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Feature selection is a key issue in the domain of machine learning and related fields. The results of feature selection can directly
affect the classifier’s classification accuracy and generalization performance. Recently, a statistical feature selection method named
effective range based gene selection (ERGS) is proposed. However, ERGS only considers the overlapping area (OA) among effective
ranges of each class for every feature; it fails to handle the problem of the inclusion relation of effective ranges. In order to overcome
this limitation, a novel efficient statistical feature selection approach called improved feature selection based on effective range
(IFSER) is proposed in this paper. In IFSER, an including area (IA) is introduced to characterize the inclusion relation of effective
ranges. Moreover, the samples’ proportion for each feature of every class in both OA and IA is also taken into consideration.
Therefore, IFSER outperforms the original ERGS and some other state-of-the-art algorithms. Experiments on several well-known
databases are performed to demonstrate the effectiveness of the proposed method.

1. Introduction

Feature selection is widely used in the domain of pattern
recognition, image processing, data mining, and machine
learning before the tasks of clustering, classification, recog-
nition, and mining [1]. In real-world applications, the huge
dataset usually has a large number of features which contains
much irrelevant or redundant information [1]. Redundant
and irrelevant features cannot improve the learning accuracy
and even deteriorate the performance of the learningmodels.
Therefore, selecting an appropriate and small feature subset
from the original features not only helps to overcome the
“curse of dimensionality” but also contributes to accomplish
the learning tasks effectively [2]. The aim of feature selection
is to find a feature subset that has the most discriminative
information from the original feature set. In general, feature
selection methods are usually divided into three categories:
embedded, wrapper, and filter methods [3, 4]. They are
categorized based on whether or not they are combined with
a specific learning algorithm.

In the embedded methods, the feature selection algo-
rithm is always regarded as a component in the learning
model. The most typical embedded based feature selection
algorithms are decision tree approaches, such as ID3 [5], C4.5
[6], andCARTalgorithm [7]. In these algorithms, the features
with the strongest ability of classification are selected in the
nodes of the tree, and then the selected features are utilized to
conduct a subspace to perform the learning tasks. Obviously
the process of decision tree generation is also feature selection
process.

Wrapper methods directly use the selected features to
train a specific classifier and evaluate the selected subset
according to the performance of the classifier. Therefore,
the performances of wrapper methods strongly depend on
the given classifier. Sequential forward selection (SFS) and
sequential backward selection (SBS) [8] are two well-studied
wrapper methods. SFS was initialized to an empty set. Then,
the best feature from the complete feature set was chosen
according to the evaluation criteria in each step and added
into the candidate feature subset until it meets the stop
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condition. On the contrary, SBS started from the complete
feature set. Then, it eliminated a feature which has the
minimal impact on the classifier in each step until it satisfied
the stop condition. Recently, Kabir et al. proposed a new
wrapper based feature selection approach using neural net-
work [9].The algorithm was called constructive approach for
feature selection (CAFS). The algorithm used a constructive
approach involving correlation information to select the
features and determine the architectures of neural network.
Another wrapper based feature selection method was also
proposed by Ye and Gong. In their approach, they considered
the feature subset as the evaluation unit and the subset’s
convergence ability was utilized as the evaluation standard
[10] for feature selection.

Different from the embedded and wrapper based algo-
rithms, filter based feature selection methods directly select
the best feature subset based on the intrinsic properties of the
data. Therefore, the process of feature selection and learning
model is independent in them. At present, the algorithms of
filter based feature selection can be divided into two classes
[11]: ranking and space searching. For the former, the feature
selection process can be regarded as a ranking problem.More
specifically, the weight (or score) of each feature is firstly
computed. Then, the top 𝑘 features are selected according to
the ascending order of weight (or score). Pearson Correlation
Coefficient (PCC) [12], Mutual Information (MI) [13], and
InformationGain (IG) [14] are three commonly used ranking
criterion to measure the dependency between each feature
and the target variable. Another ranking criterion method
namedRelief [15], which analyzed the importance of each fea-
ture by computing the relationship between an instance and
its nearest neighbors from the same and different classes, was
proposed by Kira and Rendell. Then, an extension of Relief
termed Relief-F was developed in [16]. Besides, there also
exist many other methods proposed for ranking based filter
feature selection. For more details about these algorithms,
the readers can refer to [3, 4]. Although the ranking based
filter methods have been applied to some real-world tasks
successfully, a common shortcoming of these methods is that
the feature subset selected by them may contain redundancy.
In order to solve this problem, some space searching based
filtermethods have been proposed to remove the redundancy
during feature selection. Correlation-based feature selection
(CFS) [17] is a typical space searching algorithm; it did not
only consider the correlation among features but also take the
correlation between features and classes into account. Thus,
CFS inclined to select the subset contains features that are
highly correlated with the class and uncorrelated with each
other. Minimum redundancy maximum relevance (MRMR)
[18] is another method presented to reduce the redundancy
of the selected feature subset.

Since both embedded and wrapper based feature selec-
tion methods interact with the classifier, they can only select
the optimal subset for a particular classifier. So the features
selected by themmay beworse for other classifiers.Moreover,
another disadvantage of the twomethods is that they aremore
time consuming than filter method. Therefore, filter method
is more fit for dealing with data that has large amounts of
features since it has a good generalization ability [19]. As

a result, we mainly focus on the research for filter based
feature selection in this work.

In this paper, an integrated algorithm named Improved
feature selection based on effective range (IFSER) is proposed
for filter based feature selection.Our IFSER can be considered
as an extension of the study in [20]. In [20], Chandra and
Gupta presented a new statistical feature selection method
named effective range based gene selection (ERGS). ERGS
utilized the effective range of statistical inference theory [21]
to calculate the weight of each feature, and a higher weight
was assigned to the most important feature to distinguish
different classes. However, since ERGS only considered the
overlapping area (OA) among effective range of each class
for every feature, it fails to handle the other relationships
among the features of different classes. In order to overcome
this limitation, the concept of including area (IA) is intro-
duced into the proposed IFSER to characterize the inclu-
sion relationship of effective ranges. Moreover, the samples’
proportion for each feature of every class in both OA and
IA is also taken into consideration in our IFSER. Therefore,
IFSER outperforms the original ERGS and some other state-
of-the-art algorithms. Experiments on several well-known
databases are performed to demonstrate the effectiveness of
the proposed method.

The rest of this paper is organized as follows. Section 2
briefly reviews ERGS and effective range. The proposed
IFSER is introduced in Section 3. Section 4 reports exper-
imental results on four datasets. Finally, we provide some
conclusions in Section 5.

2. A Briefly Review on ERGS

In this section, we will review the effective range and ERGS
algorithm briefly [20].

Let 𝐹 = {𝐹
𝑖
} be the feature set of the dataset 𝑋 ∈
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where 𝑟−
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effective range, respectively. The prior probability of 𝑗th class
is 𝑝
𝑗
. Here, the factor (1 − 𝑝

𝑗
) is taken to scale down effect of

class with high probabilities and consequently large variance.
The value of 𝛾 is determined statistically by Chebyshev
inequality defined as
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which is true for all distributions.The value of 𝛾 is set as 1.732
for the effective range which contains at least 2/3rd of the data
objects [20].
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In ERGS, for a given feature, the effective range of every
class is first calculated. Then, the overlapping area of the
effective ranges is calculated according to (3), and the area
coefficient is computed for each feature. Next, the normalized
area coefficient is regarded as the weight for every feature and
an appropriate number of features are selected on the basis
of feature weight. For more detailed information about the
ERGS algorithm, the readers can refer to [20].

3. Improved Feature Selection Based on
Effective Range

In this section, we present our improved feature selection
based on effective range (IFSER) algorithm, which integrates
overlapping area, including area and the samples’ proportion
for each feature of every class, into a unified feature selection
framework.

3.1. Motivation. Although ERGS considers the overlapping
area of every class for each feature, it fails to handle the
problem of the inclusion relation of effective ranges. The
problem is very realistic in real-world applications. Taking
the gene data set as an example, Figure 1 shows the effective
ranges of two gene samples from the Leukemia2 [22] gene
database. From this figure, we can see that the overlapping
area of gene number 9241 in Figure 1(a) is 165.7, and the
overlapping area of gene number 3689 in Figure 1(b) is 170.8.
Since the two overlapping areas of these two genes are similar,
their weights obtained by ERGS are also similar. However,
the relationships between the effective ranges in these two
genes are very different. In Figure 1(a), the effective range of
class 1 is completely included in the effective range of class
2, while the effective range of class 1 is partly overlapping
with the effective range of class 2 in Figure 1(b). Therefore,
the weight of the gene number 9241 in Figure 1(a) should be
less than that in Figure 1(b) since all the samples in class 1
cannot be corrected and classified in this case. For this reason,
the inclusion relation between the effective ranges (including
area) must be taken into consideration.

Another example is shown in Figure 2. As can be seen
from this figure, it is clearly found that the two features in
Figures 2(a) and 2(b) have the same size of the overlapping
area. However, the number of samples in these two areas
is very different. In Figure 2(a), the number of samples
belonging to the overlapping area is small but the number
of samples belonging to the overlapping area in Figure 2(b)
is relatively large. Thus, it is obvious that feature 1 is more

important than feature 2 since more samples can be correctly
classified. In other words, the weight assigned to feature1
should be greater than that assigned to feature 2. From this
example, we can see that the samples’ proportion for each
feature of every class in both overlapping and including areas
is also a vital factor to influence the features’ weights and
should be considered in the feature selection process.

3.2. Improved Feature Selection Based on Effective Range.
Similar to ERGS, we suppose 𝐹 = {𝐹
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The first step of our proposed IFSER is to calculate the
effective range of every class by
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where the definition of 𝜑
𝑖
(𝑗, 𝑘) is as same as in ERGS.

The third step of our proposed IFSER is to compute
including area IA
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The fourth step of our proposed IFSER is to compute area
coefficient (AC

𝑖
) of feature 𝐹

𝑖
(𝑖 = 1, 2, . . . , 𝑑) as
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where SA
𝑖
= OA

𝑖
+ IA
𝑖
. Then, the normalized area coefficient

(NAC
𝑖
) can be obtained by

NAC
𝑖
= 1 −

AC
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)
, for 𝑠 = 1, 2, . . . , 𝑑. (10)

From (10), we can clearly see that the featureswith largerNAC
values aremore important for distinguishing different classes.

The fifth step of our proposed IFSER is to calculate the
samples’ number of each class in OA

𝑖
and IA

𝑖
for each feature
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Figure 1: The ER of the gene accessions numbers 9241 and 3689 from the Leukemia2 gene database.
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Figure 2: Different feature with the same size of overlapping area but different sample proportions in the two areas.
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From (11), the larger the value of 𝑁𝐻
𝑖
and 𝐺𝐻

𝑖
, the more

significant the feature is.
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The last step of our proposed IFSER is to compute the
weight of each feature as

𝑊
𝑖
= 𝑉
𝑖
× 𝑍
𝑖
, (12)

where𝑉
𝑖
= NAC

𝑖
and𝑍

𝑖
= 𝑁𝐻

𝑖
+𝐺𝐻
𝑖
. From (12), we can see

that a larger value of𝑊
𝑖
indicates that the 𝑖th feature is more

important. Therefore, we can select the features according to
their weights and choose features with larger weights to form
the selected feature subset.

Finally, the proposed IFSER algorithm can be summa-
rized as in Algorithm 1.

4. Experiment and Results

In this section, in order to verify the performance of
our proposed method, we conducted experiments on four
datasets (Lymphoma [23], Leukemia1 [24], Leukemia2 [22],
and 9 Tumors [25]) and compare our algorithm with five
popular feature selection algorithms including ERGS [20],
PCC [12], Relief-F [16], MRMR [18], and Information Gain
[14]. Three classifiers are used to verify the effectiveness
of our proposed method. The classification accuracies are
obtained through leave-one-out cross-validation (LOOCV)
in this work.

4.1. The Description of Datasets

4.1.1. Lymphoma Database. The Lymphoma database [23]
consists of 96 samples and 4026 genes. There are two classes
of samples in the dataset. The dataset comes from a study on
diffuse large B-cell lymphoma.

4.1.2. Leukemia1Database. Leukemia1 database [24] contains
three types of Leukemia samples. The database has been
constructed from 72 people who have acute myelogenous
leukemia (AML), acute lymphoblastic leukemia (ALL) B cell,
or ALL T-cell, and each sample is composed of 5327 gene
expression profiles.

4.1.3. Leukemia2 Database. The Leukemia2 dataset [22] con-
tains a total of 72 samples in three classes: AML, ALL, and
mixed-lineage leukemia (MLL).Thenumber of genes is 11225.

4.1.4. 9 Tumors Database. 9 Tumors database [25] consists
of 60 samples of 5726 genes and categorized into 9 various
human tumor types.

4.2. Experimental Results Using C4.5 Classifier. In this sub-
section, we estimate the performance of our proposed IFSER
using C4.5 classifier on the four gene databases. Tables
1, 2, 3, and 4 summarize the results of the classification
accuracies achieved by our methods and other methods. As
we can see from Tables 1–4, the proposed IFSER method
performs better than the other five algorithms in most cases.
In particular, our proposed IFSER is much better than ERGS.
The reason is that our proposed IFSER not only considers the
overlapping area (OA) but also takes the including area and

Input: Data matrix𝑋 ∈ 𝑅𝑁×𝑑, 𝑖 = 1, 2, . . . , 𝑑, the number of
selected feature k.
Output: Feature subset.
(1) Compute the ER of each feature by (5);
(2) Compute the 𝑂𝐴

𝑖
and 𝐼𝐴

𝑖
by (6) and (7);

(3) Compute the 𝐴𝐶
𝑖
by (9);

(4) Normalize the 𝐴𝐶
𝑖
by (10);

(5) Calculate the𝑁𝐻
𝑖
and 𝐺𝐻

𝑖
by (11);

(6) Compute the weight of each feature by (12);
(7) Sort the weight of all features in a descending order;
(8) Select the best k features;

Algorithm 1

samples’ proportion into account. These results demonstrate
the fact that IFSER is able to select the best informative genes
compared to other well-known techniques.

For Lymphoma database, the classification accuracy of
our proposed IFSER is substantial improvement compared
with other algorithms. What is more, it is worth mentioning
that ourmethod only uses 10 features to achieve 93.75% classi-
fication accuracy.With the increase in feature dimension, the
classification results of most methods (such as our proposed
IFSER, PCC, IG, and ERGS) are reduced. For Relief-F and
MRMR, the classification results are very low when the
feature dimension is equal to 10 at the beginning. Then,
with the increase in feature dimension, the classification
results are improved. When they achieve the best results, the
classification results begin to decrease with the increase in the
dimension again.

For Leukemia1 and Leukemia2 databases, the perfor-
mance of our proposed IFSER is also better than ERGS and
other methods. Our proposed IFSER can achieve the best
results when the feature dimension is between 50 and 70. For
Leukemia1 database, the performances of MRMR and ERGS
keep stable on most dimensions. The trend of the classifica-
tion results of PCC on Leukemia2 is inconsistent with those
on Lymphoma database since it is almost monotonously
decreased with the increase of feature dimension. And the
other results are consistent with the experiments on Lym-
phoma database.

For 9 Tumors database, as we can see from Table 4, the
performances of all the methods are very low due to the
fact that database only contains 60 samples but 5726 genes.
However, the performance of our proposed IFSER is much
better than other algorithms.This result demonstrates the fact
that our proposed IFSER is able to deal with the small sample
size and high dimensions gene data.

4.3. Experimental Results Using NN Classifier. In this subsec-
tion, we evaluate the performance of our proposed IFSER
using nearest neighbor (NN) classifier on the four gene
databases.The results of the classification accuracies achieved
by our proposed and other methods are listed in Tables 5, 6,
7, and 8. Comparing Tables 5–8 with Tables 1–4, we can see
that the classification results of all the methods are improved.
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Table 1: Classification accuracies (%) of different feature selection
methods with C4.5 on Lymphoma database.

10 30 50 70 90 110 130
PCC 84.38 82.29 80.21 78.13 79.17 79.17 80.21
Relief-F 69.79 72.92 72.92 75.00 68.75 66.67 82.29
IG 78.13 76.04 76.04 72.92 77.08 77.08 77.08
MRMR 71.88 79.17 79.17 80.21 81.25 80.21 79.17
ERGS 86.46 85.42 82.29 81.25 83.33 83.33 84.38
IFSER 93.75 86.46 83.33 83.33 83.33 80.21 79.17

Table 2: Classification accuracies (%) of different feature selection
methods with C4.5 on Leukemia1 database.

10 30 50 70 90 110 130
PCC 88.89 88.89 88.89 87.50 87.50 87.50 87.50
Relief-F 75.00 79.17 75.00 80.56 81.94 79.17 80.56
IG 80.56 84.72 84.72 84.72 84.72 84.72 84.72
MRMR 84.72 84.72 84.72 84.72 84.72 84.72 84.72
ERGS 88.89 88.89 88.89 88.89 88.89 88.89 88.89
IFSER 84.72 84.72 86.11 90.28 90.28 88.89 87.50

Table 3: Classification accuracies (%) of different feature selection
methods with C4.5 on Leukemia2 database.

10 30 50 70 90 110 130
PCC 80.56 83.33 87.50 87.50 87.50 86.11 86.11
Relief-F 77.78 75.00 84.72 86.11 80.56 77.78 76.39
IG 84.72 87.50 87.50 87.50 87.50 87.50 87.50
MRMR 84.72 88.89 88.89 88.89 88.89 88.89 88.89
ERGS 86.11 84.72 88.89 88.89 88.89 87.50 87.50
IFSER 79.17 88.89 90.28 88.89 88.89 87.50 88.89

Table 4: Classification accuracies (%) of different feature selection
methods with C4.5 on 9 Tumors database.

10 30 50 70 90 110 130
PCC 28.33 28.33 26.67 25.00 28.33 26.67 28.33
Relief-F 20.00 16.67 30.00 28.33 31.67 36.67 36.67
IG 38.33 38.33 41.67 40.00 40.00 40.00 38.33
MRMR 38.33 38.33 40.00 36.67 38.33 40.00 40.00
ERGS 28.33 28.33 23.33 25.00 23.33 21.67 26.67
IFSER 25.00 36.67 43.33 48.33 46.67 43.33 43.33

For Lymphoma database, IFSER, PCC, and ERGS are better
than Relief-F, IG, and MRMR. For Leukemia1 database, our
proposed IFSER and PCC outperform Relief-F, IG, MRMR,
and ERGS. And the best result of IFSER is the same as PCC.
However, for Leukemia2, IFSER, IG, and Relief-F achieve the
best results than PCC, MRMR, and ERGS. For 9 Tumors
database, the performance of IFSER is worse than PCC, IG,
andMRMR, but better than Relief-F and ERGS.These results
demonstrate the fact that result of feature selection depends

Table 5: Classification accuracies (%) of different feature selection
methods with NN on Lymphoma database.

10 30 50 70 90 110 130
PCC 89.58 96.88 94.79 95.83 97.92 97.92 96.88
Relief-F 68.75 84.38 86.46 88.54 87.50 85.42 88.54
IG 88.54 95.83 94.79 94.79 95.83 96.88 96.88
MRMR 88.54 91.67 93.75 93.75 93.75 93.75 93.75
ERGS 89.58 94.79 95.83 97.92 95.83 97.92 97.92
IFSER 94.79 94.79 96.88 96.88 97.92 97.92 97.92

Table 6: Classification accuracies (%) of different feature selection
methods with NN on Leukemia1 database.

10 30 50 70 90 110 130
PCC 93.06 94.44 95.83 97.22 95.83 97.22 95.83
Relief-F 69.44 76.31 75.00 75.00 73.61 76.39 80.56
IG 93.06 94.44 91.67 93.06 93.06 94.44 93.06
MRMR 88.89 93.06 90.28 93.06 93.06 94.44 93.06
ERGS 94.44 95.83 94.44 95.83 95.83 95.83 95.83
IFSER 81.94 91.67 93.06 91.67 97.22 94.44 95.83

Table 7: Classification accuracies (%) of different feature selection
methods with NN on Leukemia2 database.

10 30 50 70 90 110 130
PCC 88.89 88.89 90.28 93.06 91.67 91.67 91.67
Relief-F 69.44 83.33 83.33 83.33 87.50 93.06 94.44
IG 83.33 83.33 94.44 94.44 94.44 94.44 94.44
MRMR 88.89 90.28 93.06 93.06 93.06 93.06 93.06
ERGS 86.11 86.11 93.06 93.06 91.67 93.06 93.06
IFSER 84.27 91.67 93.06 91.67 88.89 90.28 94.44

Table 8: Classification accuracies (%) of different feature selection
methods with NN on 9 Tumors database.

10 30 50 70 90 110 130
PCC 28.33 41.67 51.67 51.67 51.67 50.00 51.67
Relief-F 25.00 28.33 21.67 26.67 30.00 35.00 33.33
IG 48.33 51.67 60.00 58.33 60.00 61.67 58.33
MRMR 38.33 46.67 56.67 55.00 60.00 65.00 61.67
ERGS 25.00 30.00 40.00 38.33 41.67 41.67 45.00
IFSER 35.00 36.67 38.33 46.67 46.67 45.00 46.67

on the classifier, and it is crucial to choose an appropriate
classifier for different feature selection methods.

4.4. Experimental Results Using SVM Classifier. The perfor-
mance of our proposed IFSER using support vector machine
(SVM) classifier on the four gene database is tested in this
subsection. Figures 3–6 show the classification accuracies of
different algorithms on four gene databases. From Figures
3 and 4, we can see that our proposed IFSER outperforms
other algorithms in most cases. And the IFSER achieves
its best result at a lower dimension than other algorithms.
This result further demonstrates the fact that IFSER is able
to select the best informative genes as compared to other
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Figure 3:The classification accuracies of different algorithms on the
Lymphoma database.
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Figure 4:The classification accuracies of different algorithms on the
Leukemia1 database.

feature selection techniques. As we can see from Figure 5,
our proposed IFSER is worse than Relief-F, IG, MRMR and
ERGS. From Figure 6, it is found that our proposed IFSRE
outperformsPPC, Relief-F, IG, andERGSbut is not as good as
MRMR. This indicates that the SVM classifier is not suitable
for the feature selected results of our proposed algorithm on
small sample size databases.

5. Conclusions

In this paper, we propose a novel statistical feature selec-
tion algorithm named effective range based gene selection
(IFSER). Compared with existing algorithms, IFSER not only
considers the overlapping areas of the features in different
classes but also takes the including areas and the samples’
proportion in overlapping and including areas into account.
Therefore, IFSER outperforms the original ERGS and some
other state-of-the-art algorithms. Experiments on several
well-known databases are performed to demonstrate the
effectiveness of the proposed method.

0 20 40 60 80 100 120 140
80
82
84
86
88
90
92
94
96
98

Leukemia2

Number of selected features

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

PCC

MRMR

IG
ERGS
IFSER

Relief-F

Figure 5:The classification accuracies of different algorithms on the
Leukemia2 database.
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Figure 6:The classification accuracies of different algorithms on the
9 Tumors database.
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