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Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal
conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-
based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM)
approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume
fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions,
the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral
composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-
ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a
relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

1. Introduction

Physically, a coal sample can be grouped in three composi-
tions: coalmatrix (organic composition),minerals (inorganic
compositions), and pores. The physical structure of coal is
relevant to the sorption and diffusion of coal-bed methane
(CBM) in coal-bed as well as the transformation of minerals
in coal processing [1–7]. The distributions of coal composi-
tions (physical structures) are inherently heterogeneous and
multiscale, ranging from nanometer to millimeter scale and
above. Multiple-scale three-dimensional characterization of
coal physical structure is helpful for clean and high efficient
utilization of coal. It is also useful for obtaining fundamental
data to establish three-dimensional (3D) fluid transportation
model in coal matrix during enhanced coal-bed methane
(ECBM) process.

X-ray CT imaging can nondestructively obtain 3D mate-
rials microstructure information. Numerous works related to

the application of X-ray CT in coal microstructure charac-
terization have been done previously. Verhelst et al. [8] and
Simons et al. [9] investigated the correlation between the
tomodensity with the real physical bulk density of coal com-
positions. VanGeet et al. [10, 11] demonstrated the application
of microfocus CT and the use of dual energy approach.
Karacan and Okandan [12, 13], Mazumder et al. [14], and
Yao et al. [15, 16] also studied the distribution of different
compositions in coal sample byX-rayCT imaging.At present,
microfocus CT combined with dual-energy method and
image segmentation has been an important method for
quantitative characterization of the physical structure of coal.

Although remarkable progresses have been made by
previous researchers, there are still some limitations with
this technique in coal characterization. Firstly, in most cases
the characterization of the coal physical structure is a multi-
scale problem. For example, pore sizes ranging from several
hundred micrometers to several nanometers all contribute

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 414262, 6 pages
http://dx.doi.org/10.1155/2015/414262



2 The Scientific World Journal

to coal-bed methane transportation. However, there exists a
scale limitation with existing 3D characterization techniques
such as X-ray CT: it is not possible for the sample size to
go beyond 104 times of the scanned voxel size. That is to
say, for a sample with a size of centimeters, the imaging
resolution size could not be smaller than a micrometer.
For a factor 10 increase in resolution, the CT data size is
increased by 103 times. In addition to this, the X-ray exposure
increases as the 4th power with resolution or 104 times with
a factor 10 increase in resolution. The dataset size, exposure
induced sample temperature increase, and image acquisition
time would become unpractical for a moderate further
improvement in resolution. In order to obtain multiple-scale
information of various materials microstructure, micro-CT
was usually combined with other high resolution techniques
during the characterization process, such as the combination
of micro-CT and nanofocus CT [17], scanning electron
microscope (SEM) [18], and focused ion beam (FIB) [19].
Despite the successes, the high resolution techniques can
only provide details for a small region of a sample or a
small sample, while for some nonhomogenous materials a
large samplewould bemore accurate representation statically.
Secondly, the fine length scale structures in the coal sample
produce effective mixing of multiple compositions at the
X-ray CT voxels. This leads to a nonunique relationship
between material compositions and X-ray CT image grey
scale.This makes it inadequate to use the conventional image
segmentation technique to resolve the compositions.

Recently, a data-constrained modeling (DCM) approach
[20, 21] has been developed. It combines the multispectrum
X-ray CT data with a statistical mechanical model to resolve
the coexistence of multiple compositions in the same voxel
(the partial volume effect). It has been successfully used to
characterize microstructures of different materials.

Wang et al. [22] have applied this approach to characterize
an anthracite coal sample collected from Yangquan coal
mine, China. The mineral compositions, coal matrix, and
pores were divided into four groups based on their X-
ray absorption characteristics. The volume fractions of each
composition group in individual CT voxel were obtained
using the DCM approach. Fine compositional structures
which are smaller than the CT imaging resolution contribute
to voxel partial volumes. Through using DCM, the compo-
sitions smaller than the X-ray CT spatial resolution can be
characterized quantitatively. This method has opened new
opportunity for multiple-scale 3D characterization of coal.

Despite the success of previous work, the sensitivity of
the results on imaging spatial resolution is still unknown.
The purpose of this study is to establish the spatial res-
olution sensitivity for coal microstructure characterization
using DCM and multiple X-ray CT datasets acquired at
different spatial resolution. It forms the basis for multiple-
scale characterization of coal samples.

2. Experimental

2.1. Sample and CT Experiment. The coal sample used in this
study is the same one as used by previous study and the
mineral compositions, coal matrix, and pores were divided

Table 1: Compositions groups of coal sample.

Groups A B C D
Including
compositions Pore Coal

matrix
Illite, quartz,
and kaolinite

Chlorite and
titania

Figure 1: Coal sample used in this study.

into four groups (as listed in Table 1) based on their X-ray
absorption characteristics [22]. That is, those compositions
were treated as one group when their X-ray absorption
coefficients as functions of X-ray energy were approximately
linearly dependent on each other.

For convenience of image alignment with different reso-
lutions, a short nylon wire was stuck to the sample (Figure 1)
as amarker.Therewas no obvious pore on the sample surface.

TheX-ray CT projection data was acquired on the BL13W
beam-line at the Shanghai Synchrotron Radiation Facility
(SSRF). A Si (111) double-crystal monochromator was used,
which produces a quasi-monochromatic X-ray beam with
a relative bandwidth smaller than 5 × 10−3. The excellent
monochromaticity of synchrotron X-ray makes the correla-
tion between the tomodensity with the physical density of the
coal sample more easy to be established. An Optique Peter
X-ray CCD detector with a native pixel size of 7.4 × 7.4𝜇m2
was used in the experiment. With a 2× optical lens in front of
the CCD, the sample was imaged with an imaging resolution
of 3.7 𝜇m. Monochromatic X-ray beam energies of 14 kev,
18 kev, and 22 kev were selected. A total of 900 projection
images were collected at eachX-ray beam energy.The angular
spacing was 0.2∘ between each two projections for a total
rotation angle of 180∘. After this, the sample was imaged again
with an imaging resolution of 11.84𝜇m using a 1.25× optical
lens and 2 × 2 pixels binning. The position of sample and the
orientation of the sample axis were not changed when the
optical lens was changed.This can ensure the same portion of
the sample was imaged at the abovementioned two imaging
resolutions. For imaging resolution of 11.84 𝜇m, the same X-
ray beam energies were used as for imaging resolution of
3.7 𝜇m. A total of 360 projection images were collected at
eachX-ray beamenergy.Theprojection imageswere acquired
with an angular spacing 0.5∘ for a total sample rotation
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Figure 2: The original reconstructed CT slices at different spatial resolutions: (a) at resolution of 3.7𝜇m; (b) at resolution of 11.84 𝜇m.

angle of 180∘. The dark-current and flat-field images were
also acquired at the beginning and at the end of each scan
which are used to normalize the projection images before
CT reconstruction. For imaging resolution size of 3.7𝜇m, a
total of 1395 image slices with the size of 1947 × 1947 pixels
were reconstructed using the X-TRACT software [23] at each
beam-energy. For image resolution size of 11.84 𝜇m, a total
of 697 image slices with the size of 973 × 973 pixels were
reconstructed at each beam energy.

2.2. DCM Approach. The sample was represented by a cubic
grid of𝑁 = 𝑙×𝑙×𝑛 voxels in the DCMmodel, where 𝑙×𝑙 is the
total pixel size of a CT slice and 𝑛 is the number of selected
slices. The voxel size in the DCM model is identical to the
voxel size of reconstructed X-ray CT slices. The DCMmodel
is to minimize the following objective function at each voxel
[20, 22]:

Γ =

3

∑

𝑞=1

[

3

∑

𝑚=0

𝜇
(𝑞,𝑚)V(𝑚) − 𝜇(𝑞)]

2

+

3

∑

𝑚=0

V(𝑚)𝜀(𝑚). (1)

In (1), the 𝑞 (= 1, 2, 3) corresponds to the experimental
CT data at beam energies 14, 18, and 22 keVs, respectively;
𝑚 (= 0, 1, 2, 3) represent the compositional groups A, B, C,
and D, respectively; V(𝑚) is volume fractions of composition
group 𝑚 on the voxel; 𝜇(𝑞,𝑚) is the linear absorption coef-
ficients of composition group 𝑚 at the X-ray energy 𝑞; 𝜀(𝑚)
is the phenomenological chemical potentials of composition
group 𝑚; 𝜇(𝑞) (𝑞 = 1, 2, 3) is X-ray CT measured linear
absorption coefficient values on the voxel. The following
constraints should be applied in minimization of (1):

0 ≤ V(0), V(1), V(2), V(3) ≤ 1

V(0) + V(1) + V(2) + V(3) = 1.
(2)

For the DCM approach, the volume fractions of each of
the composition groups can be obtained by solving (1) and (2)
using a constrained search algorithm.

For the purpose of comparing the DCM reconstructed
compositions at different resolutions, a subset of 96 slices
with pixel size of 3.7𝜇m and a subset of 30 slices with pixel
size of 11.84𝜇m were selected at each X-ray beam energy.
The selected slices with different voxel sizes correspond to
the same physical portion of the coal sample. The subset
was selected with minimal image defects. The composition
distributions at the two resolutions were computed with
the DCM approach. For quantitative comparisons of DCM
reconstructed compositions in different regions, seven cubi-
cal subregions of the selected slices were used. The size of the
subregions is so selected such that each of them contains an
integer number of voxels at both resolutions.This ensures that
the subregions at different resolutions are corresponding to
the same portion of the coal sample. The size of a subregion
is 96 × 96 × 96 pixels at a resolution 3.7 𝜇m and 30 × 30 ×
30 pixels at a resolution 11.84 𝜇m, respectively. During the
DCM computation process, the pore self-energy was selected
as 0.0000805 to reproduce the previous measured porosity
of the coal sample, and other parameters were the same as
previous study [22].

3. Results and Discussion

Figure 2 shows two typical reconstructed CT slices at spatial
resolution of 3.7 𝜇m and 11.84 𝜇m respectively. They corre-
spond to the same sample slice. A voxel in Figure 2(b) is
equivalent to 3.23 voxels in Figure 2(a). The X-ray linear
absorption coefficient of a voxel in Figure 2(b) is the aver-
age of those 3.23 voxels in Figure 2(a). There are obvious
ring artifacts existing in the images, which are difficult
to be eliminated completely during the CT reconstruction,
although a ring-defect filter had been applied. In these two
images, the grey areas are mainly coal matrix; the white areas
indicate high X-ray absorption, which represent minerals.
FromFigure 2, it is easy to see that although the two slices ((a)
and (b)) look similar, the details are clearer in the image with
the higher resolution. The reason for this is that Figure 2(a)
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Table 2: DCM computed average composition group volume fractions.

Area Imaging resolution
(𝜇m)

Computed volume fractions (%)
Computed time (s)

Group A Group B Group C Group D

Area 0 3.7 4.48 87.80 7.58 0.14 9.06 × 105

11.84 4.37 88.00 7.51 0.12 6.55 × 104

Area 1 3.7 3.30 86.90 9.40 0.40 2447
11.84 3.39 86.90 9.31 0.40 70

Area 2 3.7 5.25 89.30 5.40 0.05 2428
11.84 4.97 89.60 5.36 0.07 79

Area 3 3.7 3.27 85.40 11.10 0.23 2274
11.84 3.36 85.40 11.00 0.24 71

Area 4 3.7 4.82 89.10 6.02 0.06 2366
11.84 4.63 89.40 5.85 0.12 72

Area 5 3.7 4.14 88.50 7.22 0.14 2547
11.84 4.25 88.20 7.37 0.18 70

Area 6 3.7 4.35 88.20 7.28 0.17 2415
11.84 4.21 88.40 7.16 0.23 73

Area 7 3.7 4.52 89.20 6.17 0.11 2386
11.84 4.41 89.40 6.07 0.12 70

contained more pixels than Figure 2(b), which enable a more
detailed characterization for the sample.

Table 2 is the DCM computed average composition
volume fractions at the two CT imaging resolutions. In
Table 2, Area 0 represents DCM computed results of the
whole selected subset slices of the coal sample. Areas 1–7
represent DCM computed results of the seven subregions.

It can be seen from Table 2 that the computed volume
fractions of different composition groups for the two image
resolutions are very close. The difference of the computed
volume fractions for coal matrix and pore is less than 0.3%.
For the mineral compositions group, the difference is less
than 0.17%. It should be note that though the maximal
difference for pore in the eight areas is 0.28%, the average
difference is only 0.14%. The minor differences may be
related to the experimental noise during the projection image
acquisition process and the ring artifact in the CT slices. The
difference of coal matrix is higher than other compositions,
since the volume fraction of coal matrix in coal is far more
than other compositions. The results indicate that the DCM
approach can be used to characterize coal microstructures
using low resolution CT data with minimal loss of fine
subvoxel structure effects. For the same physical volume in
the coal sample, about 30 times more computational time
is required for the image resolution at 3.7 𝜇m than that at
11.84 𝜇m as shown in Table 2.

Figures 3(a) and 3(b) show the DCM computed compo-
sitional distributions at two different image resolutions.They
are on the same portion of the sample as in Figures 2(a) and
2(b). Although Figures 3(a) and 3(b) are quite similar overall,
the composition of group D (green area) is more visible in
Figure 3(a) than that in Figure 3(b). The reason for this is
that the display intensity of fine particles at a coarse display
resolution is suppressed as their small volume fractions tend
to be overwhelmed by other compositions. In other words,

the small regions of group D appear as diluted and spread out
in Figure 3(b).

Figures 4(a) and 4(b) are the 3D physical structures of
the coal sample corresponding to Area 1 at different spatial
resolutions. It can be seen from these two images that the
pores are distributed as a 3D connected network, while
group C mineral composition is distribution as clusters. The
apparent intensity of red color (pore) in Figure 4(a) is higher
than that in Figure 4(b), for the same reason as has been
mentioned in Figure 3. The visual effect of such dispersed
compositions can be enhanced by multiplying their volume
fractions values by a suitable factor (>1).

Although the numerical results indicate that DCM can
model the partial volume effect reliably, it should be noted
that it does not increase the spatial resolution. That is, it
does not give any additional information about how the
multiple compositions are spatially distributed inside a voxel.
Investigations on the impact of subvoxel spatial distribu-
tions still need high resolution techniques. Besides this, the
DCM still cannot to be used for lab-CT. The X-ray of lab-
CT is polychromatic, which make the correlation between
the tomodensity with the physical density of sample more
difficult to be established.

4. Conclusions

The 3D physical structure of a Yangquan coal sample is
obtained using the DCM nonlinear optimization approach
with multienergy synchrotron X-ray CT at different image
resolutions. The distributions of pores, coal matrix, and
minerals in the same region of the coal sample have been
quantitatively reconstructed at different spatial resolutions.
By comparing average volume fractions of mineral phases
and pores in these subregions in the sample, it is concluded
that the DCM computed results were consistent under
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Figure 3: DCM reconstructed compositional distributions: (a) at resolution of 3.7 𝜇m; (b) at resolution of 11.84𝜇m. Pores are displayed as red;
group Cminerals are displayed as blue; group Dminerals are displayed as green.The pixel display intensity for each colour is proportional to
the appropriate compositional volume fraction. Coexistence of multiple compositions in a voxel is shown as colour mixing. The coal matrix
is not displayed.

(a) (b)

Figure 4: 3D physical structure of Area 1 at different spatial resolutions: (a) at resolution of 3.7 𝜇m; (b) at resolution of 11.84𝜇m. The same
colouring scheme is used as in Figure 3. The displayed sample size is 355.2 × 355.2 × 355.2𝜇m3.

the two resolutions. For materials with structures span over
multiple length scales such as coal, it has been difficult to
characterize them using the existing 3D X-ray CT technique
due to limited spatial dynamical range of the technique.
If one wish to resolve the fine length scale structures, the
sample size has to be reduced accordingly that would reduce
its statistical representativeness. The results presented in
this paper indicate that using a large sample would not
necessarily lose subvoxel effect by using the DCM approach,
although, with higher image resolution, spatial distributions
of compositions whose size is smaller than the pixel size can
be resolvedmore precisely. With a reduced spatial resolution,
the computational efficiency is improved.
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