 𝑀𝑓(𝜃),
𝑓 ∈ 𝑀

𝑝, 0 ≤ 𝑟 < 1, for almost every 𝜃 ∈ [0, 2𝜋], imply that
the family {(log+|𝑓(𝑟𝑒𝑖𝜃)|)

𝑝

: 𝑓 ∈ 𝐿, 0 ≤ 𝑟 < 1} is uniformly
integrable.

The following result gives a necessary condition for a
subset of𝑀𝑝(= 𝑁𝑝) to be bounded.

Theorem 22. Let 𝐿 be a subset of𝑀𝑝. If 𝐿 is bounded in𝑀𝑝,
then

𝑀∞ (𝑟, 𝑓) ≤ 𝐾 exp( 𝜔 (𝑟)

(1 − 𝑟)
1/𝑝
) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓 ∈ 𝐿, (77)

where 𝑀∞(𝑟, 𝑓) = max0≤𝜃<2𝜋|𝑓(𝑟𝑒
𝑖𝜃
)|, 𝐾 is a positive

constant, and 𝜔(𝑟), 0 ≤ 𝑟 < 1, is a positive continuous function
that does not depend on 𝑓 ∈ 𝐿 and for which 𝜔(𝑟) ↓ 0 as
𝑟 → 1.

Proof. By the inequqlity (5.4) from the proof of Theorem 5.2
in [4], for all 𝑓 ∈ 𝑁𝑝, we have

(log+ 𝑓 (𝑟𝑒
𝑖𝜃
)

)
𝑝

≤
1

2𝜋
∫

2𝜋

0

1 − 𝑟
2

1 − 2𝑟 cos (𝜃 − 𝑡) + 𝑟2
(log+ 𝑓

∗
(𝑒
𝑖𝑡
)

)
𝑝

𝑑𝑡.

(78)

As, by the assumption, 𝐿 is a bounded subset of 𝑁𝑝, by
Theorem 19 (iii), for all 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) > 0, such
that

∫

2𝜋

0

(log+ 𝑓
∗
(𝑒
𝑖𝜃
)

)
𝑝 𝑑𝜃

2𝜋
<
𝜀

2
∀𝑓 ∈ 𝐿 (79)

and for every measurable set 𝐸 ⊂ T with the Lebesgue
measure |𝐸| < 𝛿.

Further, from the proof of (iii)⇒(i) of Theorem 19, we
see that for each 𝑓 ∈ 𝑁𝑝 there is a measurable set 𝐸𝑓 ⊂ T

depending on 𝑓 for which


T \ 𝐸𝑓


< 𝛿, (log+ 𝑓

∗
(𝑒
𝑖𝜃
)

)
𝑝

≤
𝑛𝜀

𝛿
(80)

for almost every 𝑒𝑖𝜃 ∈ 𝐸𝑓. From (78)–(80), we obtain

(log+ 𝑓 (𝑟𝑒
𝑖𝜃
)

)
𝑝

= ∫
𝐸
𝑓

+∫
𝐸
𝑓

≤
𝑛𝜀

𝛿
+
1

1 − 𝑟

𝜀

2
,

(81)

whence it follows that

(1 − 𝑟) (log+𝑀∞ (𝑟, 𝑓))
𝑝
≤
(1 − 𝑟) 𝑛𝜀

𝛿
+
𝜀

2
. (82)

Choose a sequence {𝜀𝑘} of positive numbers such that 𝜀𝑘 ↓ 0.
For each 𝑘 ∈ N, let 𝑟𝑘 > 0 be a number such that

(1 − 𝑟𝑘) 𝑛𝜀

𝛿𝑘
+
𝜀𝑘

2
< 𝜀𝑘, (83)

where 𝜀𝑘 = 𝛿(𝜀𝑘) and

𝑟𝑘−1 < 𝑟𝑘 < 1, 𝑟𝑘 ↑ 1 as 𝑘 → ∞. (84)

Put

𝜔1 (𝑟) = 𝜀𝑘 for 𝑟𝑘 ≤ 𝑟 < 𝑟𝑘+1, 𝑘 = 1, 2, . . . . (85)

From (82), (83), and (85) we obtain

(log+𝑀∞ (𝑟, 𝑓))
𝑝
≤
𝜔1 (𝑟)

1 − 𝑟
∀ 0 ≤ 𝑟 < 1. (86)

Since

𝜔1 (𝑟) → 0 as 𝑟 → 1, (87)

we conclude that there exists a continuous function 𝜔2(𝑟)
satisfying

𝜔1 (𝑟) ≤ 𝜔2 (𝑟) , 𝜔2 (𝑟) ↓ 0 as 𝑟 → 1. (88)

Therefore,

(log+𝑀∞ (𝑟, 𝑓))
𝑝
≤
𝜔2 (𝑟)

1 − 𝑟
for each 0 ≤ 𝑟 < 1, (89)

whence by setting

𝜔 (𝑟) = (𝜔2 (𝑟))
1/𝑝 for each 0 ≤ 𝑟 < 1, (90)

we obtain

𝑀∞ (𝑟, 𝑓) ≤ exp(
𝜔 (𝑟)

(1 − 𝑟)
1/𝑝
) ∀𝑓 ∈ 𝐿. (91)

This concludes the proof.

Remark 23. The condition of Theorem 22 is not a sufficient
condition for a set 𝐿 ⊂ 𝑀𝑝 to be bounded. To show this,
define

𝑓𝑛 (𝑧) = 𝑎𝑛𝑧
𝑛
, 𝑎𝑛 = exp (𝜆𝑛𝑛

1/(𝑝+1)
) , (92)
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where

𝜆𝑛 = 𝑛
−1/2(𝑝+1)

. (93)

Then as in the proof of Lemma 1 in [21] it is easy to verify that
the set 𝐿 = {𝑓𝑛} ⊂ 𝑀

𝑝 satisfies the condition of Theorem 22.
Since

log 𝑓
∗

𝑛
(𝑒
𝑖𝜃
)

= 𝑛
1/2(𝑝+1)

, (94)

we see that 𝐿 is not bounded in𝑀𝑝.

Theorem 24. There exist bounded subsets of𝑀𝑝 that are not
relatively compact.

Proof. Define a sequence {ℎ𝑛} of functions on [0, 2𝜋] as

ℎ𝑛 (𝑡) = 1 + sin (𝑛𝑡) , 𝑡 ∈ [0, 2𝜋] , (95)

and set

𝑓𝑛 (𝑧) = exp(
1

2𝜋
∫

2𝜋

0

𝑒
𝑖𝑡
+ 𝑧

𝑒𝑖𝑡 − 𝑧
ℎ𝑛 (𝑡) 𝑑𝑡)

= exp (1 − 𝑖𝑧𝑛) , 𝑧 ∈ D.

(96)

Obviously, {𝑓𝑛} ⊂ 𝑁
𝑝 and for each measurable set 𝐸 ⊂ T we

have

∫

2𝜋

0

ℎ𝑛 (𝑡) 𝑑𝑡 = 2𝜋,

0 ≤ ∫
𝐸

ℎ𝑛 (𝑡) 𝑑𝑡 ≤ 2 |𝐸| ,

(97)

where |𝐸| denotes the Lebesgue measure of 𝐸. From this and
Theorem 19, we see that the set 𝐿 = {𝑓𝑛} is bounded in𝑁𝑝.

Now suppose that𝐸 is relatively compact.Thismeans that
there exists a subsequence {𝑓𝑛𝑘}of {𝑓𝑛} and a function𝑓 ∈ 𝑁

𝑝

such that

𝑑𝑝 (𝑓𝑛𝑘, 𝑓) → 0 as 𝑘 → ∞, (98)

and thus

𝑓𝑛𝑘 (𝑧) → 𝑓 (𝑧) ,

uniformly on each closed disk |𝑧| ≤ 𝑟 < 1.
(99)

Therefore, by (96), it follows that𝑓(𝑧) ≡ 𝑒 onD. On the other
hand, from (98), it follows that

𝑓𝑛
∗

𝑘
(𝑒
𝑖𝜃
) → 𝑓

∗
(𝑒
𝑖𝜃
) in measure on T . (100)

Therefore,

log+ 𝑓𝑛
∗

𝑘
(𝑒
𝑖𝜃
)

= 1 + sin (𝑛𝑘𝜃) → log+ 𝑓

∗
(𝑒
𝑖𝜃
)

= 1

in measure on T .

(101)

This contradiction shows that 𝐿 is not relatively compact in
𝑁
𝑝.
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[10] R. Meštrović, Topological and F-algebras of holomorphic func-
tions [Ph.D. thesis], University ofMontenegro, Podgorica,Mon-
tenegro, 1999.
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