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We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix
of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which
can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is
developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient
matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique.

1. Introduction

Fractional calculus plays a significant role in modeling
physical and engineering processes which are found to be
best described by fractional differential equations (FDEs).
Considerable attention has been paid to developing an effi-
cient and fast convergent method for FDEs. Recently, some
analytical or numerical methods are introduced to find the
solutions of nonlinear PDEs, such as Adomian’s decomposi-
tion method (ADM) [1, 2], homotopy perturbation method
(HPM) [3–5], variational iteration method (VIM) [6–8],
orthogonal polynomialsmethod [9–11], andwaveletsmethod
[12–17].

Using the operational matrices of an orthogonal function
to perform integration and derivative for solving FDEs has
received increasing attention. The operational matrix of
fractional derivative has been determined for some types of
orthogonal polynomials, such as Chebyshev polynomials [18]
and Legendre polynomials [9]. The operational matrix of
fractional integration has also been determined for Laguerre
series [19], Chebyshev polynomials [20], and Legendre poly-
nomials [21]. Recently, Kazem et al. [22] presented the
fractional-order Legendre functions (FLFs) and constructed

their operational matrix of fractional-order derivatives for
the solution of FDEs. The key idea of this technique is that
it reduces these problems to those of solving a system of
algebraic equations, thus greatly simplifies the problem and
can save more computation time. Moreover, the method
based on operational matrices of an orthogonal function for
solving FDEs is computer oriented.

The variational iteration method (VIM) was first pro-
posed by He [6–8] and has been shown to be a very effective
tool for FDEs [23–25]. In order to improve the accuracy and
efficiency of the VIM for factional calculus, a modification
called fractional variational iteration method (FVIM) [26,
27] was proposed and some successes [28, 29] have been
achieved. Moreover, Wu and Baleanu [30], Wu [31] suggested
two accurate ways to identify the Lagrange multipliers and
various novel variational iteration formulae were obtained
for the fractional differential equations. In addition, by using
fractional-order Laplace’s transform, Yin et al. [32] get a
general iteration formula of VIM for fractional heat- and
wave-like equations.

Couple of analytical and numerical methods or accuracy
and approximation ones is a new trend of developing efficient
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and fast convergent methods. Recently, Yin et al. [33] devel-
oped a modified VIM coupled with the Legendre wavelets,
which can be used for the efficient numerical solution of
nonlinear partial differential equations (PDEs). Motivated
and inspired by the ongoing research in these areas, we extend
the above method to FDEs by employing fractional-order
Legendre functions, instead of Legendre wavelets. To the
best of the authors’ knowledge, such approach has not been
employed for solving fractional differential equations.

The rest of the paper is organized as follows. In Section 2,
we introduce some mathematical preliminaries of the frac-
tional calculus theory and some relevant properties of
the fractional-order Legendre functions. In Section 3, the
fractional-order Legendre polynomials and their properties
are described and nonlinear term approximation by using
BPFs is introduced. Section 4 is devoted to developingMVIM
using FLFs. Some numerical experiments are presented in
Section 5. Finally, we conclude the paper with some remarks.

2. Preliminaries and Notations

Three definitions and one lemma of the fractional calculus
theory [35, 36] are listed as follows.

Definition 1. A real function ℎ(𝑡), 𝑡 > 0, is said to be in the
space 𝐶𝜇, 𝜇 ∈ 𝑅, if there exists a real number 𝑝 > 𝜇, such that
ℎ(𝑡) = 𝑡

𝑝
ℎ1(𝑡), where ℎ1(𝑡) ∈ 𝐶(0,∞), and it is said to be in

the space 𝐶𝑛
𝜇
if and only if ℎ(𝑛) ∈ 𝐶𝜇, 𝑛 ∈ 𝑁.

Definition 2. Riemann-Liouville fractional integral operator
(𝐽𝛼) of order 𝛼 ≥ 0 and of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, is
defined as

𝐽
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0,

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) ;

(1)

Γ(𝛼) is the well-known Gamma function. Some properties of
the operator 𝐽𝛼 can be found, for example, in [35, 36]. One
lists only the following, for 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and
𝛾 > −1; one has

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑡) = 𝐽

𝛼+𝛽
𝑓 (𝑡) ,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑡) = 𝐽

𝛽
𝐽
𝛼
𝑓 (𝑡) ,

𝐽
𝛼
𝑡
𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑡
𝛼+𝛾

.

(2)

Because of some defects of Riemann-Liouville derivative
in describing real-world phenomena, we will introduce a
modified fractional differential operator 𝐷

𝛼

𝑥
proposed by

Caputo [37].

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

(𝐷
𝛼

𝑥
𝑓) (𝑥)

=

{{{{

{{{{

{

1

Γ (𝑚−𝛼)
∫

𝑥

0

𝑓
(𝑚)

(𝜉)

(𝑥−𝜉)
𝛼−𝑚+1

𝑑𝜉, (𝛼 > 0,𝑚 − 1 < 𝛼 < 𝑚) ,

𝜕
𝑚
𝑓 (𝑥)

𝜕𝑥𝑚
, 𝛼 = 𝑚,

(3)

where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denotes a continuous (but not
necessarily differentiable) function.

Some useful formulas and results of Caputo sense deriva-
tive are listed as follows:

𝐷
𝛼

𝑥
𝑐 = 0, 𝛼 > 0, 𝑐 = constant,

𝐷
𝛼

𝑥
[𝑐𝑓 (𝑥)] = 𝑐𝐷

𝛼

𝑥
𝑓 (𝑥) , 𝛼 > 0, 𝑐 = constant,

𝐷
𝛼

𝑥
𝑥
𝛽
=

Γ (1 + 𝛽)

Γ (1 + 𝛽 − 𝛼)
𝑥
𝛽−𝛼

, 𝛽 > 𝛼 > 0,

𝐷
𝛼

𝑥
[𝑓 (𝑥) 𝑔 (𝑥)] = [𝐷

𝛼

𝑥
𝑓 (𝑥)] 𝑔 (𝑥) + 𝑓 (𝑥) [𝐷

𝛼

𝑥
𝑔 (𝑥)] ,

𝐷
𝛼

𝑥
[𝑓 (𝑥 (𝑡))] = 𝑓



𝑥
(𝑥) 𝑥
(𝛼)

(𝑡) .

(4)

Lemma 4. Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, ℎ ∈ 𝐶
𝑛

𝜇
, 𝜇 ≥ −1;

then

(𝐽
𝛼
𝐷
𝛼
) ℎ (𝑡) = ℎ (𝑡) −

𝑛−1

∑

𝑘=0

ℎ
(𝑘)

(0
+
)
𝑡
𝑘

𝑘!
. (5)

3. Fractional-Order Legendre Functions

In this section, we first introduce fractional-order Legendre
function defined by Kazem et al. in [22], and then derive a
fractional integration operational matrix of FLFs. Finally, we
give a nonlinear term approximation method.

3.1. Fractional-Order Legendre Polynomials. The FLFs are a
particular solution of the normalized eigenfunctions of the
singular Sturm-Liouville problem

((𝑥 − 𝑥
1+𝛼

) 𝐿
𝛼

𝑖
(𝑥))


+ 𝛼
2
𝑖 (𝑖 + 1) 𝑥

𝛼−1
𝐿
𝛼

𝑖
(𝑥) = 0,

𝑥 ∈ (0, 1) .

(6)

The fractional-order Legendre polynomials, denoted by
𝐹𝐿
𝛼

𝑖
(𝑥), are defined on the interval [0, 1] and can be deter-

mined with the aid of following recurrence formulae:

𝐹𝐿
𝛼

0
(𝑥) = 1, 𝐹𝐿

𝛼

1
(𝑥) = 2𝑥

𝛼
− 1,

𝐹𝐿
𝛼

𝑖+1
(𝑥) =

(2𝑖 + 1) (2𝑥
𝛼
− 1)

𝑖 + 1
𝐹𝐿
𝛼

𝑖
(𝑥)

−
𝑖

𝑖 + 1
𝐹𝐿
𝛼

𝑖−1
(𝑥) , 𝑖 = 1, 2, . . . ,

(7)
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and the analytic form of 𝐹𝐿𝛼
𝑖
(𝑥) of degree 𝑖 given by

𝐹𝐿
𝛼

𝑖
(𝑥) =

𝑖

∑

𝑠=0

𝑏𝑠,𝑖𝑥
𝑠𝛼
, 𝑏𝑠,𝑖 =

(−1)
𝑖+𝑠

(𝑖 + 𝑠)!

(𝑖 − 𝑠)!(𝑠!)
2

, (8)

where 𝐹𝐿
𝛼

𝑖
(0) = (−1)

𝑖 and 𝐹𝐿
𝛼

𝑖
(1) = 1. The orthogonality

condition is

∫

1

0

𝐹𝐿
𝛼

𝑛
(𝑥) 𝐹𝐿

𝛼

𝑚
(𝑥) 𝜔 (𝑥) 𝑑𝑥 =

1

(2𝑛 + 1) 𝛼
𝛿𝑛𝑚, (9)

where the weight function 𝜔(𝑥) = 𝑥
𝛼−1.

A function 𝑓(𝑥) defined over the interval (0, 1] can be
expanded as the following formula:

𝑓 (𝑥) =

+∞

∑

𝑖=0

𝑎𝑖𝐹𝐿
𝛼

𝑖
(𝑥) , (10)

where the coefficient 𝑎𝑖 is given by

𝑎𝑖 = 𝛼 (2𝑖 + 1) ∫

1

0

𝐹𝐿
𝛼

𝑖
(𝑥) 𝑓 (𝑥) 𝜔 (𝑥) 𝑑𝑥, 𝑖 = 0, 1, 2, . . . .

(11)

If the infinite series in (10) is truncated, then it can be
written as

𝑓 (𝑥) =

𝑚−1

∑

𝑖=0

𝑎𝑖𝐹𝐿
𝛼

𝑖
(𝑥) = 𝐶

𝑇
Ψ (𝑥
𝛼
) , (12)

where 𝐶 and Ψ(𝑥) are𝑚 × 1matrices defined as

𝐶 = [𝑎0, 𝑎1, . . . , 𝑎𝑚−1]
𝑇
, (13)

Ψ (𝑥
𝛼
) = [𝐹𝐿

𝛼

0
(𝑥) , 𝐹𝐿

𝛼

1
(𝑥) , . . . , 𝐹𝐿

𝛼

𝑚−1
(𝑥)]
𝑇
. (14)

The convergence of fractional-order Legendre polynomials
expansion has been discussed in [22].

3.2. Integration Operational Matrix of FLFs. Themain objec-
tive of this section is to generalize the operational matrix of
integration for FLFs.

Lemma 5. The FLFs Riemann-Liouville fractional integration
of 𝛾 > 0 can be obtained in the form of

𝐽
𝛾
𝐹𝐿
𝛼

𝑖
(𝑥) =

𝑖

∑

𝑠=0

𝑏𝑠,𝑖Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾

. (15)

Proof. Consider

𝐽
𝛾
𝐹𝐿
𝛼

𝑖
(𝑥) = 𝐽

𝛾
{

𝑖

∑

𝑠=0

𝑏𝑠,𝑖𝑥
𝑠𝛼
} =

𝑖

∑

𝑠=0

𝑏𝑠,𝑖𝐽
𝛾
(𝑥
𝑠𝛼
)

=

𝑖

∑

𝑠=0

𝑏𝑠,𝑖Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾

.

(16)

Lemma 6. Let 𝑟 > 0; then one has

∫

1

0

𝐽
𝛾
𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛼

𝑗
(𝑥) 𝜔 (𝑥) 𝑑𝑥

=

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑖𝑏𝑟,𝑗

(𝑠 + 𝑟 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
.

(17)

Proof. Using Lemma 5 and (8), one can have

∫

1

0

𝐽
𝛾
𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛼

𝑗
(𝑥) 𝜔 (𝑥) 𝑑𝑥

= ∫

1

0

𝜔 (𝑥) 𝐹𝐿
𝛼

𝑗
(𝑥)

𝑖

∑

𝑠=0

𝑏𝑠,𝑖
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾

𝑑𝑥

= ∫

1

0

𝜔 (𝑥)

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑖𝑏𝑟,𝑗Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
(𝑠+𝑟)𝛼+𝛾

𝑑𝑥

=

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑖𝑏𝑟,𝑗Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
∫

1

0

𝑥
(𝑠+𝑟+1)𝛼+𝛾−1

𝑑𝑥

=

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑖𝑏𝑟,𝑗

(𝑠 + 𝑟 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
.

(18)

This is proof of Lemma 6.

The Riemann-Liouville fractional integral operator of
order 𝛾 > 0 of the vectorΦ(𝑥

𝛼
) can be expressed by

𝐽
𝛾
Φ(𝑥
𝛼
) ≃ 𝑃
𝛾
Φ(𝑥
𝛼
) . (19)

Theorem 7. Let Φ(𝑥
𝛼
) be FLFs vector; 𝑃𝛾 is the 𝑚 × 𝑚

operational matrix of Riemann-Liouville fractional integration
of order 𝛾 > 0; then the elements of 𝑃𝛾 are obtained as

𝑃
𝛾

𝑖,𝑗
=

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑖𝑏𝑟,𝑗

(𝑠 + 𝑟 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
(2𝑗 + 1) 𝛼.

(20)

Proof. Using (19) and orthogonality property of FLFs, we
have

𝑃
𝛾
= ⟨𝑃
𝛾
Φ(𝑥
𝛼
) , Φ
𝑇
(𝑥
𝛼
)⟩𝐻
−1
, (21)

where ⟨𝑃𝛾Φ(𝑥
𝛼
), Φ
𝑇
(𝑥
𝛼
)⟩ and 𝐻

−1 are two 𝑚 × 𝑚 matrices
defined as

⟨𝑃
𝛾
Φ(𝑥
𝛼
) , Φ
𝑇
(𝑥
𝛼
)⟩

= {∫

1

0

𝐽
(𝛾)
𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛼

𝑗
(𝑥) 𝜔 (𝑥) 𝑑𝑥}

𝑚−1

𝑖,𝑗=0

= {

𝑖

∑

𝑠=0

𝑗

∑

𝑟=0

𝑏𝑠,𝑗𝑏𝑟,𝑗

(𝑠 + 𝑟 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
}

𝑚−1

𝑖,𝑗=0

,

𝐻
−1

= diag {(2𝑗 + 1) 𝛼}
𝑚−1

𝑗=0
.

(22)

Substituting (22) into (21), one can have (20).
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3.3. Nonlinear Term Approximation. The FLFs can be
expanded into𝑚-set of block-pulse functions as

Ψ (𝑥
𝛼
) = Φ𝑚×𝑚𝐵𝑚 (𝑥

𝛼
) . (23)

Let 𝑡 = 𝑥
𝛼 and taking the collocation points as follows:

𝑡𝑖 =
𝑖 − 0.5

𝑚
, 𝑖 = 1, 2, . . . , 𝑚. (24)

The𝑚-square Legendre matrixΦ𝑚×𝑚 is defined as

Φ𝑚×𝑚 ≜ [Ψ (𝑡1) Ψ (𝑡2) ⋅ ⋅ ⋅ Ψ (𝑡𝑚)] . (25)

The operational matrix of product of the Legendre poly-
nomials can be obtained by using the properties of BPFs; let
𝑓(𝑡) and 𝑔(𝑡) be two absolutely integrable functions, which
can be expanded in Legendre wavelets as 𝑓(𝑡) = 𝐹

𝑇
Ψ(𝑡) and

𝑔(𝑡) = 𝐺
𝑇
Ψ(𝑡), respectively.

From (23), we have

𝑓 (𝑡) = 𝐹
𝑇
Ψ (𝑡) = 𝐹

𝑇
Φ𝑚𝑚𝐵 (𝑡) ,

𝑔 (𝑡) = 𝐺
𝑇
Ψ (𝑡) = 𝐺

𝑇
Φ𝑚𝑚𝐵 (𝑡) .

(26)

By employing Lemma 1 in [38] and (17), we get

𝑓 (𝑡) 𝑔 (𝑡) = (𝐹
𝑇
Φ𝑚𝑚 ⊗ 𝐺

𝑇
Φ𝑚𝑚) 𝐵 (𝑡)

= (𝐹
𝑇
Φ𝑚𝑚 ⊗ 𝐺

𝑇
Φ𝑚𝑚) inv (Φ𝑚𝑚)Φ𝑚𝑚𝐵 (𝑡)

= (𝐹
𝑇
Φ𝑚𝑚 ⊗ 𝐺

𝑇
Φ𝑚𝑚) inv (Φ𝑚𝑚) Ψ (𝑡) .

(27)

4. Modified Variation Iteration
Method Using FLFs

Consider the following initial value problem:

𝐷
𝛼
𝑢 (𝑥) + 𝑁 [𝑢 (𝑥)] + 𝐿 [𝑢 (𝑥)] = 𝑔 (𝑥) , 𝛼 > 0, (28)

𝑢
(𝑘)

(0) = 𝑐𝑘, 𝑘 = 0, 1, 2, . . . , 𝑚 − 1, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(29)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, and
𝐷
𝛼 is the Caputo fractional derivative of order 𝛼.
Wu and Baleanu [30] and Wu [31] applied the VIM

to (28), and generalized an accurate variational iteration
formula as follows:

𝑢𝑛+1 = 𝑢𝑛 + ∫

𝑥

0

𝜆 (𝑥, 𝜏) (𝐷
𝛼
𝑢𝑛 + 𝑁 [𝑢𝑛] + 𝐿 [𝑢𝑛] − 𝑔 (𝑥)) 𝑑𝜏,

0 < 𝑥, 0 < 𝛼,

𝜆 (𝑥, 𝜏) =
(−1)
𝛼
(𝜏 − 𝑥)

𝛼−1

Γ (𝛼)
,

𝑢0 =

𝑚−1

∑

𝑖=0

𝑢
(𝑖)

𝑘
(0
+
)
𝑥
𝑖

𝑖!
+ 𝐽
𝛼
{𝑔 (𝑥)} .

(30)

Using Lemma 4, (30) can be rewritten as

𝑢𝑘+1 (𝑥) =

𝑚−1

∑

𝑖=0

𝑢
(𝑖)

𝑘
(0
+
)
𝑥
𝑖

𝑖!
− 𝐽
𝛼

𝜏
{𝑁𝑢𝑘 (𝜏) + 𝐿𝑢𝑘 (𝜏) − 𝑔 (𝜏)} .

(31)

However, (31) will generate “noise term” [22, 23] for
inhomogeneous equations.Wu [39] gave a new technology to
determine the initial iteration value. Motivated and inspired
by the work [40–45], we construct an iteration formulae
which can accelerate the rapid convergence of series solution
when compared with FVIM.

We assume that 𝑔(𝑥) consists of two parts, which can
be denoted by 𝑔(𝑥) = 𝑔int(𝑥) + 𝑔frc(𝑥), where 𝑔int(𝑥) is the
integer component with respect to 𝑥 and 𝑔frc(𝑥) is the
fractional component.

The components 𝑢0, 𝑢1, . . . , 𝑢𝑘, . . . are determined recur-
sively by

𝑢0 (𝑥) =

𝑚−1

∑

𝑖=0

𝑢
(𝑖)

𝑘
(0
+
)
𝑥
𝑖

𝑖!
− 𝐽
𝛼

𝜏
{−𝑔frc (𝜏)} ,

𝑢1 (𝑥) = 𝑢0 (𝑥) − 𝐽
𝛼

𝜏
{𝑁𝑢0 (𝜏) + 𝐿𝑢0 (𝜏) − 𝑔int (𝜏)} ,

...

𝑢𝑘+1 (𝑥) = 𝑢𝑘 (𝑥) − 𝐽
𝛼

𝜏

× {𝑁𝑢𝑘 (𝜏) − 𝑁𝑢𝑘−1 (𝜏) + 𝐿 [𝑢𝑘 (𝜏) − 𝑢𝑘−1 (𝜏)]} ,

𝑘 > 1.

(32)

In order to improve the performance of FVIM, we
introduce FLFs to approximate𝑢𝑘(𝑥) and the inhomogeneous
term 𝑔int(𝑥) as

𝑢𝑘+1 = 𝐶
𝑇

𝑘+1
Ψ (𝑥
𝛼
) , 𝑔int (𝑥) = 𝐺

𝑇
Ψ (𝑥
𝛼
) , (33)

in which Ψ(𝑥
𝛼
) is defined as (14).

Now for the nonlinear part, by nonlinear term approxi-
mation described in Section 3.3, we have

𝑁𝑢𝑘 (𝑥) = 𝑁
𝑇

𝑘
Ψ (𝑥
𝛼
) , (34)

where𝑁𝑇
𝑘
is matrix of order𝑚 × 1.

For the linear part, we have

𝐿𝑢𝑘 (𝑥) = 𝐿
𝑇

𝑘
Ψ (𝑥
𝛼
) , (35)

where 𝐿 is a matrix of order𝑚 × 1.
Then the iteration formula (32) can be constructed as

𝐶
𝑇

1
= − (𝑁

𝑇

0
+ 𝐿
𝑇

0
− 𝐺
𝑇

int) 𝑃
𝛼
,

𝐶
𝑇

𝑘+1
= − (𝑁

𝑇

𝑘
− 𝑁
𝑇

𝑘−1
+ 𝐿
𝑇

𝑘
− 𝐿
𝑇

𝑘−1
) 𝑃
𝛼
.

(36)

The power of the method depends on the occurrence of the
exact solution in the zeroth term. If the exact solution exists
in the zeroth component, our method can converge very fast
to the exact solution.
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Figure 1: Numerical solutions and error for Example 10.

5. Applications and Results

In this section, we first give two examples to demonstrate that
(32) can avoid “noise term” and then use three other examples
to illustrate the validity and applicability of our method. The
accuracy of our approach is estimated by the following error
functions:

𝑒𝑗 = abs [(𝑢exact)𝑗 − (𝑢approx)𝑗
] ,

𝑒 = abs (𝑢exact − 𝑢approx) .

(37)

Example 8. Consider the composite fractional oscillation
equation [14]

𝐷
0.25

𝑢 (𝑥) + 𝑢 (𝑥) − 𝑥
2
−

2

Γ (2.75)
𝑥
1.75

= 0, 0 < 𝛼 < 1,

(38)

with the initial condition 𝑢(0) = 0.
According to (30), the variational iteration formulae can

be constructed as
𝑢𝑛+1 = 𝑢𝑛 − 𝐽

0.25
{𝐷
0.25

𝑢𝑛 + 𝑢𝑛 − 𝑔 (𝑥)} ,

𝑢0 = 𝑥
2
+

Γ (3)

Γ (3.25)
𝑥
2.25

.

(39)

The series solution can be obtained as

𝑢0 = 𝑥
2
+

Γ (3)

Γ (3.25)
𝑥
2.25

, 𝑢1 = 𝑥
2
−

Γ (3)

Γ (3.50)
𝑥
2.50

,

𝑢2 = 𝑥
2
+

Γ (3)

Γ (3.75)
𝑥
2.75

, . . . .

(40)

One can find that (40) exists “noise term.”

By using the iteration formula (32), we can get the series
solution as

𝑢0 (𝑥) = 𝑥
2
;

𝑢1 (𝑥) = 𝑢0 (𝑥) − 𝐽
𝛼

𝜏
{𝑢0 (𝜏) − 𝑥

2
} = 𝑥
2
;

...

𝑢𝑘+1 (𝑥) = 𝑢𝑘 (𝑥) − 𝐽
𝛼

𝜏
{𝑢𝑘 (𝜏) − 𝑢𝑘−1 (𝜏)} = 𝑥

2
,

𝑘 > 1;

(41)

so we have 𝑢(𝑥) = 𝑥
2, which is the exact solution. Only two

iterations are needed to get the exact solution.

Example 9. Consider the following initial value problem [46]:

𝐷
0.25

𝑢 (𝑥) + 𝑥𝑢
2
(𝑥) =

32

21Γ (3/4)
𝑥
7/4

+ 𝑥
5
, (42)

with the initial condition 𝑢(0) = 0.
According to (30), we have the following variational

iteration formulae of (42):

𝑢𝑛+1 = 𝑢𝑛 − 𝐽
0.25

{𝐷
0.25

𝑢𝑛 + 𝑥𝑢
2

𝑛
− 𝑔 (𝑥)} ,

𝑢0 = 𝑥
2
+

Γ (6)

Γ (6.25)
𝑥
5.25

.

(43)
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The series solution can be attained as

𝑢0 = 𝑥
2
+

Γ (6)

Γ (6.25)
𝑥
5.25

, 𝑢1 = 𝑥
2
−

Γ (3)

Γ (3.50)
𝑥
2.50

,

𝑢2 = 𝑥
2
+

Γ (3)

Γ (3.50)
𝑥
2.50

− ⋅ ⋅ ⋅ .

(44)

One also can find that (44) exist “noise term”.
By iteration formula (32), we can get the series solution as

𝑢0 (𝑥) = 𝑥
2
;

𝑢1 (𝑥) = 𝑢0 (𝑥) − 𝐽
𝛼

𝜏
{𝜏𝑢
2

0
(𝜏) − 𝜏

5
} = 𝑥
2
;

...

𝑢𝑘+1 (𝑥) = 𝑢𝑘 (𝑥) − 𝐽
𝛼

𝜏
{𝜏 [𝑢
2

𝑘
(𝜏) − 𝑢

2

𝑘−1
(𝜏)]} = 𝑥

2
,

𝑘 > 1;

(45)

so we have 𝑢(𝑥) = 𝑥
2, which is the exact solution. It is easy to

deduce that our method is more efficient than the VIM and
FIM [46].

Example 10. Consider the following fractional Riccati equa-
tion [13, 47–49]:

𝐷
𝛼
𝑢 (𝑥) + 𝑢 (𝑥) = 0, 0 < 𝑥 < 1, 0 < 𝛼 ≤ 1,

𝑢 (0) = 1, 𝑢

(0) = 0.

(46)

The exact solution of this problem is 𝑢(𝑥) = ∑
∞

𝑘=0
((−𝑥
𝛼
)
𝑘
/

Γ(𝛼𝑘 + 1)).
We solved the problem by applying the technique

described in Section 4. When 𝑚 = 9, numerical results are
obtained for different values of 𝛼 and shown in Figure 1(a).
The absolute errors for 𝛼 = 1.0 and 𝛼 = 2.0 are shown in
Figure 1(b). From Figure 1(b), one can see that our method
can achieve a good approximation with the exact solution by
using a few terms of FLFs.

Example 11. Consider the following nonlinear fractional
Riccati equation [16, 34]:

𝐷
𝛼
𝑢 (𝑥) + 𝑢

2
(𝑥) = 1, 0 < 𝛼 ≤ 1, 0 < 𝑥 < 1, (47)

subject to the initial state 𝑢(0) = 0. The exact solution of this
problem, when 𝛼 = 1, is 𝑢(𝑥) = (𝑒

2𝑥
− 1)/(𝑒

2𝑥
+ 1).

We solved the problem, by applying the technique
described in Section 4. Numerical results are obtained for
different values of 𝛼 when 𝑚 = 9 and shown in Figure 2.
In Table 1, we compare our result with [16] for the difference
value 𝛼. From Table 1, one can see that our results are more
accurate than those in [16] while only needs a few terms of
FLFs.

Example 12. Consider fractional Riccati equation [34]

𝐷
𝛼
𝑢 (𝑥) − 2𝑢 (𝑥) + 𝑢

2
(𝑥) − 1 = 0, 0 < 𝛼 ≤ 1 (48)
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Figure 2: Numerical solutions for Example 11.
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Figure 3: Numerical solutions for Example 12.

subject to the initial state 𝑦(0) = 0; for 𝛼 = 1 the exact
solution is 𝑢(𝑥) = 1+√2 tanh[√2𝑥+(1/2) log((√2−1)/(√2+

1))].
We solved the problem by applying the technique

described in Section 4. Figure 3 shows a behavior of the
numerical solution for 𝑚 = 9. From Figure 3, it can be
seen that our method can achieve a good approximation
with the exact solution by using a few terms of FLFs. In
Table 2, we compare our result with the modified homotopy
perturbation method [34] for the difference value 𝛼. From
Table 2, one can find that our results are more accurate than
that obtained by [34]. This demonstrates the importance of
presented numerical scheme in solving nonlinear fractional
differential equations.
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Table 1: Numerical results of Example 11 for𝑚 = 9 in comparison to [16].

𝑥
𝛼 = 0.50 𝛼 = 0.75 𝛼 = 1.00

Reference [16] Ours Reference [16] Ours Reference [16] Ours Exact
0.1 0.330159 0.330108 0.190108 0.190101 0.099667 0.099668 0.099668
0.2 0.436737 0.436839 0.309886 0.309976 0.197358 0.197375 0.197375
0.3 0.504842 0.504889 0.404552 0.404615 0.291289 0.291313 0.291313
0.4 0.553802 0.553782 0.481638 0.481632 0.379946 0.379949 0.379949
0.5 0.591265 0.591195 0.545178 0.545090 0.462172 0.462117 0.462117
0.6 0.621026 0.621014 0.597790 0.597783 0.537048 0.537050 0.53705
0.7 0.645480 0.645485 0.641801 0.641820 0.604338 0.604368 0.604368
0.8 0.666016 0.666020 0.678835 0.678850 0.664009 0.664037 0.664037
0.9 0.683560 0.683554 0.710182 0.710175 0.716300 0.716298 0.716298

Table 2: Numerical results of Example 12 for𝑚 = 9 in comparison to [34].

𝑥
𝛼 = 0.50 𝛼 = 0.75 𝛼 = 1.00

Reference [34] Ours Reference [34] Ours Reference [34] Ours Exact
0.1 0.321730 0.592833 0.216866 0.245446 0.110294 0.110308 0.110295
0.2 0.629666 0.933104 0.428892 0.475051 0.241965 0.241990 0.241977
0.3 0.940941 1.174069 0.654614 0.710050 0.395106 0.395119 0.395105
0.4 1.250737 1.346694 0.891404 0.938523 0.568115 0.567830 0.567812
0.5 1.549439 1.473790 1.132763 1.149016 0.757564 0.756032 0.756014
0.6 1.825456 1.570577 1.370240 1.334339 0.958259 0.953583 0.953566
0.7 2.066523 1.646302 1.594278 1.491949 1.163459 1.152968 1.152949
0.8 2.260633 1.706644 1.794879 1.622950 1.365240 1.346381 1.346364
0.9 2.396839 1.756349 1.962239 1.730575 1.554960 1.526927 1.526911

6. Conclusion

A new modification of variational iteration method using
fractional-order Legendre functions is proposed and success-
fully applied to find the approximate solution of nonlinear
fractional differential equations. The proposed method can
avoid the “noise terms” and give approximations of higher
accuracy and closed-form solutions if existed. Unlike the
VIM, our method can easily overcome the difficulty arising
in the evaluation integration and the derivative of nonlinear
terms and does not need symbolic computation. In contrast
to the FLFs method, our method only needs a few iterations
instead of solving a system of nonlinear algebraic equations.
Moreover, our method is computer oriented and can use
existing fast algorithms to reduce the computation cost.
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