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We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which
consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT) related genes were
selected by significance analysis of microarrays (SAM). Orthogonal latent variables (LVs) were then extracted by the partial least
squares (PLS)method as the new compressive input variables. Finally, support vectormachine (SVM) regressionmodel was trained
with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2Gy 𝛾-ray) values of the cell lines.
Comparison with the published results showed significant improvement of the new method in various ways: (a) reducing the root
mean square error (RMSE) of the radiation sensitivity prediction model from 0.20 to 0.011; and (b) improving prediction accuracy
from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used.
Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes
as a general prognosis platform.The gene regulatory network analysis identified six hub genes that are involved in canonical cancer
pathways.

1. Introduction

Radiation therapy (RT) is one of the important treatment
modalities used in cancer treatment either alone or in
conjunction with chemotherapy and surgery. Approximately
50% of all cancer patients receive RT during their course of
treatment [1]. It has been demonstrated that radiation can
suppress tumor growth either by inhibiting cell proliferation
or by inducing cell death or both [2]. However, the radiation
response of different tumors varies greatly. This is true even
for the same type of tumor in different patients [3]. Thus,
personalized treatment necessitates quantitative and accurate
prediction of tumor cell response to RT.

The advent ofmicroarray technology has had a significant
effect on oncology research. Studies over recent decades

attempted to correlate the relationship between cellular radia-
tion sensitivity and expression levels of some important genes
[4]. Most published studies identified radiation sensitivity-
related genes from a single homogenous cancer tumor type,
for example, uterine cervical cancer [5], oral squamous cell
carcinoma [6], colorectal cancer [7], and lung cancer [8]. It
is generally accepted, however, that the gene signature will
be more robust and general if derived from heterogeneous
cell lines involving multiple tissues of origin. The most
comprehensive studies used the NCI-60 panel of cell lines.

The NCI-60 panel is the most extensively characterized
set of cancer cell lines and a public resource that is widely
used as a platform for drug discovery [9]. Some NCI-
60 platform based investigations demonstrated that tumor
response to RT was predictable by means of gene expression
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profiling. Using NCI-60 cancer cell lines, Amundson et al.
[10] performed large-scale comparisons of gene expression
variations in response to different doses (2, 5, and 8Gy)
of 𝛾-ray radiation. Kim et al. [11] integrated four published
microarray studies on NCI-60 cell lines in an effort to
identify common radiation sensitivity-related gene signature
across all available microarray platforms. Torres-Roca et al.
[12] used significance analysis of microarrays (SAM) [13] to
select genes that were significantly correlated with radiation
sensitivity measured as a surviving fraction at 2Gy (SF2).
They then used the selected genes to construct a linear
prediction model of SF2. The leave-one-out (LOO) method
was applied on 35 cell lines. This resulted in SF2 prediction
of 22 cell lines with <10% errors. Based on this study [12],
Eschrich et al. [14] used a least squares fit algorithm to
construct a linear model to predict SF2s with gene expression
values and other biological parameters. They selected 500
genes from 7,168 probe sets. Then by using GeneGo and
MetaCore, a scale-free network of 500 genes was created
highlighting several important biological pathways. Finally,
they provided a linear equation between SF2s and expression
values of ten network hub genes.

These previous studies [5–8, 10–12, 14] made a sincere
effort in understanding association of gene expression and
radiation response with the ultimate goal to personalize
radiation treatment of different cancers. Improvement in
quantitative prediction of in vitro radiation sensitivity by
linear regression model achieved by Torres-Roca et al. [12]
and Eschrich et al. [14] divided cell lines into sensitive or
resistant groups according to their predicted SF2 values. Such
linear regressionmodels are obviously not sufficiently enough
for the detection of multiple and combinational nonlinear
gene interactions [15]. In our study, therefore, we aim at
further improving quantitative and accurate prediction of
radiation response represented by SF2 values. The precise
survival prediction of patients, then, can be achieved by using
the predicted SF2 and other clinical parameters, that is, age,
tumor stage, and so forth. Within NCI-60 platform there are
cell lines of nine different types of cancer and we chose this
platform to build our prediction model.

It is known that high dimension and multicollinear
relationships among genes, inherent in microarray data, can
reduce the usefulness of widely used analysis methods [16].
As a first step, we therefore used SAM to select highly
significant radiation response-related genes. Then, partial
least squares (PLS) [17] algorithm was applied to extract
latent variables (LVs). These two steps reduced the number
of input variables (gene expression profiles) from 19,162 to 17
which effectively overcame the “dimensionality curse” prob-
lem. The orthogonality among LVs successfully removed the
multicollinearity inherent in original gene expression values.
Finally, a kernel-based regression model was generated for
the SF2 prediction by using support vector machine (SVM)
[18]. We obtained an accurate radiation sensitivity prediction
model.Theminimumprediction errorwas an exceptional “0”.
The RMSE (root mean square error) was markedly reduced
from 0.20 (of Torres-Roca et al. [12]) to 0.011. The prediction
accuracy was improved from 62% to 91%. Survival analysis
across three datasets demonstrated the robustness of our

gene expression signature. This could have immense clinical
potential. Additionally, the gene regulatory network analysis
identified six hub genes which are involved in known cancer
pathways.

2. Materials and Methods

2.1. NCI-60 Platform. In the late 1980s the US National Can-
cer Institute selected 60 (NCI-60) cell lines representing nine
tumor types as an in vitro drug-discovery platform [9]. They
contained breast, central nervous system, colon, leukemia,
lung, melanoma, ovarian, prostate, and renal cancers. Con-
tinued screening of potential adjuvant agents and molecular
characterization of these cell lines were informative andmade
them a valuable resource for research of drug reaction, tumor
growth inhibition, and so forth [19]. Accordingly, in our
study, we used it as the platform to assess the performance
of our method.

Radiation response is defined as the survival fraction of
tumor cells at a given dose of 𝛾-ray radiation. SF2 represents
the surviving fraction of cells after radiation dose of 2Gy 𝛾-
rays and is widely used as measurement of radiation sensi-
tivity in vitro due to reproducibility and the clinical relevance
(in clinical practice, patients generally receive dose equivalent
of 2Gy of radiation per fraction). SF2 is a continuous value
ranging from 0 to 1. The lower the SF2 value of a cell line is,
the more sensitive it is to radiation. SF2 values of NCI-60 cell
lines were obtained from previously published data [14].

Gene expression profiles of NCI-60 cell lines were
obtained from gene expression omnibus (GEO) (series acces-
sion number GSE32474 [20]). The expression data of cell line
BREAST MDN were not available; the detailed information
of the remaining 59 cell lines and corresponding measured
SF2 values are shown in Supplementary Table S1 (the fourth
column) (see Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/903602).

2.2. Cancer Patient Datasets. To test the clinical significance
of the genetic signature, we selected patients with glioma,
colon cancer, and ovarian cancer. Supplementary Table
S2 provides the summarized clinical parameters of these
patients.

2.3. Procedure of Radiation Sensitivity Modeling. As a first
step, SAM [13] was used for gene selection and dimension
reduction. This method carries out gene specific 𝑡-test and
computes a score of 𝑑𝑗 for each gene 𝑗. The 𝑑𝑗 score is
used to measure the strength of the relationship between
gene expression value and a response variable (radiation
sensitivity). Genes with scores higher than the threshold are
assumed to be significantly related to radiation sensitivity. A
false discovery rate (FDR) [21] of 1% was used to control the
proportion of genes incorrectly identified as significant.

In the second step, PLS [17] was used as a feature
extraction technique to further reduce the input dimension.
In PLS, orthogonal LVs are extracted by constructing linear
combinations of the gene expression profiles. Therefore, the
𝑛-dimensional gene expression space is compressed into
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Figure 1: Flow chart of radiation sensitivity prediction model.
Abbreviations: SF2—survival fraction at 2Gy 𝛾-ray radiation;
SAM—significance analysis of microarrays; FDR—false discovery
rate; PLS—partial least squares; and SVM—support vectormachine.

the V-dimensional LV-space, where V ≪ 𝑛. As a benefit of the
orthogonality of LVs, the multicollinear relationship among
genes was eliminated. At the same time, the interference of
the noise was excluded.

Finally, the selected LVs were used as input variables to
SVM regression algorithm [18, 22]. SVM maps the original
input space into a higher dimensional 𝑓 space using a
nonlinear mapping. A linear model is then constructed in
𝑓 space. As a result, the nonlinear relationship between the
expression values of genes and the radiation response was
modeled. The flow chart of our method is illustrated in
Figure 1.

Thedetails and parameter settings of SAM, PLS, and SVM
are available in the Supplementary Material.

2.4. Microarray Data Preprocessing. Entrez gene identifiers
(Entrez ID) from NCBI were used to match genes across
different chip platforms. The chip probes that could not
be matched with any HUGO [23] gene symbol were
removed.

2.5. Measurement of SF2 Prediction Performance. The RMSE
was used to evaluate the performance of the SF2 prediction
model. It measures how close the predicted SF2s are to the
measured SF2s. A lower RMSE indicates better prediction
capacity of the regression model. The definition of RMSE is

RMSE = √
∑
𝑚
𝑖=1 (𝑌𝑖 − 𝑌𝑖)

2

𝑚
,

(1)

where 𝑌𝑖 is the measured SF2 value of cell line 𝑖, 𝑌𝑖 is the
corresponding predicted SF2, and𝑚 is the number of the cell
lines (𝑚 = 59 in this study).

Ten rounds of 3-fold cross-validation were processed
to train and test the prediction model. The final predicted
SF2 values were determined by the average of these ten
independent rounds.

2.6. Survival Analysis. Univariate Cox proportional hazard
models were used to evaluate the association between patient
survival risk and expression values of each of the signature
genes. A patient’s risk score was determined as the sum
of all survival-related gene expression values multiplied by
the corresponding univariate Cox regression coefficients.
Patients were divided into high-risk and low-risk groups with
the median of risk scores as the threshold value. Survival
curves of high-risk and low-risk groups were estimated using
Kaplan-Meiermethod and comparedwith log-rank tests [24].

The survival analysis for each type of cancer patient’s
dataset was conducted independently. All statistical tests
were two-tailed. 𝑃 values less than 0.05 were considered
statistically significant.

3. Results and Discussion

3.1. Nonlinear SF2 Prediction Model Based on the NCI-60 Cell
Lines. Quantitative prediction of RT response is of funda-
mental and practical interest in clinical research [4]. Here
we used 19,162 genes as input variables but only 59 samples.
This large imbalance among variables and samples may cause
data-driven predictionmethods to give unsatisfactory results.
We used SAM analysis to select 129 genes correlated with
radiation response (Supplementary Table S3). In order to
overcome multicollinear relationship among genes, PLS was
used to extract 17 orthogonal LVs as new input variables for
the SVM regressionmodel.The final predicted SF2 values are
presented in Figure 2 and SupplementaryTable S1 (the second
column).

3.1.1. Comparison with the Previous Studies. We compared
our results with previously published results in the literature
[12].

The minimum error between the predicted and
observed SF2s of all 59 cell lines was an exceptional
“0”, which corresponded to the calculated error for
eight cell lines (BREAST BT549, PROSTATE DU145,
BREAST MCF7, CNS SF539, COLON SW620, CNS SNB19,
NSCLC NCIHH522, and RENAL SN12C). The maximum
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35 common cell lines

Measured SF2
Predicted SF2 by Torres-Roca
Predicted SF2 in the current study
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Figure 2:Themeasured and predicted SF2s of NCI-60 obtained by ourmethod and by themodel of Torres-Roca et al. Note: among 59 cancer
cell lines used in the current study, only 35 were included in the study of Torres-Roca et al. (Figure 2(a)).

error of 0.048 was unique to the calculated error for the
LEUK SR cell line. The RMSE of the prediction model was
only 0.011, which is much smaller than the RMSE of 0.20 as
reported by Torres-Roca et al. [12]. RMSE is a measure of the
differences between the predicted and observed SF2 values.
Smaller RMSE values indicate smaller difference between
observed and predicted values. The accuracy of our model

was more than ten times that of the model provided by
Torres-Roca et al. Figure 2 shows the observed and predicted
SF2 values of NCI-60 cell lines calculated by our model
and by Torres-Roca’s model. According to our proposed
model, differences between predicted and observed SF2
values were minimal in all 35 cell lines (Figure 2(a)). The
only exception was the BREAST HS578T cell line where
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Figure 3: Comparisons between SVM regression and line regression (LR) algorithm.

the absolute prediction error obtained by our method was
0.005 compared with “0” obtained by Torres-Roca’s model.

The work of Torres-Roca et al. presumed the predicted
SF2s correct if they were within ±10% of the actual reported
average SF2s or of their own measured SF2s. Accordingly,
their model correctly predicted the SF2 values of 22 out of
35 cell lines resulting in an accuracy of 62%. In our study,
using the same assumption, we achieved 91% accuracy and
predicted SF2 values of 54 out of 59 cell lines correctly. This
is a significant improvement of 29% over the Torres-Roca’s
published model.

Using the 17 LVs rather than 129 selected genes or the
original 19,162 genes as the input variables to SVM can also
speed up its regression process. The average time of training
SVM using 17 LVs was 178 seconds which was much faster
than the 534 seconds using 129 signature genes. All R codes
of these programs were run on a PC with a 3.07GHz Intel i7
CPU and 4GB RAM.

3.1.2. Comparison between SVM and Linear Regression Algo-
rithm. In our proposed approach, SVM regression algorithm
was used to develop the SF2 prediction model. The applica-
tion of kernel function in SVM helps capture the nonlinear
dependence relationship between gene expression and SF2s.
To further verify this, we compared the results respectively
derived from SVM and linear regression (LR) in Figure 3 and
Supplementary Table S1 (the third column).

We found that the predicted SF2s by SVM were much
closer to the measured SF2s than those of LR. Only in one
cell line (LEUK RPMI8266)was the absolute prediction error
of LR (0) lower than that of SVM (0.037). However, the

calculated RMSE of LR was up to 0.16 and the prediction
accuracy was only 31%, which were clearly worse than the
results of SVM (0.011 and 91%). Therefore, we conclude that
the radiation sensitivity predictionmodel in the current study
is especially suitable for exploring the nonlinear biological
interactions.

3.2. Survival Analysis Based on the Gene Expression Signature.
Since the NCI-60 panel has several different types of cancer-
derived cell lines, we presume that the gene signature is
applicable to all cancer types represented in the panel. We
have selected glioma, colon, and ovarian cancer datasets
for survival analysis. The gene expression signature was
refined for each of them using the univariate Cox regression
model. The survival analysis was then processed for the
corresponding patients.

For glioma, dataset GSE4271 was used as the training set
and dataset GSE4412 was used as the testing set. 26 out of
129 genes were selected as refined signature genes of glioma.
They are summarized in Table 1. The survival analysis and
KM curves of the patients with this 26-gene signature are
displayed in Figure 4. It is apparent that high-risk group
patients have significantly worse overall survival outcomes
than low-risk grouppatients.The estimated hazard ratio (HR)
between these two groups ofGSE4271 isHR=2.535 (𝑃 value<
0.001).TheHR between these two groups of GSE4412 is HR =
1.806 (𝑃 value = 0.018).

The refined signatures for the colon and ovarian cancer
are also shown in Table 1. The corresponding patient survival
analysis results are shown in Supplementary Figures S1 and
S2.
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Figure 4: Survival curves of the glioma patients. Abbreviations: HR—hazard ratio; CI—confidence interval. The Cox regression model was
trained with the 26 genes refined by the GSE4271 training dataset. The median of the estimated risk scores was used as the cutoff to divide
the patients into high-risk and low-risk groups. 𝑃 values were obtained from the log-rank test.
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Figure 5: Survival analysis of the glioma patients using ten hub genes reported by Eschrich et al. Abbreviations: HR—hazard ratio; CI—
confidence interval. The Cox regression model was trained by ten hub genes. The median of the estimated risk scores was used as the cutoff
to divide the patients into high-risk and low-risk groups. 𝑃 values were obtained from the log-rank test.

For colon cancer, KM curves show a significant difference
in overall survival between the predicted high-risk and low-
risk groups. In training set GSE17537, theHR between the two
groups is 5.313 (𝑃 value = 0.001). In testing set GSE17536, the
HR is 2.311 (𝑃 value = 0.001). For ovarian cancer, the refined
18-gene signature also predicts overall survival in training
set GSE9891 (𝑃 value < 0.001) and testing set GSE17260 (𝑃
value = 0.020). The HR between the predicted high-risk and
low-risk groups is 2.401 and 1.662, respectively. These results
confirmed that the 129 genes actually covered the refined
genetic signature of different types of cancers.

Eschrich et al. previously reported ten radiation-specific
network hub genes using the same NCI-60 panel [14]. We
performed survival analysis using these ten genes for the

glioma, colon, and ovarian cancer patient datasets. The KM
curves are shown in Figure 5, Supplementary Figures S3 and
S4. The results show that the ten hub genes reported by
Eschrich et al. only predict overall survival in two of the three
types of cancer.TheHRbetween predicted high-risk and low-
risk groups in training datasets is shown below:

(i) glioma, 2.061 (𝑃 value = 0.003);

(ii) colon cancer, 8.156 (𝑃 value < 0.001);

(iii) ovarian cancer, 1.218 (𝑃 value = 0.291).

There is no significant difference between the predicted
high-risk and low-risk groups in all testing datasets. The HR
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Table 2: Six hub genes identified by gene regulatory network analysis.

Gene symbol Gene description Location Sequence
CD44 CD44 molecule (Indian blood group) 11p13 Chromosome: 11; NC 000011.10 (35138870. . .35232402)
ANXA2 Annexin A2 15q22.2 Chromosome: 15; NC 000015.10 (60347151. . .60397986, complement)
VEGFC Vascular endothelial growth factor C 4q34.3 Chromosome: 4; NC 000004.12 (176683538. . .176792745, complement)
CTGF Connective tissue growth factor 6q23.1 Chromosome: 6; NC 000006.12 (131948176. . .131951378, complement)
PTK2 PTK2 protein tyrosine kinase 2 8q24.3 Chromosome: 8; NC 000008.11 (140658382. . .141001313, complement)
TJP1 Tight junction protein 1 (zona occludens 1) 15q13 Chromosome: 15; NC 000015.10 (29700134. . .29968835, complement)

between predicted high-risk and low-risk groups of testing
sets is shown below:

(i) glioma, 0.980 (𝑃 value = 0.937);
(ii) colon cancer, 0.903 (𝑃 value = 0.664);
(iii) ovarian cancer, 1.091 (𝑃 value = 0.699).

Although the survival analysis using the ten genes
achieved outstanding results on the training sets, the results
of the testing sets were unsatisfactory and suggested a limited
predictive role of the ten hub genes in clinical applications.

3.3. Functional Network Analysis of the Selected Genes. The
ingenuity pathway analysis (IPA) tool was used to analyze
the underlying network functions of the 129 genes. For
clarification, IPA was used to analyze the gene regulatory
networks of three refined gene signatures, respectively. The
networks with direct and indirect connections are presented
in Figure 6. The results indicate that the genes involved in
survival prediction are mainly associated with the following
biological functions: cell death and survival, cellular move-
ment, cellular assembly and organization, cell metabolism
(energy production), immune cell trafficking, and cell-to-cell
signaling and interaction. Some of these genes play significant
roles in cancer associated pathogeneses like hereditary dis-
order, connective tissue, embryonic development, and organ
development disorders.

Figure 6 shows six “hub” genes, CD44, ANXA2, VEGFC,
CTGF, PTK2, and TJP1. These “hub” genes are central to
regulatory networks with no less than 10 direct/indirect
connections. The details are shown in Table 2.

(i) CD44 gene often undergoes alternative splicing to
encode different proteins in different cancer subtypes.
The encoded CD44 antigen generally acts as a specific
receptor for hyaluronic acid. Its functions involve
ligand binding receptor, coreceptor, and organizer
in cortical actin skeleton. Variations in CD44 gene
expression are reported as cell surface markers for
some cancer researches [25, 26].

(ii) ANXA2 has been reported to be involved in cell
division, proliferation, exocytosis, endocytosis,
and membrane trafficking. Aberrant expression of
ANXA2 has been found in several cancers [27]. As
a radiation responsive protein, ANXA2 prevents
radiation-induced apoptosis by regulating nuclear
factor 𝜅𝐵 in the nuclear translocation [28].

(iii) The protein encoded by VEGFC gene is a member of
the platelet-derived growth factor (PDGF)/vascular
endothelial growth factor (VEGF) family. The VEGF
is active in angiogenesis and endothelial cell growth
and can also affect the permeability of blood vessels.
High VEGFC expression has been implicated with
nodal metastasis and poor prognosis in T1 esophageal
squamous cell carcinoma [29], gastric cancer [30],
gliomas [31], and breast cancer [32].

(iv) It has been confirmed that CTGF gene plays an
important role in cell migration, cell differentiation,
and cell adhesion. CTGF protein promotes ker-
atinocyte adhesion and migration through integrin
𝛼5𝛽1 and activation of the FAK-MAPK signaling
cascade. AberrantCTGF expression is associatedwith
many types of malignant tumors [33, 34].

(v) Proteins encoded by the PTK2 gene are involved in
the focal adhesions that form between cells growing
in the presence of extracellular matrix constituents.
Activation of this gene is an important early step
in cell growth and intracellular signal transduction
pathways triggered in response to certain neural
peptides or to cell interactions with the extracellular
matrix [35].

(vi) TJP1 gene encodes zonula occludens protein-1 (ZO-
1), which is located on a cytoplasmic membrane
surface of intercellular tight junctions. The ZO-1
has recruiting/scaffolding functions in the junctional
complex of epithelial and endothelial cells [36]. It has
been proven that the expression of TJP1 is correlated
with the growth and metastasis of cancer [37].

The online bioinformatics resource, DAVID v6.7 (avail-
able at http://david.abcc.ncifcrf.gov/), was also used to ana-
lyze the functions of all 129 selected genes. 120 gene ontology
(GO) [38] terms and 5 Kyoto Encyclopedia of Genes and
Genomes (KEGG) [39] pathways were identified. They are
listed in Supplementary Tables S4 and S5. Several functions
were found to be related to radiation response. They are
growth factor, signal transduction, cell cycle and cell adhe-
sion, invasion, and metastasis, and angiogenesis.

4. Conclusion

Accurate prediction of tumor response to radiation therapy
plays a key role in personalized cancer treatment. In the
present paper we have selected the genes that are significantly
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associated with radiation response using SAM analysis. This
analysis was based on the gene expression data and SF2 values
of NCI-60 cell lines. Additionally, in combination with PLS
as the feature extraction method, SVM regression model
was trained for SF2 prediction. Benefits derived from the
gene selection, feature extraction, and nonlinear regression
methods resulted in the RMSE value of only 0.011. The
resulting RMSE value was much smaller than the best result
(0.20) among previous studies. We also found that many
genes of the selected 129-gene radiation sensitivity signature
were associated with several cancer driven or cancer pro-
moting pathways. The enriched pathways include cell signal
transduction, cell adhesion, and cell binding. Additionally,
an evaluation of the signature using survival analysis and
gene regulatory network analysis was made. Since NCI-60
platform includes nine different cancer types, this strongly
confirms the practicability of the SF2 prediction model.
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