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We consider a family {𝜏
𝑚
: 𝑚 ≥ 2} of interval maps which are generalizations of the Gauss transformation. For the continued

fraction expansion arising from 𝜏
𝑚
, we solve a Gauss-Kuzmin-type problem.

1. Introduction

Chan considered some continued fraction expansions related
to random Fibonacci-type sequences [1, 2]. In [1], he studied
the continued fraction expansions of a real number in
the closed interval [0, 1] whose digits are differences of
consecutive nonpositive integer powers of 2 and solved the
corresponding Gauss-Kuzmin-Lévy theorem. In fact, Chan
has studied the transformation related to this new continued
fraction expansion and the asymptotic behaviour of its distri-
bution function.Giving a solution to theGauss-Kuzmin-Lévy
problem, he showed in [1, Theorem 1.1] that the convergence
rate involved is O(𝑞𝑛) as 𝑛 → ∞ with 0 < 𝑞 < 1.

The purpose of this paper is to prove a Gauss-Kuzmin-
type problem for the continued fraction expansions of real
numbers in [0, 1] whose digits are differences of consecutive
nonpositive integer powers of an integer 𝑚 ≥ 2. In this
section, we show our motivation and main theorems.

1.1. Gauss’ Problem and Its Progress. One of the first and still
one of the most important results in the metrical theory of
continued fractions is the so-called Gauss-Kuzmin theorem.
Any irrational 0 < 𝑥 < 1 can be written as the infinite regular
continued fraction

𝑥 =
1

𝑎
1
+

1

𝑎
2
+

1

𝑎
3
+d

:= [𝑎
1
, 𝑎
2
, 𝑎
3
, . . .] ,

(1)

where 𝑎
𝑛
∈ N
+
:= {1, 2, 3, . . .}.

Roughly speaking, the metrical theory (or, as called
by Khintchine, the measure theory) of continued fraction
expansions is about properties of the sequence (𝑎

𝑛
)
𝑛∈N
+

.
It started on October 25, 1800, with a note by Gauss in
his mathematical diary (entry 113) [3]. Define the regular
continued fraction transformation 𝜏 on the closed interval
𝐼 := [0, 1] by

𝜏 (𝑥) =
{

{

{

1

𝑥
− ⌊
1

𝑥
⌋ if 𝑥 ̸= 0,

0 if 𝑥 = 0,
(2)

where ⌊⋅⌋ denotes the floor (or entire) function. In modern
notation, Gauss wrote that “for very simple argument” we
have

lim
𝑛→∞

𝜆 (𝜏
𝑛

≤ 𝑥) =
log (1 + 𝑥)

log 2
(𝑥 ∈ 𝐼) , (3)

where 𝜆 denotes the Lebesgue measure on 𝐼 and 𝜏𝑛 is the 𝑛th
iterate of 𝜏.

Nobody knows how Gauss found (3), and his achieve-
ment is even more remarkable if we realize that modern
probability theory and ergodic theory had started almost a
century later. In general, finding the invariant measure is a
difficult task.

Twelve years later, in a letter dated January 30, 1812,
Gauss wrote to Laplace that he did not succeed in solving
satisfactorily “a curious problem” and that his efforts “were
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unfruitful.” In modern notation, this problem is to estimate
the error

𝑒
𝑛
(𝑥) := 𝜆 (𝜏

−𝑛

[0, 𝑥]) −
log (1 + 𝑥)

log 2
(𝑛 ≥ 1, 𝑥 ∈ 𝐼) . (4)

This has been calledGauss’ Problem. It received a first solution
more than a century later, when Kuzmin [4] showed in 1928
that

𝑒
𝑛
(𝑥) = O (𝑞

√𝑛

) (5)

as 𝑛 → ∞, uniformly in 𝑥 with some (unspecified) 0 <
𝑞 < 1. This has been called the Gauss-Kuzmin theorem or the
Kuzmin theorem.

One year later, using a different method, Lévy [5]
improved Kuzmin’s result by showing that

󵄨󵄨󵄨󵄨𝑒𝑛 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑞
𝑛

, (6)

𝑛 ∈ N
+
, 0 ≤ 𝑥 < 1, with 𝑞 = 3.5 − 2√2 = 0.67157 . . .. The

Gauss-Kuzmin-Lévy theorem is the first basic result in the
rich metrical theory of continued fractions.

By such a development, generalizations of these problems
for nonregular continued fractions are also called the Gauss-
Kuzmin problems.

1.2. Chan’s Continued Fraction Expansions. In this paper, we
consider a generalization of the Gauss transformation and
prove an analogous result. Especially, we will solve its Gauss-
Kuzmin problem inTheorem 3.

This transformation was studied in detail by Chan in [2]
and Lascu in [6].

Fix an integer 𝑚 ≥ 2. In [2], Chan shows that any 𝑥 ∈
[0, 1) can be written as the form

𝑥 =
𝑚
−𝑎
1

1 +
(𝑚 − 1)𝑚

−𝑎
2

1 +
(𝑚 − 1)𝑚

−𝑎
3

1 +d

:= [𝑎
1
, 𝑎
2
, 𝑎
3
, . . .]
𝑚
,

(7)

where 𝑎
𝑛
’s are nonnegative integers. Such 𝑎

𝑛
’s are also called

incomplete quotients (or continued fraction digits) of 𝑥 with
respect to the expansion in (7) in this paper.

This continued fraction is treated as the following dynam-
ical systems.

Definition 1. Fix an integer𝑚 ≥ 2.

(i) The measure-theoretical dynamical system (𝐼,B
𝐼
,

𝜏
𝑚
) is defined as follows: 𝐼 := [0, 1], whereB

𝐼
denotes

the 𝜎-algebra of all Borel subsets of 𝐼 and 𝜏
𝑚
is the

transformation

𝜏
𝑚
: 𝐼 󳨀→ 𝐼,

𝜏
𝑚
(𝑥) :=

{

{

{

1

𝑚 − 1
(
1

𝑚𝑖 𝑥
− 1) if 𝑥 ∈ 𝐼

𝑖
,

0 if 𝑥 = 0,

(8)

where 𝐼
𝑖
:= {𝑥 ∈ 𝐼 : 𝑚

−(𝑖+1)

< 𝑥 ≤ 𝑚
−𝑖

} for 𝑖 ∈ N :=

{0, 1, 2, . . .}.

(ii) In addition to (i), one writes (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) as (𝐼,B

𝐼
,

𝜏
𝑚
) with the following probability measure 𝛾

𝑚
on

(𝐼,B
𝐼
):

𝛾
𝑚
(𝐴) := 𝑘

𝑚
∫
𝐴

𝑑𝑥

{(𝑚 − 1) 𝑥 + 1} {(𝑚 − 1) 𝑥 + 𝑚}

(𝐴 ∈B
𝐼
) ,

(9)

where

𝑘
𝑚
:=

(𝑚 − 1)
2

log {𝑚2/ (2𝑚 − 1)}
. (10)

Define the quantized index map 𝜂
𝑚
: 𝐼 → N by

𝜂
𝑚
(𝑥) := {

⌊−log
𝑚
𝑥⌋ if 𝑥 ̸= 0,

∞ if 𝑥 = 0.
(11)

By definition, 𝜂
𝑚
(𝑚
−𝛼

) = ⌊𝛼⌋. By using 𝜏
𝑚

and 𝜂
𝑚
, the

sequence (𝑎
𝑛
)
𝑛∈N
+

in (7) is obtained as follows:

𝑎
𝑛
= 𝜂
𝑚
(𝜏
𝑛−1

𝑚
(𝑥)) (𝑛 ≥ 1) (12)

with 𝜏0
𝑚
(𝑥) = 𝑥. In this way, 𝜏

𝑚
gives the algorithm of Chan’s

continued fraction expansion (7).

Proposition 2. Let (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) be as in Definition 1 (ii).

(i) (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) is ergodic.

(ii) Themeasure 𝛾
𝑚
is invariant under 𝜏

𝑚
; that is, 𝛾

𝑚
(𝐴) =

𝛾
𝑚
(𝜏
−1

𝑚
(𝐴)) for any 𝐴 ∈B

𝐼
.

Proof. See [2, 6].

By Proposition 2 (ii), (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) is a “dynamical sys-

tem” in the sense of [7, Definition 3.1.3].

1.3. Known Results and Applications. For Chan’s continued
fraction expansions, we show known results and their appli-
cations in this subsection.

1.3.1. Known Results for 𝑚=2 Case. For (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) in

Definition 1(ii), assume 𝑚 = 2; that is, we consider only
(𝐼,B
𝐼
, 𝛾
2
, 𝜏
2
) in here.

In [8], Chan proved a Gauss-Kuzmin-Lévy theorem for
the transformation 𝜏

2
. He showed that the convergence rate

of the 𝑛th distribution function of 𝜏
2
to its limit is O(𝑞𝑛) as

𝑛 → ∞ with 𝑞 ≤ 0.880555 uniformly in 𝑥.
In [9, 10], Sebe investigated the Perron-Frobenius opera-

tor of 𝜏
2
by replacing a probability measure of the measurable

space (𝐼,B
𝐼
). Especially, Sebe studied the Perron-Frobenius

operator 𝐽 of (𝐼,B
𝐼
, 𝛾
2
, 𝜏
2
); that is, 𝐽 is a unique operator on

𝐿
1

(𝐼, 𝛾
2
) satisfying

∫
𝐴

{𝐽𝑓} (𝑥) 𝑑𝛾
2
(𝑥) = ∫

𝜏
−1

2
(𝐴)

𝑓 (𝑥) 𝑑𝛾
2
(𝑥)

(𝐴 ∈B
𝐼
, 𝑓 ∈ 𝐿

1

(𝐼, 𝛾
2
)) .

(13)
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The asymptotic behavior of 𝐽was shown by usingwell-known
general results [11, 12]. By a Wirsing-type approach [13], Sebe
obtained a better estimate of the convergence rate involved
[9]. In fact, its upper and lower bounds of the convergence
rate were obtained as O(𝑤𝑛) and O(V𝑛), respectively, when
𝑛 → ∞, with 𝑤 < 0.209364308 and V > 0.206968896 ([9,
Theorem 4.3]). They provide a near-optimal solution to the
Gauss-Kuzmin-Lévy problem.

Furthermore, by restricting the Perron-Frobenius oper-
ator to the Banach space of functions 𝑓 : 𝐼 → C of
bounded variation, Iosifescu and Sebe [14] proved that the
exact optimal convergence rate of 𝛾

𝑎
(𝑠
𝑎

𝑛
≤ 𝑥) to 𝛾

2
([0, 𝑥])

is O(𝑔2𝑛) as 𝑛 → ∞ uniformly in 𝑥. Here 𝑔 is the inverse of
the golden ratio; that is, we have

𝑔 =
2

√5 + 1
, 𝑔
2

+ 𝑔 = 1, 𝑔
2

=
3 − √5

2
= 0.38196 . . . .

(14)

For 𝑎 ≥ 0, define the sequence (𝑠
𝑛,𝑎
)
𝑛∈N recursively by

𝑠
𝑛,𝑎
:= 2
−𝑎
𝑛/(1 + 𝑠

𝑛−1,𝑎
), 𝑛 ∈ N

+
, with 𝑠

0,𝑎
:= 𝑎. Then it is

an 𝐼 ∪ {𝑎}-valued Markov chain on (𝐼,B
𝐼
, 𝛾
𝑎
) where 𝛾

𝑎
is

the probability measure on (𝐼,B
𝐼
) defined as the following

distribution function:

𝛾
𝑎
([0, 𝑥]) =:

(𝑎 + 2) 𝑥

𝑥 + 𝑎 + 1
(𝑥 ∈ 𝐼, 𝑎 ≥ 0) . (15)

For 𝐽 in (13), let 𝐽󸀠 denote its restriction on 𝐿∞(𝐼) ⊂ 𝐿1(𝐼, 𝛾
2
).

From [12, Proposition 2.1.10], we see that 𝐽󸀠 is the transition
operator of the Markov chain (𝑠

𝑛,𝑎
)
𝑛∈N
+

on (𝐼,B
𝐼
, 𝛾
𝑎
) for any

𝑎 ≥ 0.

1.3.2. Known Results for 𝑚 ≥ 3 Case. For (𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) in

Definition 1(ii), recall the main results in [6, 15].
In [6], Lascu proved a Gauss-Kuzmin theorem for the

transformation 𝜏
𝑚
. In order to solve the problem, he applied

the theory of random systems with complete connections
(RSCC) by Iosifescu and Grigorescu [11]. We remind that a
random system with complete connections is a quadruple

{(𝐼,B
𝐼
) , (N
+
,P (N

+
)) , 𝑢, 𝑃} , (16)

where 𝑢 : 𝐼 × N → 𝐼,

𝑢 (𝑥, 𝑖) = 𝑢
𝑚,𝑖
(𝑥) =

𝑚
−𝑖

(𝑚 − 1) 𝑥 + 1
(𝑥 ∈ 𝐼) , (17)

and 𝑃 is the transition probability function from (𝐼,B
𝐼
) to

(N,P(N)) given by

𝑃 (𝑥, 𝑖) = 𝑃
𝑚,𝑖
(𝑥)

=
(𝑚 − 1)𝑚

−(𝑖+1)

(𝑥 + 1) (𝑥 + 𝑚)

(𝑥 + (𝑚 − 1)𝑚−𝑖 + 1) (𝑥 + (𝑚 − 1)𝑚−(𝑖+1) + 1)
.

(18)

Also, the associatedMarkov operator of RSCC (16) is denoted
by 𝑈
𝑚
and has the transition probability function

𝑄
𝑚
(𝑥, 𝐴) = ∑

𝑖∈𝑊
𝑚
(𝑥,𝐴)

𝑃
𝑚,𝑖
(𝑥) (𝑥 ∈ 𝐼, 𝐴 ∈B

𝐼
) , (19)

where𝑊
𝑚
(𝑥, 𝐴) = {𝑖 ∈ N : 𝑢

𝑚,𝑖
(𝑥) ∈ 𝐴}.

Using the asymptotic and ergodic properties of operators
associated with RSCC (16), that is, the ergodicity of RSCC,
he obtained a convergence rate result for the Gauss-Kuzmin-
type problem.

For more details about using RSCC in solving the Gauss-
Kuzmin-Lévy-type theorems, see [11, 16–20].

By aWirsing-type approach [13] to the Perron-Frobenius
operator of the associated transformation under its invariant
measure, Sebe [15] studied the optimality of the convergence
rate. Actually, Sebe obtained upper and lower bounds of
the convergence rate which provide a near-optimal solution
to the Gauss-Kuzmin-Lévy problem. In the case 𝑚 = 3,
the upper and lower bounds of the convergence rate were
obtained as 𝑂(𝑤𝑛

3
) and 𝑂(V𝑛

3
), respectively, when 𝑛 → ∞,

with V
3
> 0.262765464 and 𝑤

3
< 0.264687208.

1.3.3. Application to the Asymptotic Growth Rate of a Fibonac-
ci-Type Sequence. We explain an application of 𝜏

𝑚
to a Fib-

onacci-type sequence here. As it is known, the Fibonacci
sequence (𝐹

𝑛
) is recursively defined as follows:

𝐹
0
= 𝐹
1
= 1, 𝐹

𝑛
= 𝐹
𝑛−1
+ 𝐹
𝑛−2

(𝑛 ≥ 2) . (20)

Equivalently, (𝐹
𝑛
) is also defined by Binet’s formula 𝐹

𝑛
=

(𝐺
𝑛+1

− 𝐺
−(𝑛+1)

)/√5 for 𝑛 ≥ 0 where 𝐺 := (1 + √5)/2 is the
golden ratio. By this formula, the asymptotic growth rate of
(𝐹
𝑛
) is obtained as follows:

lim
𝑛→∞

1

𝑛
log𝐹
𝑛
= log 1 +

√5

2
= 0.4812 . . . . (21)

A randomFibonacci sequence (𝑓
𝑛
) is defined as (with fixed

𝑓
1
and 𝑓

2
)

𝑓
𝑛
= 𝛼 (𝑛) 𝑓

𝑛−1
+ 𝛽 (𝑛) 𝑓

𝑛−2
, (22)

where 𝛼(𝑛) and 𝛽(𝑛) are random coefficients. For such (𝑓
𝑛
),

the quest for its asymptotic growth rate is more difficult. We
show two examples of random Fibonacci sequences as fol-
lows.

(i) Define the random Fibonacci sequence (𝑓
𝑛
) as

𝑓
1
= 𝑓
2
= 1, 𝑓

𝑛
= ±𝑓
𝑛−1
± 𝑓
𝑛−2
, (23)

where the signs in (23) are chosen independently and
with equal probabilities. Recently, Viswanath [21] has
proved that its asymptotic growth rate is given as

lim
𝑛→∞

1

𝑛
log 󵄨󵄨󵄨󵄨𝑓𝑛

󵄨󵄨󵄨󵄨 = log (1.13198824 . . .) = 0.12397559 . . .
(24)

with probability 1.
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(ii) Fix an integer 𝑚 ≥ 2. Define the random Fibonacci
sequence (𝑓

𝑛
) as

𝑓
−1
= 0, 𝑓

0
= 1, 𝑎

0
= 0,

𝑓
𝑛
= 𝑚
𝑎
𝑛𝑓
𝑛−1
+ (𝑚 − 1)𝑚

𝑎
𝑛−1𝑓
𝑛−2
,

(25)

where 𝑎
𝑛
’s are as in (7). By using the ergodicity of

(𝐼,B
𝐼
, 𝛾
𝑚
, 𝜏
𝑚
) (Proposition 2(i)), Chan proved that

its asymptotic growth rate is given as follows [2]:

𝜂
𝑚
:= lim
𝑛→∞

1

𝑛
log𝑓
𝑛

= 𝑘
𝑚
∫
1

0

− log 𝑡
{(𝑚 − 1) 𝑡 + 1} {(𝑚 − 1) 𝑡 + 𝑚}

𝑑𝑡

≤ 𝑘
𝑚

3𝑚 − 1

2𝑚 (2𝑚 − 1)
,

(26)

where 𝑘
𝑚
is as in (10).

1.3.4. A Khintchine-Type Result and Entropy. In probabilistic
number theory, statistical limit theorems are established in
problems involving “almost independent” random variables.
The nonnegative integers 𝑎

𝑛
, 𝑛 ∈ N

+
, define random variables

on the measure space (𝐼,B
𝐼
,P), where P is a probability

measure on 𝐼.
Continued fraction expansions of almost all irrational

numbers are not periodic. Nevertheless, we readily reproduce
another famous probabilistic result. It is the asymptotic value
𝜒
𝑚
of the geometric mean of𝑚𝑎1 , 𝑚𝑎2 , . . . , 𝑚𝑎𝑛 ; that is,

𝜒
𝑚
:= lim
𝑛→∞

log (𝑚𝑎1+𝑎2+⋅⋅⋅+𝑎𝑛)1/𝑛, (27)

where 𝑎
𝑛
’s are given in (12). This is a Khintchine-type result

and we obtain

𝜒
𝑚
= (log𝑚)∫

1

0

𝑎
1
(𝑥) 𝜌
𝑚
(𝑥) 𝑑𝑥

=
𝑘
𝑚
log𝑚

(𝑚 − 1)
2

×

∞

∑
𝑛=0

log(1 + (𝑚 − 1)
3

𝑚𝑛+2 + 2 (𝑚 − 1)𝑚 + ((𝑚 − 1)
2

/𝑚𝑛)
)

𝑛

(28)

for almost all real numbers 𝑥 = [𝑎
1
(𝑥), 𝑎
2
(𝑥), 𝑎
3
(𝑥), . . . ]

𝑚
∈

(0, 1). As it can be seen, 𝜒
𝑚
is a constant independent of the

value of 𝑥.
As it is well known, entropy is an important concept of

information in physics, chemistry, and information theory
[22]. The connection between entropy and the transmission
of information was first studied by Shannon in [23]. The
entropy can be seen as a measure of randomness of the
system or the average information acquired under a single
application of the underlying map. Entropy also plays an
important role in ergodic theory. Thus in 1958 Kolmogorov
[24] imported Shannon’s probabilistic notion of entropy into

the theory of dynamical systems and showed how entropy
can be used to tell whether two dynamical systems are non-
conjugate. Like Birkhoff ’s ergodic theorem [22] the entropy
is a fundamental result in ergodic theory. For a measure
preserving transformation, its entropy is often defined by
using partitions, but in 1964 Rohlin [25] showed that the
entropy of a 𝜇-measure preserving operator 𝑇 : [𝑎, 𝑏] →

[𝑎, 𝑏] is given by the beautiful formula

ℎ (𝑇) := ∫
𝑏

𝑎

log 󵄨󵄨󵄨󵄨󵄨𝑇
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜇 (𝑥) . (29)

From Rohlin’s formula it follows that the entropy of the
operator 𝜏

𝑚
in (8) on the unit interval with respect to the

measure 𝛾
𝑚
in (9) is given by

ℎ (𝜏
𝑚
) = ∫
1

0

log 󵄨󵄨󵄨󵄨󵄨𝜏
󸀠

𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
𝜌
𝑚
(𝑥) 𝑑𝑥

= ∫
1

0

log( 𝑚
−𝑎
1
(𝑥)

(𝑚 − 1) 𝑥2
)𝜌
𝑚
(𝑥) 𝑑𝑥

= 2𝜂
𝑚
− 𝜒
𝑚
− log (𝑚 − 1) ,

(30)

where 𝑎
1
, 𝜂
𝑚
, and 𝜒

𝑚
are given in (12), (26), and (27),

respectively.

1.4. Main Theorem and Its Consequences

1.4.1.MainTheorem. Weshowourmain theorems in this sub-
section. Fix an integer 𝑚 ≥ 2. Let 𝑘

𝑚
be as in (10) and let

(𝐼,B
𝐼
) be as in Section 1.2. If 𝑥 has the expansion in (7) and

𝜏
𝑚
is as in (8), then the question about the asymptotic distri-

bution of 𝜏𝑛
𝑚
appears. If we know this, then the corresponding

probability that 𝑎
𝑛+1

= 𝑖 is simply written as prob(𝑚−(𝑖+1) <
𝜏
𝑛

𝑚
< 𝑚
−𝑖

). We will show that the event 𝜏𝑛
𝑚
≤ 𝑥 has the

following asymptotic probability:

𝜔
𝑚
(𝑥) =

𝑘
𝑚

(𝑚 − 1)
2
log 𝑚((𝑚 − 1) 𝑥 + 1)

(𝑚 − 1) 𝑥 + 𝑚
(𝑥 ∈ 𝐼) . (31)

This result allows us to say that the probability density func-
tion

𝜌
𝑚
(𝑥) =

𝑘
𝑚

((𝑚 − 1) 𝑥 + 1) ((𝑚 − 1) 𝑥 + 𝑚)
(32)

is invariant under 𝜏
𝑚
: if a random variable 𝑋 in the unit

interval has the density 𝜌
𝑚
, and then so does 𝜏

𝑚
. The reason

for this invariance is that, for 0 ≤ 𝑥 < 𝑥 + ℎ ≤ 1, 𝜏
𝑚
lies

between 𝑥 and 𝑥 + ℎ if and only if there exists 𝑖 ≥ 1, so that𝑋
lies between 1/(𝑥 + 𝑖 + ℎ) and 1/(𝑥 + 𝑖). Thus

prob (𝑥 ≤ 𝜏
𝑚
≤ 𝑥 + ℎ) = ∑

𝑖∈N
+

prob( 1

𝑥 + 𝑖 + ℎ
≤ 𝑋 ≤

1

𝑥 + 𝑖
) .

(33)

Taking the limit as ℎ → ∞ gives that, for an arbitrary proba-
bility density function 𝑓 for𝑋, the corresponding density𝐺𝑓
for 𝜏
𝑚
is given a.e. in 𝐼 by the equation

𝐺𝑓 (𝑥) = ∑
𝑖∈N

(𝑚 − 1)𝑚
−𝑖

((𝑚 − 1) 𝑥 + 1)
2
𝑓(

𝑚
−𝑖

(𝑚 − 1) 𝑥 + 1
) . (34)
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Clearly, the operator 𝐺 : 𝐿1 → 𝐿
1 admits the density func-

tion 𝜌
𝑚
as an eigenfunction corresponding to the eigenvalue

1; that is, 𝐺𝜌
𝑚
= 𝜌
𝑚
. Here 𝐿1 denotes the Banach space of all

complex functions 𝑓 : 𝐼 → C for which ∫
𝐼

|𝑓|𝑑𝜆 < ∞.
The only eigenvalue of modulus 1 of 𝐺 is 1 and this

eigenvalue is simple.
From another perspective, the operator 𝜏

𝑚
is an ergodic

operator on the unit interval [2], 𝜌
𝑚

is the density of the
invariant measure, and𝐺 is called transfer operator for 𝜏

𝑚
[6].

The transfer operator 𝐺 has the same analytical expression
as the Perron-Frobenius operator of 𝜏

𝑚
under the Lebesgue

measure [6].
Our main result is the following theorem.

Theorem 3 (the Gauss-Kuzmin theorem). Let 𝜏
𝑚
and 𝜔

𝑚
be

as in (8) and (31), respectively. When a nonatomic probability
measure 𝜇 on (𝐼,B

𝐼
) is given, define functions 𝐹

𝑚,𝑛
(𝑛 ≥ 0) on

𝐼 by

𝐹
𝑚,0
(𝑥) := 𝜇 ([0, 𝑥]) ,

𝐹
𝑚,𝑛
(𝑥) := 𝜇 (𝜏

𝑛

𝑚
≤ 𝑥) (𝑛 ≥ 1)

(35)

for 𝑥 ∈ 𝐼. Then there exists a constant 0 < 𝑞
𝑚
< 1 such that

𝐹
𝑚,𝑛

is written as

𝐹
𝑚,𝑛
(𝑥) = 𝜔

𝑚
(𝑥) + O (𝑞

𝑛

𝑚
) . (36)

Remark 4. (i) From (36), we see that

lim
𝑛→∞

𝐹
𝑚,𝑛
(𝑥) = 𝛾

𝑚
([0, 𝑥]) , (37)

where 𝛾
𝑚
is the measure defined in (9). In fact, the Gauss-

Kuzmin theorem estimates the error

𝑒
𝑚,𝑛
(𝑥) = 𝑒

𝑚,𝑛
(𝑥, 𝜇) = 𝜇 (𝜏

𝑛

𝑚
≤ 𝑥) − 𝛾

𝑚
([0, 𝑥])

(𝑥 ∈ 𝐼) .
(38)

(ii) The solution of this problem implies that (𝑎
𝑛
)
𝑛∈N in

(12) is exponentially 𝜓-mixing under 𝛾
𝑚
(and under many

other probability measures including 𝜆) [11, 12]; that is,
󵄨󵄨󵄨󵄨𝛾𝑚 (𝐴1 ∩ 𝐴2) − 𝛾𝑚 (𝐴1) 𝛾𝑚 (𝐴2)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑞
𝑛

𝛾
𝑚
(𝐴
1
) 𝛾
𝑚
(𝐴
2
)

(𝑛 ∈ N
+
)

(39)

for any 𝐴
1
∈ 𝜎(𝑎

1
, . . . , 𝑎

𝑘
) (the 𝜎-algebra generated by the

random variables 𝑎
1
, . . . , 𝑎

𝑘
), 𝐴
2
∈ 𝜎(𝑎

𝑛+𝑘
, 𝑎
𝑛+𝑘+1

, . . .), and
𝑘 ∈ N

+
, with suitable positive constants 𝑞 < 1 and 𝐶.

In turn, 𝜓-mixing implies lots of limit theorems in both
classical and functional versions. To form an idea of the
results to be expected it is sufficient to look at the correspond-
ing results for the regular continued fraction expansions [12].

(iii) In (37) we emphasized the probabilistic nature of
Gauss’ result. Khintchine [26] and Doeblin [27] found new
probabilistic results on the regular continued fraction trans-
formation.These types of results were established also for the
transformation 𝜏

𝑚
[2, 6].These results establish, among other

properties, that the map 𝜏
𝑚

is ergodic (Proposition 2 (i)).
Kuzmin’s theorem may then be rephrased by saying that
the convergence encountered in the mixing process (the
“approach to equilibrium”) is in fact exponential. If we define
the linear operator Π

1
by

Π
1
𝑓 (𝑥) = 𝜌

𝑚
(𝑥) ∫
𝐼

𝑓𝑑𝜆 (𝑓 ∈ 𝐿
1

, 𝑥 ∈ 𝐼) , (40)

then there exists 0 < 𝑞
𝑚
< 1 such that

󵄩󵄩󵄩󵄩𝐺
𝑛

− Π
1

󵄩󵄩󵄩󵄩V ≤ O (𝑞
𝑛

𝑚
) (𝑛 󳨀→ ∞) . (41)

The norm ‖ ⋅ ‖V is defined by ‖𝑓‖V = ‖𝑓‖ + “total varia-
tion of 𝑓󸀠󸀠 [12].

Problem 5. (i) Solve the Gauss-Kuzmin-Lévy problem of 𝜏
𝑚

for 𝑚 ≥ 3. For example, study the optimality of the conver-
gence rate. Use the same strategy as in [14].

(ii) It is known that the Riemann zeta function is written
by using a kind of Mellin transformation of the Gauss trans-
formation 𝜏 in (2) as follows [28]:

𝜁 (𝑠) =
1

𝑠 − 1
− 𝑠∫
1

0

𝜏 (𝑥) 𝑥
𝑠−1

𝑑𝑥 (0 < R (𝑠) < 1) . (42)

This is derived by using the Euler-Maclaurin summation
formula ([29, page 14]) and the definition of 𝜏. Then, by
replacing 𝜏 with 𝜏

𝑚
in (8), can we regard

𝑍
𝑚
(𝑠) :=

1

𝑠 − 1
− 𝑠∫
1

0

𝜏
𝑚
(𝑥) 𝑥
𝑠−1

𝑑𝑥 (43)

as a new zeta function?
The rest of the paper is organised as follows. In Section 2,

we prove Theorem 3. In Section 2.1, we give the necessary
results used to prove the Gauss-Kuzmin theorem for the con-
tinued fractions presented in Section 1. The essential argu-
ment of the proof is the Gauss-Kuzmin-type equation. We
will also give some results concerning the behavior of the
derivative of {𝐹

𝑚,𝑛
} in (35) which will allow us to complete

the proof of Theorem 3 in Section 2.2.

2. Proof of Theorem 3

In this section, we will proveTheorem 3 applying the method
of Rockett and Szüsz [30]. Fix an integer𝑚 ≥ 2.

2.1. Necessary Lemmas. In this subsection, we show some
lemmas. First, we show that {𝐹

𝑚,𝑛
} in (35) satisfy a Gauss-

Kuzmin-type equation.

Lemma 6. For functions {𝐹
𝑚,𝑛
} in (35), the following Gauss-

Kuzmin-type equation holds:

𝐹
𝑚,𝑛+1

(𝑥) = ∑
𝑖∈N

{𝐹
𝑚,𝑛
(𝛼
𝑖

) − 𝐹
𝑚,𝑛
(

𝛼
𝑖

1 + (𝑚 − 1) 𝑥
)} (44)

for 𝑥 ∈ [0, 1] and 𝑛 ∈ N where 𝛼 = 1/𝑚.
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Proof. Let 𝐼 := [0, 1], 𝐼
𝑚,𝑛
= {𝑥 ∈ 𝐼 : 𝜏

𝑛

𝑚
(𝑥) ≤ 𝑥}, and 𝐼

𝑚,𝑛,𝑖
=

{𝑥 ∈ 𝐼
𝑚,𝑛
: 𝛼
𝑖

/(1 + (𝑚 − 1)𝑥) < 𝜏
𝑛

𝑚
(𝑥) < 𝛼

𝑖

}.
From (8) and (12), we see that

𝜏
𝑛

𝑚
(𝑥) =

𝑚
−𝑎
𝑛+1
(𝑥)

1 + (𝑚 − 1) 𝜏𝑛+1
𝑚
(𝑥)

(𝑛 ∈ N
+
) . (45)

From the definition of 𝐼
𝑚,𝑛,𝑖

and (45) it follows that, for any 𝑛 ∈
N, 𝐼
𝑚,𝑛+1

= ⋃
𝑖∈N 𝐼𝑚,𝑛,𝑖. From this and using the 𝜎-additivity

of 𝜇, we have

𝜇 (𝐼
𝑚,𝑛+1

) = 𝜇(⋃
𝑖∈N

𝐼
𝑚,𝑛,𝑖
) = ∑
𝑖∈N

𝜇 (𝐼
𝑚,𝑛,𝑖
) . (46)

Then (44) holds because 𝐹
𝑚,𝑛+1

(𝑥) = 𝜇(𝐼
𝑚,𝑛+1

) and

𝜇 (𝐼
𝑚,𝑛,𝑖
) = 𝐹
𝑚,𝑛
(𝛼
𝑖

) − 𝐹
𝑚,𝑛
(

𝛼
𝑖

1 + (𝑚 − 1) 𝑥
) . (47)

Remark 7. Assume that, for some 𝑝 ∈ N, the derivative 𝐹󸀠
𝑝

exists everywhere in 𝐼 and is bounded. Then it is easy to see
by induction that 𝐹󸀠

𝑚,𝑝+𝑛
exists and is bounded for all 𝑛 ∈ N

+
.

This allows us to differentiate (44) term by term, obtaining

𝐹
󸀠

𝑚,𝑛+1
(𝑥) = ∑

𝑖∈N

(𝑚 − 1) 𝛼
𝑖

(1 + (𝑚 − 1) 𝑥)
2
𝐹
󸀠

𝑚,𝑛
(

𝛼
𝑖

1 + (𝑚 − 1) 𝑥
) .

(48)

We introduce functions {𝑓
𝑚,𝑛
} as follows:

𝑓
𝑚,𝑛
(𝑥) := (1 + (𝑚 − 1) 𝑥) (𝑚 + (𝑚 − 1) 𝑥) 𝐹

󸀠

𝑚,𝑛
(𝑥)

(𝑥 ∈ 𝐼, 𝑛 ∈ N) .
(49)

Then (48) is

𝑓
𝑚,𝑛+1

(𝑥) = ∑
𝑖∈N

𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥) 𝑓

𝑚,𝑛
(

𝛼
𝑖

1 + (𝑚 − 1) 𝑥
) , (50)

where 𝑃𝑖
𝑚
(𝑥) is given in (18).

For 𝑖 ∈ N, define 𝛿
𝑖
and 𝛽𝑖

𝑚
(𝑥) by

𝛿
𝑖
:= 𝛼
𝑖

− 𝛼
2𝑖

,

𝛽
𝑖

𝑚
(𝑥) :=

(𝑚 − 1) 𝛿
𝑖

((𝑚 − 1) 𝑥 + (𝑚 − 1) 𝛼𝑖 + 1)
2

(𝑥 ∈ 𝐼) .
(51)

Then we get

𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥) = (𝑚 − 1) [𝛼

𝑖+1

+
𝛿
𝑖

(𝑚 − 1) 𝑥 + (𝑚 − 1) 𝛼𝑖 + 1

−
𝛿
𝑖+1

(𝑚 − 1) 𝑥 + (𝑚 − 1) 𝛼𝑖+1 + 1
] .

(52)

Lemma 8. For {𝑓
𝑚,𝑛
} in (49), define𝑀

𝑛
:= max

𝑥∈𝐼
|𝑓
󸀠

𝑚,𝑛
(𝑥)|.

Then

𝑀
𝑛+1
≤ 𝑞
𝑚
⋅ 𝑀
𝑛
, (53)

where

𝑞
𝑚
:= (𝑚 − 1)

2

(𝑚
2

+ 1)∑
𝑖∈N

1

(𝑚𝑖+1 + 𝑚 − 1)
2
. (54)

Proof. We have

(𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥))

󸀠

= (𝑚 − 1) (𝛽
𝑖+1

𝑚
(𝑥) − 𝛽

𝑖

𝑚
(𝑥)) . (55)

Now from (50) and by calculus, we have

𝑓
󸀠

𝑚,𝑛+1
(𝑥) = (𝑚 − 1)

2

∑
𝑖∈N

𝐴
𝑖
𝑓
󸀠

𝑚,𝑛
(𝜃
𝑖
)

− (𝑚 − 1)∑
𝑖∈N

𝐵
𝑖
𝑓
󸀠

𝑚,𝑛
(𝑢
𝑖

𝑚
(𝑥)) ,

(56)

where
𝐴
𝑖
:= 𝑢
𝑖+1

𝑚
(𝑥) 𝛽
𝑖+1

𝑚
(𝑥) ,

𝐵
𝑖
:= 𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥)

𝛼
𝑖

((𝑚 − 1) 𝑥 + 1)
2
,

𝑢
𝑖+1

𝑚
(𝑥) < 𝜃

𝑖
< 𝑢
𝑖

𝑚
(𝑥) .

(57)

Now (56) implies

𝑀
𝑛+1
≤ 𝑀
𝑛
⋅max
𝑥∈𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑚 − 1)
2

∑
𝑖∈N

𝐴
𝑖
+ (𝑚 − 1)∑

𝑖∈N

𝐵
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (58)

We now must calculate the maximum value of the sums in
this expression.

First, we note that

𝐴
𝑖
≤

𝛼
2𝑖+2

((𝑚 − 1) 𝛼𝑖+1 + 1)
2
, (59)

where we use 𝛿
𝑖
= 𝛼
𝑖

− 𝛼
2𝑖 and 0 ≤ 𝑥 ≤ 1.

Next, observe that the function

ℎ
𝑚
(𝑥) :=

𝛼
𝑖

𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥)

((𝑚 − 1) 𝑥 + 1)
2

(60)

is decreasing for 𝑥 ∈ 𝐼 and 𝑖 ∈ N. Hence, ℎ
𝑚
(𝑥) ≤ ℎ

𝑚
(0). This

leads to
𝛼
𝑖

𝑃
𝑖

𝑚
((𝑚 − 1) 𝑥)

((𝑚 − 1) 𝑥 + 1)
2
≤

(𝑚 − 1) 𝛼
2𝑖

((𝑚 − 1) 𝛼𝑖+1 + 1)
2
. (61)

The relations (58), (59), and (61) imply (53) and (54).

2.2. Proof of Theorem 3. Introduce a function 𝑅
𝑚,𝑛
(𝑥) such

that

𝐹
𝑚,𝑛
(𝑥) = 𝜔

𝑚
(𝑥) + 𝑅

𝑚,𝑛
(𝜔
𝑚
(𝑥)) . (62)

Because 𝐹
𝑚,𝑛
(0) = 0 and 𝐹

𝑚,𝑛
(1) = 1, we have 𝑅

𝑚,𝑛
(0) =

𝑅
𝑚,𝑛
(1) = 0. To prove Theorem 3, we have to show the exis-

tence of a constant 0 < 𝑞
𝑚
< 1 such that

𝑅
𝑚,𝑛
(𝑥) = O (𝑞

𝑛

𝑚
) . (63)

If we can show that 𝑓
𝑚,𝑛
(𝑥) = 𝑘

𝑚
+ O(𝑞𝑛

𝑚
), then its inte-

gration will show (36).
To demonstrate that 𝑓

𝑚,𝑛
(𝑥) has this desired form, it

suffices to prove the following lemma.
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Lemma 9. For any 𝑥 ∈ 𝐼 and 𝑛 ∈ N, there exists a constant
0 < 𝑞
𝑚
< 1 such that

𝑓
󸀠

𝑚,𝑛
(𝑥) = O (𝑞

𝑛

𝑚
) . (64)

Proof. Let 𝑞
𝑚
be as in (54). Using Lemma 8, to show (64) it is

enough to prove that 𝑞
𝑚
< 1. To this end, for 𝑖 ≥ 2, observe

that

1

(𝑚𝑖+1 + 𝑚 − 1)
2
≤

1

𝑚2(𝑚 − 1)
2

(𝑚2 + 1)
(
1

𝑚
)
𝑖

. (65)

Therefore

𝑞
𝑚
≤ (𝑚 − 1)

2

(𝑚
2

+ 1)

× {
1

(2𝑚 − 1)
2
+

1

𝑚2 + 𝑚 − 1

+
1

𝑚2(𝑚 − 1)
2

(𝑚2 + 1)
∑
𝑖≥2

(
1

𝑚
)
𝑖

}

= (𝑚 − 1)
2

(𝑚
2

+ 1)

× {
1

(2𝑚 − 1)
2
+

1

𝑚2 + 𝑚 − 1

+
1

𝑚3(𝑚 − 1)
3

(𝑚2 + 1)
} ≤ 1,

(66)

for any𝑚 ∈ N,𝑚 ≥ 2.
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Société Mathématique de France, vol. 57, pp. 178–194, 1929.

[6] D. Lascu, “On a Gauss-Kuzmin-type problem for a family of
continued fraction expansions,” Journal of Number Theory, vol.
133, no. 7, pp. 2153–2181, 2013.
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