
Research Article
On Some Transverse Geometrical Structures of Lifted
Foliation to Its Conormal Bundle

Cristian Ida and Alexandru Oans

Department of Mathematics and Computer Science, Transilvania University of Braşov, Street IuliuManiu 50, 500091 Braşov, Romania
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We consider the lift of a foliation to its conormal bundle and some transverse geometrical structures associatedwith this foliation are
studied. We introduce a good vertical connection on the conormal bundle and, moreover, if the conormal bundle is endowed with
a transversal Cartan metric, we obtain that the lifted foliation to its conormal bundle is a Riemannian one. Also, some transversally
framed 𝑓(3, 𝜀)-structures of corank 2 on the normal bundle of lifted foliation to its conormal bundle are introduced and an almost
(para)contact structure on a transverse Liouville distribution is obtained.

1. Introduction and Preliminaries

The study of the lift of transversal Finsler foliations to
their normal bundle using the technique of good vertical
connection was initiated by Miernowski and Mozgawa [1]
where it is proved that the lifted foliation is a Riemannian one.
Also, using different methods, some connections between
foliations and Lagrangians (or Hamiltonians) in order to
recover Riemannian foliations are investigated in the recent
papers [2–5]. Our aim in this paper is to extend the study
from [1] for the case of lifted foliation to its conormal bundle.
In this sense we introduce a good vertical connection on
the conormal bundle and we give an application of it in
order to obtain that the lifted foliation is a Riemannian
one in the case when the conormal bundle is endowed
with a transversal Cartan metric. Moreover, in this case,
some transversally framed 𝑓(3, 𝜀)-structures and an almost
(para)contact structure associated with lifted foliation are
investigated.

The methods used here are similarly and closely related
to those used in [1, 6] for the case of transversal Finsler
foliations.

Let us consider𝑀 an (𝑛+𝑚)-dimensionalmanifoldwhich
will be assumed to be connected and orientable.

Definition 1. A codimension 𝑛 foliationF on𝑀 is defined by
a foliated cocycle {𝑈

𝑖
, 𝜑
𝑖
, 𝑓
𝑖,𝑗
} such that

(i) {𝑈
𝑖
}, 𝑖 ∈ 𝐼, is an open covering of𝑀;

(ii) for every 𝑖 ∈ 𝐼, 𝜑
𝑖
: 𝑈
𝑖
→ 𝑁 are submersions, where

𝑁 is an 𝑛-dimensional manifold, called transversal
manifold;

(iii) the maps 𝑓
𝑖,𝑗

: 𝜑
𝑖
(𝑈
𝑖
∩ 𝑈
𝑗
) → 𝜑

𝑗
(𝑈
𝑖
∩ 𝑈
𝑗
) satisfy

𝜑
𝑗
= 𝑓
𝑖,𝑗
∘ 𝜑
𝑖 (1)

for every (𝑖, 𝑗) ∈ 𝐼 × 𝐼 such that 𝑈
𝑖
∩ 𝑈
𝑗

̸= 0.

Every fibre of 𝜑
𝑖
is called a plaque of the foliation.

Condition (1) says that on the intersection𝑈
𝑖
∩𝑈
𝑗
the plaques

defined, respectively, by 𝜑
𝑖
and 𝜑

𝑗
coincide. The manifold𝑀

is decomposed into a family of disjoint immersed connected
submanifolds of dimension 𝑚; each of these submanifolds is
called a leaf ofF.

By 𝑇F we denote the tangent bundle to F and Γ(F) is
the space of its global sections, that is, vector fields tangent to
F, and by 𝑄F = 𝑇𝑀/𝑇F we denote the normal bundle of
F.

In this paper, a system of local coordinates adapted to the
foliationFmeans coordinates (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) on an
open subset𝑈 on which the foliation is trivial and defined by
the equations 𝑑𝑥𝑎 = 0, 𝑎 = 1, . . . , 𝑛.

We notice that the total spaces of the conormal bundle
𝑄∗F ofF carry a natural foliation F̃ of codimension 2𝑛 such
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that the leaves of F̃ are covering spaces of the leaves ofF, and
it is called the natural lift ofF to its conormal bundle 𝑄∗F.

If we denote by {𝑑𝑥𝑎}, 𝑎 = 1, . . . , 𝑛, the corresponding
local coframe on𝑄∗F, thenwe can induce a chart (𝑥𝑎, 𝑝

𝑎
, 𝑦𝑢)

on 𝑄∗F where 𝑝 = 𝑝
𝑎
𝑑𝑥𝑎 ∈ Γ(𝑄∗F), and the system of

equations 𝑥𝑎 = const., 𝑝
𝑎
= const. defines the foliation F̃.

Let 𝑄F̃ = 𝑇(𝑄∗F)/𝑇F̃ be the normal bundle of
the foliated manifold (𝑄∗F, F̃). The vectors {𝜕/𝜕𝑥𝑎, 𝜕/𝜕𝑝

𝑎
},

𝑎 = 1, . . . , 𝑛, form a natural frame of 𝑄F̃ at the point
(𝑥𝑎, 𝑝

𝑎
, 𝑦𝑢) ∈ 𝑄∗F. The canonical projection 𝜋 : 𝑄∗F →

𝑀 given by 𝜋(𝑥𝑎, 𝑝
𝑎
, 𝑦𝑢) = (𝑥𝑎, 𝑦𝑢) induces another projec-

tion 𝜋
∗
: 𝑇(𝑄∗F) → 𝑇𝑀 which maps the vectors tangent

to F̃ in the vectors tangent toF.Thus, 𝜋
∗
induces amapping

�̃�
∗

: 𝑄F̃ → 𝑄F and is denoted by 𝑉(𝑄∗F) = ker�̃�
∗

which is a vertical bundle spanned by the vectors {𝜕/𝜕𝑝
𝑎
},

𝑎 = 1, . . . , 𝑛.

Lemma 2. Let 𝑜 : 𝑀 → 𝑄∗F be the zero section of the
conormal bundle𝑄∗F.Then the set 𝑜(𝑀) is saturated on𝑄∗F
with foliation F̃.

2. Good Vertical Connection on (𝑄∗F,F̃)

The purpose of this section is to define a linear connection
∇ : X(𝑉(𝑄∗F)) → X(T∗(𝑄∗F) ⊗ 𝑉(𝑄∗F)) related to
considered foliated structure, where 𝑄∗F = 𝑄∗F − 𝑜(𝑀).
Sincewe have the foliatedmanifold (𝑄∗F, F̃), we are looking
for a Bott connection such that for any vector field𝑋 tangent
to F̃ and any transversal vector field 𝑌 we have

∇
𝑋
𝑌 = 𝑝

𝑄F̃ ([𝑋, �̃�]) , (2)

where 𝑝
𝑄F̃ : 𝑇(𝑄∗F) → 𝑄F̃ is the canonical projection

and 𝑝
𝑄F̃(�̃�) = 𝑌.

Let us consider now the F̃-transversal Hamilton-Liou-
ville vector field defined by 𝐶∗ : 𝑄∗F → 𝑉(𝑄∗F),
𝐶∗(𝑥𝑎, 𝑝

𝑎
, 𝑦𝑢) = 𝑝

𝑎
(𝜕/𝜕𝑝
𝑎
). It can be checked that this defini-

tion is well posed. From the definition of the Bott connection,
the following lemma holds.

Lemma 3. Let∇ : X(𝑉(𝑄∗F)) → X(𝑇∗(𝑄∗F)⊗𝑉(𝑄∗F))
be a Bott connection. Then ∇

𝑋
𝐶∗ = 0 for every vector field

tangent to F̃.

Now, consider the local frame {𝜕/𝜕𝑥𝑎, 𝜕/𝜕𝑝
𝑎
, 𝜕/𝜕𝑦𝑢} of

𝑇(𝑄∗F) and recall that the vectors {𝜕/𝜕𝑝
𝑎
} form the basis of

𝑉(𝑄∗F). With these settings we put

∇
𝜕/𝜕𝑥
𝑎

𝜕

𝜕𝑝
𝑏

= Γ𝑏
𝑎𝑐

𝜕

𝜕𝑝
𝑐

, ∇
𝜕/𝜕𝑝
𝑎

𝜕

𝜕𝑝
𝑏

= Γ𝑎𝑏
𝑐

𝜕

𝜕𝑝
𝑐

,

∇
𝜕/𝜕𝑦
𝑢

𝜕

𝜕𝑝
𝑏

= Γ𝑏
𝑢𝑐

𝜕

𝜕𝑝
𝑐

.

(3)

From the above formulas it follows that

Γ𝑏
𝑢𝑐

= 0, ∇
𝜕/𝜕𝑝
𝑎

𝐶∗ = (𝛿𝑎
𝑐
+ 𝑝
𝑏
Γ𝑎𝑏
𝑐
)

𝜕

𝜕𝑝
𝑐

. (4)

The Bott connection ∇ allows us to define a mapping

𝐿 : X (𝑄F̃) → X (𝑉 (𝑄∗F)) , 𝐿 (𝑋) = ∇
�̃�
𝐶∗, (5)

where 𝑝
𝑄F̃(𝑋) = 𝑋. If we denote by Λ the restriction of the

linear mapping 𝐿 to the bundle 𝑉(𝑄∗F), then we can state
the following.

Definition 4. The Bott connection ∇ is said to be a good
vertical connection if Λ : 𝑉(𝑄∗F) → 𝑉(𝑄∗F) is a bundle
isomorphism.

Observe that∇ is a good vertical connection if and only if
thematrix 𝛿𝑎

𝑐
+𝑝
𝑏
Γ𝑎𝑏
𝑐

is nondegenerated. If we put𝐻(𝑄∗F) =

ker𝐿, then we can split the bundle 𝑄F̃ into direct sum:

𝑄F̃ = 𝐻 (𝑄∗F) ⊕ 𝑉 (𝑄∗F) . (6)

The coefficients of the mapping 𝐿 in the basis {𝜕/𝜕𝑥𝑎, 𝜕/𝜕𝑝
𝑎
}

of 𝑄F̃ are

𝐿(
𝜕

𝜕𝑥𝑎
) = 𝑝

𝑏
Γ𝑏
𝑎𝑐

𝜕

𝜕𝑝
𝑐

,

𝐿 (
𝜕

𝜕𝑝
𝑎

) = (𝛿𝑎
𝑐
+ 𝑝
𝑏
Γ𝑎𝑏
𝑐
)

𝜕

𝜕𝑝
𝑐

= 𝐿𝑎
𝑐

𝜕

𝜕𝑝
𝑐

.

(7)

It is easy to check that the vectors 𝛿/𝛿𝑥𝑎 = 𝜕/𝜕𝑥𝑎 +

𝑁
𝑎𝑏
(𝜕/𝜕𝑝
𝑏
), where𝑁

𝑎𝑏
= −(𝐿−1)𝑐

𝑏
𝑝
𝑑
Γ𝑑
𝑎𝑐
, form a basis of ker𝐿.

In the sequel we will use the basis {𝛿/𝛿𝑥𝑎, 𝜕/𝜕𝑝
𝑎
}, called

adapted, as well as its dual {𝑑𝑥𝑎, 𝛿𝑝
𝑎
= 𝑑𝑝
𝑎
− 𝑁
𝑎𝑏
𝑑𝑥𝑏}. Using

this coframe we can define the local connection forms by

∇
𝜕

𝜕𝑝
𝑏

= 𝜔𝑏
𝑎
⊗

𝜕

𝜕𝑝
𝑎

, (8)

where

𝜔𝑏
𝑎
= Γ𝑏
𝑐𝑎
𝑑𝑥𝑐 + Γ𝑏𝑐

𝑎
𝑑𝑝
𝑐
= (Γ𝑏
𝑐𝑎
+ Γ𝑏𝑑
𝑎
𝑁
𝑑𝑐
) 𝑑𝑥𝑐 + Γ𝑏𝑐

𝑎
𝛿𝑝
𝑐

= 𝐻𝑏
𝑐𝑎
𝑑𝑥𝑐 + Γ𝑏𝑐

𝑎
𝛿𝑝
𝑐
.

(9)

Notice that 𝐻𝑏
𝑐𝑎
𝑝
𝑏

= 𝑁
𝑐𝑎
. The formula 𝜃(𝜕/𝜕𝑝

𝑎
) = 𝛿/𝛿𝑥𝑎

defines a linear mapping 𝜃 : 𝑉(𝑄∗F) → 𝐻(𝑄∗F).
This mapping allows us to extend the connection ∇ to the
horizontal bundle𝐻(𝑄∗F) by

∇
𝑋
𝑌 = 𝜃 (∇

𝑋
𝜃−1 (𝑌)) , (10)

where 𝑌 ∈ Γ(𝐻(𝑄∗F)), 𝑋 ∈ Γ(𝑇(𝑄∗F)). In this way we
construct a linear connection in 𝑄F̃:

∇
𝑋
𝑌 = ∇

𝑋 (V (𝑌)) + ∇
𝑋 (𝑌 − V (𝑌)) , (11)

where 𝑌 ∈ Γ(𝑄F̃), 𝑋 ∈ Γ(𝑇(𝑄∗F)) and V : 𝑄F̃ →
𝑉(𝑄∗F) is the vertical projection from decomposition (6).
In particular we have

∇
𝛿

𝛿𝑥𝑎
= 𝜔𝑏
𝑎
⊗

𝛿

𝛿𝑥𝑏
, (12)

where 𝜔𝑏
𝑎
is given in (9).
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If 𝜑 ∈ Γ(𝑄∗F̃ ⊗ 𝑄F̃) is a 1-form with values in 𝑄F̃,
locally given by

𝜑 = 𝜑𝑎 ⊗
𝛿

𝛿𝑥𝑎
+ 𝜑
𝑏
⊗

𝜕

𝜕𝑝
𝑏

, (13)

then, following [1, 7], we can define an exterior differential
𝐷𝜑 by putting

𝐷𝜑 = (𝑑𝜑𝑎 − 𝜑𝑎 ∧ 𝜔𝑐
𝑎
) ⊗

𝛿

𝛿𝑥𝑎
+ (𝑑𝜑

𝑏
− 𝜑
𝑏
∧ 𝜔𝑏
𝑐
) ⊗

𝜕

𝜕𝑝
𝑐

.

(14)

A straightforward calculus shows that the above formula is
well defined.

The bundle 𝑄∗F̃ ⊗ 𝑄F̃ admits a natural section 𝜂 given
by

𝜂 = 𝑑𝑥𝑎 ⊗
𝜕

𝜕𝑥𝑎
+ 𝑑𝑝
𝑏
⊗

𝜕

𝜕𝑝
𝑏

= 𝑑𝑥𝑎 ⊗
𝛿

𝛿𝑥𝑎
+ 𝛿𝑝
𝑏
⊗

𝜕

𝜕𝑝
𝑏

.

(15)

It is clear that the form 𝜂 is well defined.

Definition 5. The form 𝜁 = 𝐷𝜂 is called the torsion form of
the connection ∇.

Locally the form 𝜁 can be expressed as follows:

𝐷𝜂 = (−𝑑𝑥𝑎 ∧ 𝜔𝑐
𝑎
) ⊗

𝛿

𝛿𝑥𝑐
+ (𝑑 (𝛿𝑝

𝑏
) − 𝛿𝑝

𝑐
∧ 𝜔𝑐
𝑏
) ⊗

𝜕

𝜕𝑝
𝑏

= 𝜁𝑐 ⊗
𝛿

𝛿𝑥𝑐
+ 𝜁
𝑏
⊗

𝜕

𝜕𝑝
𝑏

,

(16)

where

𝜁𝑐 =
1

2
(𝐻𝑐
𝑒𝑎
− 𝐻𝑐
𝑎𝑒
) 𝑑𝑥𝑎 ∧ 𝑑𝑥𝑒 − Γ𝑐𝑒

𝑎
𝑑𝑥𝑎 ∧ 𝛿𝑝

𝑒
,

𝜁
𝑏
= −𝑑𝑁

𝑐𝑏
∧ 𝑑𝑥𝑐 − 𝐻𝑎

𝑒𝑏
𝛿𝑝
𝑎
∧ 𝑑𝑥𝑒 − Γ𝑎𝑒

𝑏
𝛿𝑝
𝑎
∧ 𝛿𝑝
𝑒
.

(17)

3. Transversal Cartan Metrics on 𝑄∗F and
Riemannian Foliations

As in the case of transversal Finsler metrics on the normal
bundle of a foliation, [1, 3], a transversal Cartan metric on
𝑄∗F is a basic function (with respect to the lifted foliation
F̃) 𝐾 : 𝑄∗F → [0,∞) which has the following properties:

(i) 𝐾 is 𝐶∞ on 𝑄∗F;
(ii) 𝐾(𝑥, 𝜆𝑝) = 𝜆𝐾(𝑥, 𝑝) for all 𝜆 > 0;
(iii) the 𝑛 × 𝑛 matrix (𝑔𝑎𝑏), where 𝑔𝑎𝑏 =

(1/2)(𝜕2𝐾2/𝜕𝑝
𝑎
𝜕𝑝
𝑎
), is positive definite at all

points of 𝑄∗F.
Also 𝐾(𝑥, 𝑝) > 0, whenever 𝑝 ̸= 0. As usual, [8], the proper-
ties of𝐾 imply that

𝑝𝑎 = 𝑔𝑎𝑏𝑝
𝑏
, 𝑝

𝑎
= 𝑔
𝑎𝑏
𝑝𝑏, 𝐾2 = 𝑔𝑎𝑏𝑝

𝑎
𝑝
𝑏
= 𝑝
𝑎
𝑝𝑎,

𝐶𝑎𝑏𝑐𝑝
𝑐
= 𝐶𝑎𝑐𝑏𝑝

𝑐
= 𝐶𝑐𝑎𝑏𝑝

𝑐
= 0,

(18)

where (𝑔
𝑎𝑏
) is the inverse matrix of (𝑔𝑏𝑎) and we have put

𝑝𝑎 = (1/2)(𝜕𝐾2/𝜕𝑝
𝑎
), 𝐶𝑎𝑏𝑐 = −(1/4)(𝜕3𝐾2/𝜕𝑝

𝑎
𝜕𝑝
𝑏
𝜕𝑝
𝑐
).

Also, 𝑔𝑎𝑏 determines a metric structure on 𝑉(𝑄∗F) by
setting

𝐺V
(𝑋, 𝑌) = 𝑔𝑎𝑏 (𝑥, 𝑝)𝑋

𝑎
(𝑥, 𝑦, 𝑝) 𝑌

𝑏
(𝑥, 𝑦, 𝑝) , (19)

for every 𝑋 = 𝑋
𝑎
(𝑥, 𝑦, 𝑝)(𝜕/𝜕𝑝

𝑎
) and 𝑌 = 𝑌

𝑏
(𝑥, 𝑦, 𝑝)(𝜕/

𝜕𝑝
𝑏
) ∈ Γ(𝑉(𝑄∗F)).
Similar reasons as for transversal Finsler foliations (see

Theorem 3.1 from [1]) lead to the following result.

Theorem 6. Let 𝐾 : 𝑄∗F → [0,∞) be a transversal Cartan
metric and let 𝐺V be the Riemannian metric on 𝑉(𝑄∗F)
induced by 𝐾 as in (19). Then there exists exactly one Bott
vertical connection ∇ : X(𝑉(𝑄∗F)) → X(𝑇∗(𝑄∗F) ⊗
𝑉(𝑄∗F)) such that

(i) ∇ is a good vertical connection;

(ii) if𝑋,𝑌 ∈ Γ(𝑉(𝑄∗F)) and 𝑍 ∈ Γ(𝑇(𝑄∗F)), then

𝑍𝐺V
(𝑋, 𝑌) = 𝐺V (∇

𝑍
𝑋,𝑌) + 𝐺V (𝑋, ∇

𝑍
𝑌) ; (20)

(iii) 𝜁(𝑋, 𝑌) = 0 for every𝑋,𝑌 ∈ Γ(𝑉(𝑄∗F));

(iv) 𝜁(𝑋, 𝑌) ∈ Γ(𝑉(𝑄∗F)) for every𝑋,𝑌 ∈ Γ(𝐻(𝑄∗F)).

Also, the isomorphism 𝜃 does not depend on the coordi-
nates along the leaves of F̃; so the Riemannianmetric in𝑄F̃

defined by𝐺 = 𝐺ℎ+𝐺V, where𝐺ℎ(𝑋, 𝑌) = 𝐺V(𝜃−1(𝑋), 𝜃−1(𝑌))
for every 𝑋,𝑌 ∈ Γ(𝐻(𝑄∗F)) and 𝐺(𝑋, 𝑌) = 0 for every
𝑋 ∈ Γ(𝐻(𝑄∗F)) and 𝑌 ∈ Γ(𝑉(𝑄∗F)), is a transversal
Riemannian metric for the lifted foliation F̃ to the conormal
bundle 𝑄∗F ofF. Hence, we can consider the following.

Theorem 7. If the conormal bundle of foliationF is endowed
with a transversal Cartan metric, then the lifted foliation F̃ to
the conormal bundle 𝑄∗F is Riemannian.

4. Transversally Framed
𝑓(3,𝜀)-Structures on (𝑄∗F,F̃)

The study of structures on manifolds defined by a tensor
field satisfying 𝑓3 ± 𝑓 = 0 has the origin in a paper by
Yano [9]. Later on, these structures have been generically
called 𝑓-structures. On the tangent manifold of a Finsler
space, the notion of framed𝑓(3, 1)-structure was defined and
studied by Anastasiei in [10] and on the cotangent bundle of
a Cartan space the study is continued in [11, 12]. Taking into
account that the conormal bundle 𝑄∗F has a local model
of a cotangent manifold, in this section we extend the study
concerning 𝑓-structures in our context.

Let 𝜀 = ±1. A framed 𝑓(3, 𝜀)-structure of corank 𝑠 on a
(2𝑛 + 𝑠)-dimensional manifold 𝑁 is a natural generalization
of an almost contact structure on 𝑁 (for 𝜀 = 1) and of an
almost paracontact structure on𝑁 (for 𝜀 = −1), respectively,
and it is a triplet (𝑓, (𝜉

𝑖
), (𝜔𝑖)), 𝑖 = 1, . . . , 𝑠, where 𝑓 is a tensor
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field of type (1, 1), (𝜉
𝑖
) are vector fields, and (𝜔𝑖) are 1-forms

on𝑁 such that

𝜔𝑖 (𝜉
𝑗
) = 𝛿𝑖
𝑗
, 𝑓 (𝜉

𝑖
) = 0, 𝜔𝑖 ∘ 𝑓 = 0,

𝑓2 = −𝜀(𝐼 −∑
𝑖

𝜔𝑖 ⊗ 𝜉
𝑖
) ,

(21)

where 𝐼 denotes the Kronecker tensor field on 𝑁. The name
of 𝑓(3, 𝜀)-structure was suggested by the identity𝑓3 +𝜀𝑓 = 0.
For an account of such kind of structures, we refer to [13].

Let us consider now that 𝑄∗F is endowed with a
transversal Cartan metric 𝐾. The linear operator 𝜙 given in
the local adapted basis of 𝑄F̃ by

𝜙(
𝛿

𝛿𝑥𝑎
) = −𝜀𝑔

𝑎𝑏

𝜕

𝜕𝑝
𝑏

, 𝜙 (
𝜕

𝜕𝑝
𝑎

) = 𝑔𝑎𝑏
𝛿

𝛿𝑥𝑏
(22)

defines an almost complex structure on 𝑄F̃ for 𝜀 = 1 and an
almost paracomplex structure on𝑄F̃ for 𝜀 = −1, respectively.
We also have

𝐺 (𝜙 (𝑋) , 𝜙 (𝑌)) = 𝐺 (𝑋, 𝑌) , ∀𝑋, 𝑌 ∈ Γ (𝑄F̃) . (23)

Let us put 𝜉
1
= (𝑝𝑎/𝐾)(𝛿/𝛿𝑥𝑎) and 𝜉

2
= (𝑝
𝑎
/𝐾)(𝜕/𝜕𝑝

𝑎
) =

(1/𝐾)𝐶∗. Thus, we have two global transverse vector fields
on (𝑄∗F, F̃) which are linearly independent. The first is
transversally horizontal and the second one is transversally
vertical.

From the definition of 𝜙 it follows

𝜙 (𝜉
1
) = −𝜀𝜉

2
, 𝜙 (𝜉

2
) = 𝜉
1
. (24)

Now, if we consider the dual transverse 1-forms of 𝜉
1
and

𝜉
2
, respectively, locally given by 𝜔1 = (𝑝

𝑎
/𝐾)𝑑𝑥𝑎 and 𝜔2 =

(𝑝𝑎/𝐾)𝛿𝑝
𝑎
, then we easily check that

𝜔1 ∘ 𝜙 = 𝜔2, 𝜔2 ∘ 𝜙 = −𝜀𝜔1,

𝜔1 (𝑋) = 𝐺 (𝑋, 𝜉
1
) , 𝜔2 (𝑋) = 𝐺 (𝑋, 𝜉

2
) , ∀𝑋 ∈ Γ (𝑄F̃) .

(25)

Next, using𝜙, 𝜉
𝑖
, and𝜔𝑖, 𝑖 ∈ {1, 2}, we construct the transverse

tensor field 𝑓 of type (1, 1) on (𝑄∗F, F̃) by putting

𝑓 (𝑋) = 𝜙 (𝑋) − 𝜔2 (𝑋) 𝜉1 + 𝜀𝜔1 (𝑋) 𝜉2, 𝑋 ∈ Γ (𝑄F̃) .

(26)

Using a similar argument as in [6, 10–12] by direct calculus,
we obtain the following.

Theorem 8. The triple (𝑓, (𝜉
𝑖
), (𝜔𝑖)), 𝑖 ∈ {1, 2}, provides

some transversally framed 𝑓(3, 𝜀)-structures of corank 2 on
(𝑄∗F, F̃); that is, the following hold:

(i) 𝜔𝑖(𝜉
𝑗
) = 𝛿𝑖
𝑗
, 𝑓(𝜉
𝑖
) = 0, 𝜔𝑖 ∘ 𝑓 = 0;

(ii) 𝑓2 = −𝜀(𝐼 − 𝜔1 ⊗ 𝜉
1
− 𝜔2 ⊗ 𝜉

2
);

(iii) 𝑓 is of rank 2𝑛 − 2 and 𝑓3 + 𝜀𝑓 = 0.

Theorem 9. The transversal Riemannian metric 𝐺 on
(𝑄∗F, F̃) satisfies

𝐺 (𝑓 (𝑋) , 𝑓 (𝑌)) = 𝐺 (𝑋, 𝑌) − 𝜔1 (𝑋) 𝜔
1
(𝑌)

− 𝜔2 (𝑋) 𝜔
2
(𝑌) , 𝑋, 𝑌 ∈ Γ (𝑄F̃) .

(27)

For 𝜀 = 1 we put

Φ (𝑋, 𝑌) = 𝐺 (𝑓 (𝑋) , 𝑌) , 𝑋, 𝑌 ∈ Γ (𝑄F̃) . (28)

By usingTheorems 8 and 9, we obtain

Φ (𝑋, 𝑌) = −Φ (𝑌,𝑋) , 𝑋, 𝑌 ∈ Γ (𝑄F̃) . (29)

Thus,Φ is a transverse 2-form on (𝑄∗F, F̃). It is degenerate
with null space span{𝜉

1
, 𝜉
2
}.

Also, using the calculus in local coordinates, we easily
obtain

Φ(
𝛿

𝛿𝑥𝑎
,

𝛿

𝛿𝑥𝑏
) = 0, Φ(

𝛿

𝛿𝑥𝑎
,

𝜕

𝜕𝑝
𝑏

) = −𝛿𝑏
𝑎
+
𝑝
𝑎
𝑝𝑏

𝐾2
,

Φ (
𝜕

𝜕𝑝
𝑎

,
𝜕

𝜕𝑝
𝑏

) = 0.

(30)

On the other hand, we have

𝑑𝜔1 (
𝛿

𝛿𝑥𝑎
,

𝛿

𝛿𝑥𝑏
) =

𝛿

𝛿𝑥𝑎
(
𝑝
𝑏

𝐾
) −

𝛿

𝛿𝑥𝑏
(
𝑝
𝑎

𝐾
) ,

𝑑𝜔1 (
𝛿

𝛿𝑥𝑎
,

𝜕

𝜕𝑝
𝑏

) =
1

𝐾
(−𝛿𝑏
𝑎
+
𝑝
𝑎
𝑝𝑏

𝐾2
) ,

𝑑𝜔1 (
𝜕

𝜕𝑝
𝑎

,
𝜕

𝜕𝑝
𝑏

) = 0,

(31)

where in the second relation we have used 𝑝𝑎 = 𝐾(𝜕𝐾/𝜕𝑝
𝑎
)

which follows from the homogeneity conditions (18) of 𝐾.
Comparing now Φ with 𝑑𝜔1 we obtain

1

𝐾
Φ = 𝑑𝜔1 + Ψ, (32)

where Ψ = ((𝛿/𝛿𝑥𝑏)(𝑝
𝑎
/𝐾) − (𝛿/𝛿𝑥𝑎)(𝑝

𝑏
/𝐾))𝑑𝑥𝑎 ∧ 𝑑𝑥𝑏.

Thus, (1/𝐾)Φ is transversally closed if and only if Ψ is
transversally closed. Concluding, (1/𝐾)Φ is in general an
almost transversally presymplectic structure on (𝑄∗F, F̃).

Similarly, for 𝜀 = −1, we can put

𝐻(𝑋, 𝑌) = 𝐺 (𝑓 (𝑋) , 𝑌) , 𝑋, 𝑌 ∈ Γ (𝑄F̃) . (33)

We have the following.

Theorem 10. The mapping𝐻 is a symmetric bilinear form on
(𝑄∗F, F̃) and the annihilator of𝐻 is ker𝑓.
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Proof. The symmetry and bilinearity are obvious. Also, the
null space of𝐻 is

{𝑋 ∈ Γ (𝑄F̃) | 𝐻 (𝑋, 𝑌) = 0, ∀𝑌 ∈ Γ (𝑄F̃)}

= {𝑋 ∈ Γ (𝑄F̃) | 𝐺 (𝑓 (𝑋) , 𝑌) = 0} = ker𝑓
(34)

which end the proof.

Locally, we obtain

𝐻 = (𝑔
𝑎𝑏

−
𝑝
𝑎
𝑝
𝑏

𝐾2
)𝑑𝑥𝑎 ⊗ 𝑑𝑥𝑏 − (𝑔𝑎𝑏 −

𝑝𝑎𝑝𝑏

𝐾2
)𝛿𝑝
𝑎
⊗ 𝛿𝑝
𝑏

(35)

with det(𝑔
𝑎𝑏

− (𝑝
𝑎
𝑝
𝑏
/𝐾2)) = 0, since (𝑔

𝑎𝑏
− (𝑝
𝑎
𝑝
𝑏
/𝐾2))𝑝𝑏 =

𝑝
𝑎
− 𝑝
𝑎
= 0, and similarly det(𝑔𝑎𝑏 − (𝑝𝑎𝑝𝑏/𝐾2)) = 0, since

(𝑔𝑎𝑏 − (𝑝𝑎𝑝𝑏/𝐾2))𝑝
𝑏
= 𝑝𝑎 − 𝑝𝑎 = 0.

Remark 11. The map 𝐻 is a transversally singular pseudo-
Riemannian metric on (𝑄∗F, F̃).

5. An Almost (Para)Contact Structure on
Transverse Liouville Distribution of
(𝑄∗F,F̃)

Denote by {𝜉
2
} the line vector bundle over𝑄∗F spanned by 𝜉

2

and we define the transverse vertical Liouville distribution as
the complementary orthogonal distribution 𝑆(𝑄∗F) to {𝜉

2
}

in𝑉(𝑄∗F)with respect to𝐺V; namely,𝑉(𝑄∗F) = 𝑆(𝑄∗F)⊕

{𝜉
2
}. Hence, 𝑆(𝑄∗F) is defined by 𝛼 := 𝜔2|

𝑉(𝑄
∗F); that is,

Γ (𝑆 (𝑄∗F)) = {𝑋 ∈ Γ (𝑉 (𝑄∗F)) ; 𝛼 (𝑋) = 0} . (36)

Thus, any transverse vertical vector field𝑋 ∈ Γ(𝑉(𝑄∗F)) can
be expressed as

𝑋 = 𝑃𝑋 + 𝛼 (𝑋) 𝜉2, (37)

where 𝑃 is the projection morphism of 𝑉(𝑄∗F) on 𝑆(𝑄∗F).
By direct calculations, one gets the following.

Proposition 12. For any transverse vertical vector fields𝑋,𝑌 ∈
Γ(𝑉(𝑄∗F)), one has

𝐺V
(𝑋, 𝑃𝑌) = 𝐺V

(𝑃𝑋, 𝑃𝑌) = 𝐺V
(𝑋, 𝑌) − 𝛼 (𝑋) 𝛼 (𝑌) . (38)

Theorem 13. The transverse vertical Liouville distribution
𝑆(𝑄∗F) is integrable.

Proof. The proof follows using an argument similar to Theo-
rem 3.1 [14] (see alsoTheorem 2.1 [6] orTheorem 4 [15]).

In the following, we will consider the transverse Liouville
distribution of (𝑄∗F, F̃) as the complementary orthogonal
distribution 𝑆(𝑄∗F) to {𝜉

2
} in 𝑄F̃ with respect to 𝐺; that is,

𝑆(𝑄∗F) = 𝐻(𝑄∗F) ⊕ 𝑆(𝑄∗F).
Let us restrict to 𝑆(𝑄∗F) all the geometrical structures

introduced in Section 4 for all 𝑄F̃. We indicate this by
overlines. Hence, we have

(i) 𝜉
1
= 𝜉
1
since 𝜉

1
lies in 𝑆(𝑄∗F);

(ii) 𝜔2 = 0 since 𝜔2(𝑋) = 𝐺(𝑋, 𝜉
2
) = 0 for every

transverse vector field𝑋 ∈ 𝑆(𝑄∗F);
(iii) 𝐺 = 𝐺|

𝑆(𝑄
∗F);

(iv) 𝑓(𝑋) = 𝜙(𝑋) + 𝜀𝜔1(𝑋) ⊗ 𝜉
2
is an endomorphism of

𝑆(𝑄∗F) since

𝐺(𝑓 (𝑋) , 𝜉2) = 𝐺 (𝜙 (𝑋) , 𝜉2) + 𝜀𝜔1 (𝑋)𝐺 (𝜉
2
, 𝜉
2
)

= 𝜔2 (𝜙 (𝑋)) + 𝜀𝜔1 (𝑋) = 0.
(39)

We denote now 𝜉 = 𝜉
1
and 𝜂 = 𝜔1.

By Theorem 8, we obtain the following.

Theorem 14. The triple (𝑓, 𝜉, 𝜂) provides an almost
(para)contact structure on 𝑆(𝑄∗F); that is,

(i) 𝑓
3

+ 𝜀𝑓 = 0, 𝑟𝑎𝑛𝑘𝑓 = 2𝑛 − 2 = (2𝑛 − 1) − 1;

(ii) 𝜂(𝜉) = 1, 𝑓(𝜉) = 0, 𝜂 ∘ 𝑓 = 0;

(iii) 𝑓
2

(𝑋) = −𝜀(𝑋 − 𝜂(𝑋)𝜉), for𝑋 ∈ 𝑆(𝑄∗F).

Also, by Theorem 9 we obtain the following.

Theorem 15. The transversal Riemannian metric 𝐺 verifies

𝐺(𝑓 (𝑋) , 𝑓 (𝑌)) = 𝐺 (𝑋, 𝑌) − 𝜂 (𝑋) 𝜂 (𝑌) , (40)

for every transverse vector fields𝑋,𝑌 ∈ 𝑆(𝑄∗F).

Concluding, the ensemble (𝑓, 𝜉, 𝜂, 𝐺) is an almost
(para)contact Riemannian structure on 𝑆(𝑄∗F).
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