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It has been shown that a normal S-iterative method converges to the solution of a mixed type Volterra-Fredholm functional
nonlinear integral equation. Furthermore, a data dependence result for the solution of this integral equation has been proven.

1. Introduction

The scientists working in almost every field of science are
faced with nonlinear problems, because nature itself is intrin-
sically nonlinear. Such problems can be modelled as non-
linear mathematical equations. Solving nonlinear equations
is, of course, considered to be a matter of the uttermost
importance in mathematics and its manifold applications.
There are numerous systematic approaches which are classi-
fied as direct and iterative methods to solve such equations
in the existing literature. Indeed, by using direct methods,
finding solutions to a complicated nonlinear equation can be
an almost insurmountable challenge. In this context, iterative
methods have become very important mathematical tools for
finding solutions to a nonlinear equation. For a comprehen-
sive review and references to the extensive literature on the
iterative methods, the interested reader may refer to some
recent works [1–8].

Recently, Sahu [9] and Khan [10], who was probably
unaware of Sahu’s work, introduced the following iterative
process which has been called normal S-iterative method
and Picard-Mann hybrid iterative process by Sahu and Khan,
respectively, and hereinafter referred to as the “normal S-
iterative method.”

Definition 1. Let 𝑋 be an ambient space and let 𝑇 be a self-
map of 𝑋. A normal S-iterative method is defined by

𝑥
0

∈ 𝑋,

𝑥
𝑛+1

= 𝑇𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝜉
𝑛
) 𝑥
𝑛

+ 𝜉
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(1)

where {𝜉
𝑛
}
∞

𝑛=0
is a real sequence in [0, 1] satisfying certain

control condition(s).

It has been shown both analytically and numerically in
[9, 10] that iterative method (1) converges at a rate faster than
all Picard [11],Mann [12], and Ishikawa [13] iterative processes
in the sense of Berinde [14] for the class of contraction
mappings.

This iterative method, due to its simplicity and fastness,
has attracted the attention of many researchers and has been
examined in various aspects; see [15–20].

In this paper, inspired by the performance and achieve-
ments of normal S-iterative method (1), we will give some
of its applications. We will show that normal S-iterative
method (1) converges strongly to the solution of the following
mixed type Volterra-Fredholm functional nonlinear integral
equation which was considered in [21]:

𝑥 (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

(2)
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where [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] is an interval in R𝑚, 𝐾, 𝐻 :

[𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] × [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] × R → R

continuous functions, and𝐹 : [𝑎
1
; 𝑏
1
]×⋅ ⋅ ⋅×[𝑎

𝑚
; 𝑏
𝑚

]×R3 → R.
Also we give a data dependence result for the solution

of integral equation (2) with the help of normal S-iterative
method (1).

We end this section with some known results which will
be useful in proving our main results.

Theorem 2 (see [21]). We suppose that the following condi-
tions are satisfied:

(A
1
) 𝐾, 𝐻 ∈ 𝐶([𝑎

1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] × [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ ×

[𝑎
𝑚

; 𝑏
𝑚

] × R);

(A
2
) 𝐹 ∈ 𝐶([𝑎

1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] × R3);

(A
3
) there exist nonnegative constants 𝛼, 𝛽, and 𝛾 such that

󵄨󵄨󵄨󵄨𝐹 (𝑡, 𝑢
1
, V
1
, 𝑤
1
) − 𝐹 (𝑡, 𝑢

2
, V
2
, 𝑤
2
)
󵄨󵄨󵄨󵄨

≤ 𝛼
󵄨󵄨󵄨󵄨𝑢1 − 𝑢

2

󵄨󵄨󵄨󵄨 + 𝛽
󵄨󵄨󵄨󵄨V1 − V

2

󵄨󵄨󵄨󵄨 + 𝛾
󵄨󵄨󵄨󵄨𝑤1 − 𝑤

2

󵄨󵄨󵄨󵄨 ,

(3)

for all 𝑡 ∈ [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

], 𝑢
𝑖
, V
𝑖
, 𝑤
𝑖
∈ R, 𝑖 = 1, 2;

(A
4
) there exist nonnegative constants 𝐿

𝐾
and 𝐿

𝐻
such that

|𝐾 (𝑡, 𝑠, 𝑢) − 𝐾 (𝑡, 𝑠, V)| ≤ 𝐿
𝐾 |𝑢 − V| ,

|𝐻 (𝑡, 𝑠, 𝑢) − 𝐻 (𝑡, 𝑠, V)| ≤ 𝐿
𝐻 |𝑢 − V| ,

(4)

for all 𝑡, 𝑠 ∈ [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

], 𝑢, V ∈ R;

(A
5
) 𝛼 + (𝛽𝐿

𝐾
+ 𝛾𝐿
𝐻

)(𝑏
1

− 𝑎
1
) ⋅ ⋅ ⋅ (𝑏

𝑚
− 𝑎
𝑚

) < 1.

Then (2) has a unique solution 𝑥
∗

∈ 𝐶([𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ ×

[𝑎
𝑚

; 𝑏
𝑚

]).

Lemma 3 (see [22]). Let {𝛽
𝑛
}
∞

𝑛=0
be a nonnegative sequence for

which one assumes there exists 𝑛
0

∈ N, such that for all 𝑛 ≥ 𝑛
0

one has satisfied the inequality

𝛽
𝑛+1

≤ (1 − 𝜇
𝑛
) 𝛽
𝑛

+ 𝜇
𝑛
𝛾
𝑛
, (5)

where 𝜇
𝑛

∈ (0, 1), for all 𝑛 ∈ N, ∑
∞

𝑛=0
𝜇
𝑛

= ∞, and 𝛾
𝑛

≥ 0, for
all 𝑛 ∈ N. Then the following inequality holds:

0 ≤ lim sup
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛾
𝑛
. (6)

2. Main Results

Theorem 4. One opines that all conditions (A
1
)–(A
5
) in

Theorem 2 are performed. Let {𝜉
𝑛
}
∞

𝑛=0
⊂ [0, 1] be a real

sequence satisfying ∑
∞

𝑛=0
𝜉
𝑛

= ∞. Then (2) has a unique
solution, say 𝑥

∗, in 𝐶 ([𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

]) and normal S-
iterative method (1) converges to 𝑥

∗.

Proof. We consider the Banach space 𝐵 = 𝐶 ([𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ ×

[𝑎
𝑚

; 𝑏
𝑚

], ‖ ⋅ ‖
𝐶
), where ‖ ⋅ ‖

𝐶
is Chebyshev’s norm. Let {𝑥

𝑛
}
∞

𝑛=0

be an iterative sequence generated by normal S-iterative
method (1) for the operator 𝐴 : 𝐵 → 𝐵 defined by

𝐴 (𝑥) (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) .

(7)

We will show that 𝑥
𝑛

→ 𝑥
∗ as 𝑛 → ∞.

From (1), (2), and assumptions (A
1
)–(A
4
), we have that

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
∗󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐴𝑦
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄨󵄨󵄨󵄨𝐴 (𝑦
𝑛
) (𝑡) − 𝐴 (𝑥

∗
) (𝑡)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹 (𝑡, 𝑦
𝑛

(𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑦
𝑛 (𝑠)) 𝑑𝑠)

− 𝐹 (𝑡, 𝑥
∗

(𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑥

∗
(𝑡)

󵄨󵄨󵄨󵄨

+ 𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑦
𝑛 (𝑠)) 𝑑𝑠

− ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) 𝑑𝑠

− ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑥

∗
(𝑡)

󵄨󵄨󵄨󵄨

+ 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) − 𝐾 (𝑡, 𝑠, 𝑥
∗

(𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

󵄨󵄨󵄨󵄨𝐻 (𝑡, 𝑠, 𝑦
𝑛 (𝑠)) − 𝐻 (𝑡, 𝑠, 𝑥

∗
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠
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≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑥

∗
(𝑡)

󵄨󵄨󵄨󵄨 + 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐿
𝐾

󵄨󵄨󵄨󵄨𝑦𝑛 (𝑠) − 𝑥
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐿
𝐻

󵄨󵄨󵄨󵄨𝑦𝑛 (𝑠) − 𝑥
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)]

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩 ,

(8)
󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝜉
𝑛
)

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
∗

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝜉
𝑛

󵄨󵄨󵄨󵄨𝐴 (𝑥
𝑛
) (𝑡) − 𝐴 (𝑥

∗
) (𝑡)

󵄨󵄨󵄨󵄨

= (1 − 𝜉
𝑛
)

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
∗

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝜉
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹 (𝑡, 𝑥
𝑛 (𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥
𝑛 (𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠)

− 𝐹 (𝑡, 𝑥
∗

(𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥
∗

(𝑠)) 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (1 − 𝜉
𝑛
)

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
∗

(𝑡)
󵄨󵄨󵄨󵄨 + 𝜉
𝑛
𝛼

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
∗

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝜉
𝑛
𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐿
𝐾

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝜉
𝑛
𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐿
𝐻

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥
∗

(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ {1 − 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])}

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩 .

(9)

Combining (8) with (9), we obtain

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
∗󵄩󵄩󵄩󵄩

≤ [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)]

× {1 − 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])}

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩 ,

(10)

or, from assumption (A
5
),

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
∗󵄩󵄩󵄩󵄩

≤ {1 − 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])}

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
∗󵄩󵄩󵄩󵄩 .

(11)

Thus, by induction, we get

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
0

− 𝑥
∗󵄩󵄩󵄩󵄩

×

𝑛

∏

𝑘=0

{1 − 𝜉
𝑘

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

×

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])} .

(12)

Since 𝜉
𝑘

∈ [0, 1] for all 𝑘 ∈ N, assumption (A
5
) yields

1 − 𝜉
𝑘

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)]) < 1. (13)

Having regard to the fact that 𝑒
𝑥

≥ 1 − 𝑥 for all 𝑥 ∈ [0, 1], we
can rewrite (12) as

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
0

− 𝑥
∗󵄩󵄩󵄩󵄩 𝑒
−(1−[𝛼+(𝛽𝐿

𝐾
+𝛾𝐿
𝐻
)∏
𝑚

𝑖=1
(𝑏
𝑖
−𝑎
𝑖
)]) ∑
𝑛

𝑘=0
𝜉
𝑘 ,

(14)

which yields lim
𝑛→∞

‖𝑥
𝑛

− 𝑥
∗
‖ = 0.

We now prove the data dependence of the solution for
integral equation (2) with the help of the normal S-iterative
method (1).

Let 𝐵 be as in the proof of Theorem 4 and 𝑇, 𝑇̃ : 𝐵 → 𝐵

two operators defined by

𝑇 (𝑥) (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

(15)

𝑇̃ (𝑥) (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾̃ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻̃ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

(16)

where 𝐾, 𝐾̃, 𝐻, 𝐻̃ ∈ 𝐶([𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

] × [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ ×

[𝑎
𝑚

; 𝑏
𝑚

] × R).

Theorem 5. Let 𝐹, 𝐾, and 𝐻 be defined as in Theorem 2
and let {𝑥

𝑛
}
∞

𝑛=0
be an iterative sequence defined by normal
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S-iterative method (1) associated with 𝑇. Let {𝑥
𝑛
}
∞

𝑛=0
be an

iterative sequence generated by

𝑥
0

∈ 𝐵,

𝑥
𝑛+1

= 𝑇̃𝑦
𝑛
,

𝑦
𝑛

= (1 − 𝜉
𝑛
) 𝑥
𝑛

+ 𝜉
𝑛
𝑇̃𝑥
𝑛
, 𝑛 ∈ N,

(17)

where 𝐵 is defined as in the proof of Theorem 4 and {𝜉
𝑛
}
∞

𝑛=0
is a

real sequence in [0, 1] satisfying (i) 1/2 ≤ 𝜉
𝑛
, for all 𝑛 ∈ N,

and (ii) ∑
∞

𝑛=0
𝜉
𝑛

= ∞. One supposes further that (iii) there
exist nonnegative constants 𝜀

1
and 𝜀

2
such that |𝐾(𝑡, 𝑠, 𝑢) −

𝐾̃(𝑡, 𝑠, 𝑢)| ≤ 𝜀
1
and |𝐻(𝑡, 𝑠, 𝑢) − 𝐻̃(𝑡, 𝑠, 𝑢)| ≤ 𝜀

2
, for all 𝑢 ∈ R

and for all 𝑡, 𝑠 ∈ [𝑎
1
; 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑚
; 𝑏
𝑚

].
If 𝑥
∗ and 𝑥

∗ are solutions of corresponding equations (15)
and (16), respectively, then one has that

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
∗󵄩󵄩󵄩󵄩 ≤

3 (𝛽𝜀
1

+ 𝛾𝜀
2
) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)

1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)]

. (18)

Proof. Using (1), (15), (16), (17), and assumptions (A
1
)–(A
4
)

and (iii), we obtain

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑇𝑦
𝑛

− 𝑇̃𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹 (𝑡, 𝑦
𝑛

(𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾 (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻 (𝑡, 𝑠, 𝑦
𝑛 (𝑠)) 𝑑𝑠)

− 𝐹 (𝑡, 𝑦
𝑛

(𝑡) , ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

𝐾̃ (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) 𝑑𝑠,

∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

𝐻̃ (𝑡, 𝑠, 𝑦
𝑛

(𝑠)) 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑦

𝑛
(𝑡)

󵄨󵄨󵄨󵄨

+ 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑡, 𝑠, 𝑦

𝑛
(𝑠)) − 𝐾̃ (𝑡, 𝑠, 𝑦

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑡, 𝑠, 𝑦

𝑛
(𝑠)) − 𝐻̃ (𝑡, 𝑠, 𝑦

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑦

𝑛 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

(
󵄨󵄨󵄨󵄨𝐾 (𝑡, 𝑠, 𝑦

𝑛 (𝑠)) − 𝐾 (𝑡, 𝑠, 𝑦
𝑛 (𝑠))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑡, 𝑠, 𝑦

𝑛
(𝑠)) − 𝐾̃ (𝑡, 𝑠, 𝑦

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

(
󵄨󵄨󵄨󵄨𝐻 (𝑡, 𝑠, 𝑦

𝑛
(𝑠)) − 𝐻 (𝑡, 𝑠, 𝑦

𝑛
(𝑠))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐻 (𝑡, 𝑠, 𝑦

𝑛
(𝑠)) − 𝐻̃ (𝑡, 𝑠, 𝑦

𝑛
(𝑠))

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑠

≤ 𝛼
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑦

𝑛
(𝑡)

󵄨󵄨󵄨󵄨

+ 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

(𝐿
𝐾

󵄨󵄨󵄨󵄨𝑦𝑛 (𝑠) − 𝑦
𝑛 (𝑠)

󵄨󵄨󵄨󵄨 + 𝜀
1
) 𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

(𝐿
𝐻

󵄨󵄨󵄨󵄨𝑦𝑛 (𝑠) − 𝑦
𝑛 (𝑠)

󵄨󵄨󵄨󵄨 + 𝜀
2
) 𝑑𝑠

≤ 𝛼
󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑦
𝑛

󵄩󵄩󵄩󵄩 + 𝛽 (𝐿
𝐾

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑦
𝑛

󵄩󵄩󵄩󵄩 + 𝜀
1
)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)

+ 𝛾 (𝐿
𝐻

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑦
𝑛

󵄩󵄩󵄩󵄩 + 𝜀
2
)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)

≤ [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)]

󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑦
𝑛

󵄩󵄩󵄩󵄩

+ (𝛽𝜀
1

+ 𝛾𝜀
2
)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
) ,

(19)
󵄩󵄩󵄩󵄩𝑦
𝑛

− 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝜉
𝑛
)

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
𝑛 (𝑡)

󵄨󵄨󵄨󵄨

+ 𝜉
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑇 (𝑥
𝑛
) (𝑡) − 𝑇̃ (𝑥

𝑛
) (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ (1 − 𝜉
𝑛
)

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥
𝑛

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝜉
𝑛

{𝛼
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡) − 𝑥

𝑛 (𝑡)
󵄨󵄨󵄨󵄨

+ 𝛽 ∫

𝑡
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑡
𝑚

𝑎
𝑚

{𝐿
𝐾

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥
𝑛

(𝑠)
󵄨󵄨󵄨󵄨 + 𝜀
1
} 𝑑𝑠

+ 𝛾 ∫

𝑏
1

𝑎
1

⋅ ⋅ ⋅ ∫

𝑏
𝑚

𝑎
𝑚

{𝐿
𝐻

󵄨󵄨󵄨󵄨𝑥𝑛 (𝑠) − 𝑥
𝑛

(𝑠)
󵄨󵄨󵄨󵄨 + 𝜀
2
} 𝑑𝑠}

≤ {1 − 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])}

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝜉
𝑛

(𝛽𝜀
1

+ 𝛾𝜀
2
)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
) .

(20)

Combining (19) with (20) and using assumptions (A
5
) and

1/2 ≤ 𝜉
𝑛
in the resulting inequality, we get

󵄩󵄩󵄩󵄩𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩

≤ {1 − 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])}

×
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩
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+ 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)])

×
3 (𝛽𝜀
1

+ 𝛾𝜀
2
) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)

1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)]

.

(21)

Denote that
𝛽
𝑛

=
󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩 ,

𝜇
𝑛

= 𝜉
𝑛

(1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

)

𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)]) ∈ (0, 1) ,

𝛾
𝑛

=
3 (𝛽𝜀
1

+ 𝛾𝜀
2
) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)

1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)]

≥ 0.

(22)

It is clear that inequality (21) satisfies all conditions in
Lemma 3, and hence it follows that

󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
∗󵄩󵄩󵄩󵄩 ≤

3 (𝛽𝜀
1

+ 𝛾𝜀
2
) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)

1 − [𝛼 + (𝛽𝐿
𝐾

+ 𝛾𝐿
𝐻

) ∏
𝑚

𝑖=1
(𝑏
𝑖
− 𝑎
𝑖
)]

. (23)

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The author would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper.

References

[1] C. Chidume,Geometric Properties of Banach Spaces and Nonlin-
ear Iterations, vol. 1965, Springer, London, UK, 2009.

[2] F. Gürsoy and V. Karakaya, “Some convergence and stability
results for two new Kirk type hybrid fixed point iterative
algorithms,” Journal of Function Spaces, vol. 2014, Article ID
684191, 8 pages, 2014.

[3] F. Gürsoy, V. Karakaya, and B. E. Rhoades, “Data depen-
dence results of new multi-step and S-iterative schemes for
contractive-like operators,” Fixed PointTheory andApplications,
vol. 2013, artcile 76, 12 pages, 2013.

[4] H. Kiziltunc and S. Temir, “Convergence theorems by a new
iteration process for a finite family of nonself asymptotically
nonexpansive mappings with errors in Banach spaces,” Com-
puters &Mathematics with Applications, vol. 61, no. 9, pp. 2480–
2489, 2011.

[5] M. Basarir and A. Sahin, “On the strong and Δ—convergence
of newmulti-step and S-iteration processes in a CAT (0) space,”
Journal of Inequalities and Applications, vol. 2013, article 482,
2013.

[6] M. O. Olatinwo, “Convergence and stability results for some
iterative schemes,” Acta Universitatis Apulensis, no. 26, pp. 225–
236, 2011.

[7] S. Almezel, Q. H. Ansari, and M. A. Khamsi, Eds., Topics in
Fixed Point Theory, Springer, 2014.

[8] V. Berinde, Iterative Approximation of Fixed Points, Springer,
Berlin , Germany, 2007.

[9] D. R. Sahu, “Applications of the S-iteration process to con-
strained minimization problems and split feasibility problems,”
Fixed Point Theory, vol. 12, no. 1, pp. 187–204, 2011.

[10] S. H. Khan, “A Picard-Mann hybrid iterative process,” Fixed
Point Theory and Applications, vol. 2013, article 69, 2013.
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