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The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations.
A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution
techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution
of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This
study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver.
We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES,
and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good
performance of the multigrid method.We study the problem in a two-dimensional domain using stable Hood-Taylor𝑄

2
-𝑄
1
pair of

finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate
the efficiency and robustness of the multigrid method and confirm the theoretical results.

1. Introduction

This study considers the numerical solution of the large
scale linear algebraic system arising from the discretization
of the partial differential equations. The discretization is
achieved by the finite element method. For positive definite
linear systems, linked to the Poisson equations, the multigrid
(MGM) methods are proven to be the most effective and
fast methods [1, 2]. However it is more challenging for
linear indefinite algebraic systems. In this paper we consider
multigrid methods for solving linear indefinite algebraic
system of equations arising from the mixed finite element
discretization of the steady state Stokes problem:

−Δu + ∇𝑝 = f , inΩ, (1)

div u = 0, inΩ, (2)

u = 0, on 𝜕Ω, (3)

where u is a velocity field, 𝑝 represents pressure, and f is an
external force field. The problem is considered with (1)–(3)
defined on the domainΩ ⊆R2 with boundary 𝜕Ω.

The main goal of this work is to construct and analyze
numerical methods that produce an appropriate solution
to the Stokes problem. The main thrust is to apply an
iterative method, the multigrid method, to solve the linear
system of equations that arise from the discretization of
the Stokes equations. The MFEM applied to (1)–(3) with
carefully chosen finite element spaces results in the algebraic
systemwhichmust be solved.The velocity variable u together
with the pressure variable 𝑝 is the solutions of the system.
We discretize the domain of the Stokes problem by the
rectangular grids with a pair of conforming mixed finite
element spaces that are inf-sup stable. In our experiment
we use Hood-Taylor 𝑄

2
-𝑄
1
pair as used by [3]. The process

produces a symmetric indefinite system of linear algebraic
equations. In this paper we study an efficient solver for this
system. This work on multigrid method has been motivated
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by the need to effectively and efficiently solve large application
problems. The multigrid method has been shown to be very
efficient and successful in solving control problems [1, 2, 4–6]
and elliptic partial differential equations [7–9] in an accurate
and computationally efficient way.Themultigrid method has
been applied to problems discretized by the finite difference
method and widely by finite element method [3, 8, 10–14].
The effectiveness of the multigrid method depends on the
correct choice of the smoothers. Various smoothers have
been suggested in literatureweighted Jacobi,Gauss Seidel [11],
Ilu [8], Vanka-type [9, 12, 13, 15], Braess-Sarazin-type ([13, 16–
18]), Semi implicit method for pressure linked equations
[15], SOR/Richardson [18], and inexact Uzawa [18]. It is
the purpose of this study to apply the multigrid solver to
the Stokes problem with the following iterative solvers as
smoothers: Braess-Sarazin, inexact Uzawa, preconditioned
MINRES, and the distributed Gauss Seidel. The inner solver
of these smoothers can also be taken as the multigridmethod
for the definite subsystems. There is no work known where
a comparative study is made on the effects of these four
smoothers on the performance of the multigrid method
for indefinite systems. The first step is to transform the
continuous problem to the discrete system and apply the
MFEM that produces the linear algebraic system on which
the multigrid method is developed, analyzed, and finally
numerically and computationally implemented.

The key features and ingredients of the multigrid method
are smoothing and coarse grid correction that involves the
intergrid transfers and a solution correction step. The main
results of the work are the convergence of the multigrid
method in calculating the velocity and pressure variables in
an appropriate norm which is based on the smoothing and
approximation properties [9, 18]. The rest of the paper is
organized as follows. In Section 2 we give the discrete system
of the Stokes problem by mixed finite element method. In
Section 3 the iterative solution technique, the geometric
method, and smoothers are outlined. The known theoretical
convergence analysis results are also outlined. In Section 4
a numerical experimental and comparative analysis on the
effects of smoothers on the performance multigrid method
is presented and discussed and the conclusion is given.

2. The Stokes Discrete System

For the discretization of the Stokes equations in the domain
Ω we need to transform the system (1)–(3) to the weak
variational form. For the weak variational formulation of the
Stokes equations we define the following solution and test
spaces:

𝐻
1
(Ω) := {u : Ω → R | u, ∇𝑢 ∈ 𝐿2 (Ω)} ,

𝐻
1

0
(Ω) := {v : v ∈ 𝐻1 | v = 0 on 𝜕Ω} .

(4)

By multiplication of the first equation (1) with v ∈ 𝐻
1

0

and the second equation (2) with 𝑞 ∈ 𝐿2(Ω), subsequently
integrating over the domain Ω, applying the Gauss theorem,
and incorporating the boundary condition (3), we obtain the
variational form.

Find u ∈ 𝐻1
0
(Ω) and 𝑝 ∈ 𝐿2(Ω) such that

𝑎 (u, v) − 𝑏 (v, 𝑝) = 𝐹 (v) , ∀v ∈ 𝐻1
0
(Ω) ,

𝑏 (u, 𝑞) = 0, ∀𝑞 ∈ 𝐿
2
(Ω) ,

(5)

where 𝑎(⋅, ⋅) and 𝑏(⋅, ⋅) are continuous bilinear forms defined
as

𝑎 (u, v) = ∫
Ω

∇u : ∇v 𝑑𝑥,

𝑏 (u, 𝑞) = ∫
Ω

(div v) 𝑞 𝑑𝑥,

𝐹 (v) = ∫
Ω

f ⋅ v 𝑑𝑥,

(6)

where ∇u : ∇v represents a componentwise scalar product
that is ∇𝑢

𝑥
⋅ ∇V
𝑥
+ ∇𝑢
𝑦
⋅ ∇V
𝑦
and 𝑎 : 𝐻1

0
(Ω) × 𝐻

1

0
(Ω) → R

and 𝑏 : 𝐻1
0
(Ω) × 𝐿

2
(Ω) → R. The well-posedness follows

from the coercivity of 𝑎(⋅, ⋅) in the Lax-Milgram theorem [19,
20] and partly from the inf-sup condition [7, 8, 16, 21–23].
Below is a sketch of the analysis of the existence uniqueness
and stability of the solution (u, 𝑝) ∈ V×𝑊 = 𝐻

1

0
(Ω) × 𝐿

2
(Ω)

of mixed problem (5):

(i) the bilinear form 𝑎(⋅, ⋅) is bounded or continuous if

|𝑎 (u, v)| ≤ 𝛼‖u‖V‖v‖V, ∀u, v ∈ V, 𝛼 ∈R; (7)

(ii) the bilinear form 𝑎(⋅, ⋅) is coercive on𝑉 := 𝐻1
0
(Ω); that

is, there exists a positive constant 𝛼
1
:

𝑎 (v, v) ≥ 𝛼
1‖V‖
2

𝑉
,

∀v ∈ V = ker𝐵 = {v ∈ V : 𝑏 (v, 𝑞) = 0 ∀𝑞 ∈ 𝑊} ;
(8)

(iii) the bilinear form 𝑎(⋅, ⋅) is symmetric and nonnegative
if

𝑎 (u, v) = 𝑎 (v, u) , 𝑎 (v, v) ≥ 0, ∀u, v ∈ V; (9)

(iv) the bilinear form 𝑏(⋅, ⋅) is bounded if
𝑏 (u, 𝑞)

 ≤ 𝛼0‖u‖V
𝑞
𝑊, ∀u ∈ V, 𝑞 ∈ 𝑊, 𝛼

0
∈R; (10)

(v) the bilinear form 𝑏(⋅, ⋅) satisfies the inf-sup condition;
that is, there exists a constant 𝛽:

inf
0 ̸=𝑞∈𝑊

sup
0 ̸=v∈V

𝑏 (v, 𝑞)


‖v‖V
𝑞
𝑊

≥ 𝛽 > 0. (11)

For instance, in [22], it is shown that in our concrete case 𝑏(⋅, ⋅)
fulfills the inf-sup condition; thus we can combine (i)–(v) to
give the following theorem.

Theorem 1. The variational problem (5) is uniquely solvable
provided properties (i)–(v) are all satisfied.

The proof relies on the closed range theorem and on the
Lax-Milgram theorem. The details can be found in [22, 24].
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2.1.TheMixed Finite Element Discretization. Themixed finite
element discretization of the weak formulation of the Stokes
equations produces a linear algebraic system of equations.
The finite element method described here is based on [7, 16,
19, 21, 23, 25]. We will introduce the concept of mixed finite
element methods. Details can be found in [7, 19–21, 25].

We assume thatΩ ⊆R2.We define the finite dimensional
spaces. Let𝑊

ℎ
andV

ℎ
be subspaces of𝑊 andV, respectively.

Now we can formulate a discrete version of problem (5).
Find a couple (u

ℎ
, 𝑝
ℎ
) ∈ V
ℎ
×𝑊
ℎ
such that

𝑎 (u
ℎ
, v
ℎ
) − 𝑏 (v

ℎ
, 𝑝
ℎ
) = 𝐹 (v

ℎ
) , ∀v

ℎ
∈ V
ℎ
,

𝑏 (u
ℎ
, 𝑞
ℎ
) = 0, ∀𝑞

ℎ
∈ 𝑊
ℎ
.

(12)

The finite element discretization should satisfy the inf-sup
condition. The following theorem shows that again the inf-
sup condition is of major importance (for the proof we refer
to [22]).

Theorem 2. Assume that 𝑎 is 𝑉
ℎ
-elliptic (with h independent

ellipticity constant) and that there exists a constant 𝛽 > 0

(independent of ℎ) such that the discrete inf-sup condition

inf
0 ̸=𝑞ℎ∈𝑊ℎ

sup
0 ̸=vℎ∈Vℎ

𝑏 (vℎ, 𝑞ℎ)


vℎ
Vℎ
𝑞ℎ
𝑊ℎ

≥ 𝛽 > 0 (13)

holds. Then the associated (discretized, steady state) Stokes
problem has a unique solution (u

ℎ
, 𝑝
ℎ
), and there exists a

constant 𝛽
1
such that

u − u
ℎ

V +
𝑝 − 𝑝ℎ

𝑊

≤ 𝛽
1
( inf
v∈Vℎ

u − u
ℎ

V) + ( inf
q∈Wℎ

𝑝 − 𝑝ℎ
𝑊) .

(14)

If the basis of𝑊
ℎ
is given by {𝜓

1
, . . . , 𝜓

𝑚
} and of 𝑉

ℎ
is given

by {𝜑
1
, . . . , 𝜑

𝑛
}, then

u
ℎ
=

𝑛𝑖

∑

𝑖=1

u
𝑖
⋅ 𝜑
𝑖
+

𝑛𝑖+𝑛𝜕

∑

𝑖=𝑛𝑖+1

u
𝑖
⋅ 𝜑
𝑖
,

𝑝
ℎ
=

𝑚

∑

𝑘=1

𝑝
𝑘
𝜓
𝑘
,

(15)

where 𝑛
𝑖
is the number of inner nodes and 𝑛

𝜕
is the number of

boundary nodes so the coefficients u
𝑖
: 𝑖 = 𝑛

𝑖
+ 1, . . . , 𝑛

𝑖
+ 𝑛
𝜕

interpolate the boundary data and 𝑛 = 𝑛
𝑖
+ 𝑛
𝜕
. The mixed

finite element entails partitioning of the solution domain Ω
into quadrilaterals; in our case that isΩ = ∪

𝑖
𝜏
𝑖
we denote a set

of rectangular (square) elements by 𝑇
ℎ
= {𝜏
1
, 𝜏
2
, 𝜏
3
, . . .} and

on each element 𝜏
𝑖
and we denote the space 𝑃

𝑘
(𝜏
𝑖
) of degree

less than or equal to 𝑘. There are a variety of finite element
pairs whose effectiveness is through stabilization [26]. In this
work we are going to use Hoods-Taylor 𝑄

2
-𝑄
1
square finite

elements which are known to be stable.
We specify

V
ℎ
:= {u
ℎ
∈ Vuℎ

𝜏𝑖
∈ 𝑃
2
(𝜏
𝑖
) , ∀ elements 𝜏

𝑖
} ,

W
ℎ
:= {𝑝
ℎ
∈W𝑝ℎ

𝜏𝑖
∈ 𝑃
1
(𝜏
𝑖
) , ∀ elements 𝜏

𝑖
} .

(16)

An element (u
ℎ
, 𝑝
ℎ
) ∈ 𝑊

ℎ
× 𝑉
ℎ
is uniquely determined by

specifying 𝑑 components of u
ℎ
on the nodes and on the

midpoints of the edges of the elements and the values of𝑝
ℎ
on

the nodes of the elements. The mixed finite element method
results in the coupled linear algebraic system which has to be
solved by the appropriate solvers. The resulting system is

[
𝐴
ℎ
𝐵
𝑇

ℎ

𝐵
ℎ
𝑂
][

u
ℎ

𝑝
ℎ

] = [
f
ℎ

𝑔
ℎ

] ; (17)

with 𝐴
ℎ
being a block Laplacian matrix and 𝐵

ℎ
being the

divergence matrix whose entries are given by

𝐴 = [𝑎
𝑖𝑗
] , 𝑎

𝑖𝑗
= ∫
Ω

(∇𝜙
𝑖
: ∇𝜙
𝑗
)
𝑖, 𝑗=1, ..., 𝑛

,

𝐵 = [𝑏
𝑘𝑖
] , 𝑏

𝑘𝑖
= −∫
Ω

(𝜓
𝑘
∇ ⋅ 𝜙
𝑖
)
𝑖=1, ..., 𝑛; 𝑘=1, ..., 𝑚

.

(18)

The entries of the right hand side vector are

f = [f
𝑖
] , f

𝑖
= ∫
𝜕Ω

f ⋅ 𝜙
𝑖
−

𝑛+𝑛𝜕

∑

𝑖=𝑛+1

u
𝑖
∫
Ω

(∇𝜙
𝑖
: ∇𝜙
𝑗
) ,

𝑔 = [𝑔
𝑘
] , 𝑔

𝑘
=

𝑛+𝑛𝜕

∑

𝑖=𝑛+1

u
𝑖
∫
Ω

(𝜓
𝑘
∇ ⋅ 𝜙
𝑖
) .

(19)

The linear algebraic system can be represented as

M𝑥 = 𝑏, (20)

whereM := [
𝐴ℎ 𝐵
𝑇

ℎ

𝐵ℎ 𝑂
], 𝑥 := [ uℎ𝑝ℎ ], and 𝑏 := [

fℎ
𝑔ℎ
].

The solution vectors (u
ℎ
, 𝑝
ℎ
) from (15) are themixed finite

element solution. The system (17)–(19) is called the discrete
Stokes problem.

The discretization and assembling of matrices are done
by the MATLAB implementation of the mixed finite element
method [8]. 𝐴

ℎ
is stiffness matrix resulting from the dis-

cretization of the Laplacian. The resultant coefficient matrix
is large, sparse, indefinite and the system must be solved
iteratively, in this case by multigrid solvers. The multigrid
solver is a well known fast solver for the elliptic partial
differential equations [2, 5].

3. Multigrid Method

The main focus of this section is the construction of the
multigrid solver to find the approximate solution of (20) at
the finest mesh/discretization. Let (V

𝑙
× 𝑊
𝑙
) be a sequence

of subspaces of the finite dimensional subspaces 𝑊
ℎ
and 𝑉

ℎ

defined on sequence of grids 𝑙 ∈ {0, 1, 2, 3, . . . , 𝑙max} with
mesh sizes ℎ

0
, ℎ
1
, ℎ
2
, . . . , ℎ

𝑙
with ℎ

𝑙+1
:= (1/2)ℎ

𝑙
. We define

a hierarchy/family of nested finite element subspaces for the
velocity and pressure:

(𝑉
𝑙
×𝑊
𝑙
) ⊂ (𝑉

𝑙+1
×𝑊
𝑙+1
) ⊂ (𝑉

ℎ
×𝑊
ℎ
) ⊂ (𝑉 ×𝑊)

= 𝐻
1

0
(Ω) × 𝐿

2
(Ω) ,

(21)

where (𝑉
𝑙+1

× 𝑊
𝑙+1
) subspace which corresponds to Ω

𝑙+1

is the refinement of Ω
𝑙
with subspace (𝑉

𝑙
× 𝑊
𝑙
) such that
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Ω
𝑙
⊂ Ω
𝑙+1
⊂ Ω. At the discrete level with the defined discrete

spaces and bases, the linear algebraic system is defined by

M
𝑙
𝑥
𝑙
= 𝑏
𝑙
, (22)

whereM
𝑙
:= [
𝐴𝑙 𝐵
𝑇

𝑙

𝐵𝑙 𝑂
], 𝑥
𝑙
:= [u
𝑙
𝑝
𝑙
], and 𝑏

𝑙
:= [

f𝑙
𝑔𝑙
].

Themain goal is to find the pair𝑥
𝑙
= (u
𝑙
, 𝑝
𝑙
)of the discrete

velocity and the discrete pressure variables at the finest level
𝑙.

Now we introduce the multigrid iteration for solving the
discretized equation (22) on grid 𝑙. We define the multigrid
algorithm at level 𝑙 as MGM

𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
,

𝑚
2
), where

(i) (unew
𝑙
, 𝑝

new
𝑙
) is the output of velocity and pressure after

one step of the multigrid algorithm at level 𝑙;

(ii) uold
𝑙

is the input velocity at level 𝑙;

(iii) 𝑝old
𝑙

is the input pressure at level 𝑙;
(iv) 𝑅u,𝑙,𝑙−1 and𝑅𝑝,𝑙,𝑙−1 are restriction operators for velocity

and pressure, respectively, from level 𝑙 to level 𝑙 − 1;
(v) 𝑃u,𝑙−1,𝑙 and 𝑃

𝑝,𝑙−1,𝑙
are prolongation operators for

velocity and pressure, respectively, from level 𝑙 − 1 to
level 𝑙.

Algorithm 3 (multigrid algorithm).

MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
, 𝑚
2
) (23)

if 𝑙 = 0 (coarsest grid)

[
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

unew
𝑙

𝑝
new
𝑙

]

= [
f
𝑙

𝑔
𝑙

]

= MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, f
𝑙
, 𝑔
𝑙
, 𝑚
1
, 𝑚
2
)

(24)

else 𝑙 > 0 define MGM
𝑙
(unew
𝑙
, 𝑝

new
𝑙
, uold
𝑙
, 𝑝

old
𝑙
, 𝑔
𝑙
, f
𝑙
, 𝑚
1
, 𝑚
2
)

(1) Pre-Smoothing: Smoothing operatorS starting with,
(uold
𝑙
, 𝑝

old
𝑙
) with 𝑚

1
smoothing steps, producing

(ũ
𝑙
, 𝑝
𝑙
),

[
ũ
𝑙

𝑝
𝑙

] = [
uold
𝑝
old] −S

−1
([
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

uold
𝑙

𝑝
old
𝑙

] − [
f
𝑙

𝑔
𝑙

]) (25)

(a) defect/residual

r
𝑙
= f
𝑙
− (𝐴
𝑙
ũ
𝑙
+ 𝐵
𝑇

𝑙
𝑝
𝑙
) ,

𝑑
𝑙
= 𝑔
𝑙
− 𝐵
𝑙
ũ
𝑙

(26)

(2) restrict the defect

r
𝑙−1
= 𝑅u,𝑙,𝑙−1r𝑙,

𝑑
𝑙−1
= 𝑅
𝑝,𝑙,𝑙−1

𝑑
𝑙
,

(27)

(3) approximate solution

[
𝐴
𝑙−1

𝐵
𝑇

𝑙−1

𝐵
𝑙−1

𝑂
][

ṽ
𝑙−1

𝑞
𝑙−1

] = [
r
𝑙−1

𝑑
𝑙−1

] (28)

(4) applying one/two iterations of MGM
𝑙−1

at the recur-
sive call:

(a) apply 𝜇 steps of MGM
𝑙−1

(b) Set v0
𝑙−1
= 0

(c) Set 𝑞0
𝑙−1
= 0

(d) compute
for 𝜇 = 1 : 2

(ṽ
𝑙−1
, 𝑞
𝑙−1
)

= MGM
𝑙−1
(ṽ
𝑙−1
, 𝑞
𝑙−1
, v0
𝑙−1
, 𝑞
0

𝑙−1
, r
𝑙−1
, 𝑑
𝑙−1
, 𝑚
1
, 𝑚
2
) ;

(29)

end

(5) Correction Step define the new iterate:

u∗
𝑙
:= ũ
𝑙
− 𝑃u,𝑙−1,𝑙ṽ𝑙−1,

𝑝
∗

𝑙
:= 𝑝
𝑙
− 𝑃
𝑝,𝑙−1,𝑙

𝑞
𝑙−1
.

(30)

Postsmoothing. Starting with (u∗
𝑙
, 𝑝
∗

𝑙
) perform𝑚

2
smoothing

steps using smoothing operator S to produce (unew
𝑙
, 𝑝

new
𝑙
) :

[
unew
𝑝
new] = [

ũ∗
𝑙

𝑝
∗

𝑙

] −S
−1
([
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
][

ũ∗
𝑙

𝑝
∗

𝑙

] − [
f
𝑙

𝑔
𝑙

]) . (31)

The multigrid method described above belongs to a class of
optimal order methods for solving linear systems emanating
from the discretization techniques like the finite element
method. Its known convergence speed does not deteriorate
when the discretization is refined whereas classical iterative
solvers slow down for the decreasingmesh size [1, 2, 5, 6].The
starting point of the multigrid concept is the observation that
classical iteration methods have some smoothing properties.
The operator S represents such methods; in this study it
represents Braess-Sarazin, inexact Uzawa, distributed Gauss
Seidel, and the preconditioned minimum residual method.
Thesemethods are characterized by poor/slow global conver-
gence rates and for errors whose length scales are comparable
to mesh sizes, they provide rapid damping leaving behind
smooth, longer wave length errors. These smooth parts
of the error are responsible for the poor convergence. A
geometric multigrid method involves a hierarchy of meshes
and related discretization. A quantity that is smooth on a
certain grid can also be approximated on a coarser grid.
Low frequency error components can be effectively reduced
by a coarse grid correction procedure. Since the action of
a smoothing iteration leaves only smooth error compo-
nents, it is possible to represent them as the solution of an
appropriate coarser system. Once this coarser problem is
solved, the solution is interpolated back to the fine grid to
correct the fine approximation for its low frequency errors.
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The most essential ingredients of the multigrid method are
the smoothing operator, for which using a wrong smoother
will destroy the efficiency of the entiremultigridmethod, and
the coarse grid correction which involves the prolongation
and the restriction operators. In multigrid methods we have
to transform information from one grid to another and for
that purpose we use prolongations and restrictions operators.
Restriction transfers values from fine grid to the next coarse
grid. Prolongation transfers values from the coarse grid to the
next fine grid.

Next we discuss the key components of the multigrid
method.

(a) Intergrid transfer operators: the intergrid trans-
fer operators are the restriction and prolongation
between different grid levels. The restriction operator
maps the residual from the finer grid to a coarser
grid while the prolongation operator transfers vectors
from coarse grid to fine grid. The restriction between
levels 𝑙 and 𝑙 − 1 is defined by

𝑅
(𝑙,𝑙−1)

:= (
𝑅
(u,𝑙,𝑙−1) 0

0 𝑅
(𝑝,𝑙,𝑙−1)

) , (32)

where the restriction operators 𝑅
(u,𝑙,𝑙−1) : R𝑛𝑙 →

R𝑛𝑙−1 and 𝑅
(𝑝,𝑙,𝑙−1)

: R𝑚𝑙 → R𝑚𝑙−1 for velocity
and pressure, respectively. The prolongation between
levels 𝑙 − 1 and 𝑙 is defined again as

𝑃
(𝑙−1,𝑙)

:= (
𝑃
(u,𝑙−1,𝑙) 0

0 𝑃
(𝑝,𝑙−1,1)

) , (33)

where the prolongation operators 𝑃
(u,𝑙−1,𝑙) : R

𝑛𝑙−1 →

R𝑛𝑙 and 𝑃
(𝑝,𝑙−1,𝑙)

: R𝑚𝑙−1 → R𝑚𝑙 are representations
of the following relations V

𝑙−1
⊂ V
𝑙
for the quadratic

interpolation of the velocity (𝑄
2
) and𝑊

𝑙−1
⊂ 𝑊
𝑙
for

the linear interpolation of the pressure (𝑄
1
).

(b) Coarse grid correction: the other key ingredient of
the multigrid method is the coarse grid correction.
In the multigrid solution process we need to solve
the problem at the finest define level 𝑙 = 𝑙max. The
problem is defined on the coarser grid levels and on
the coarsest grid level the problem is solved exactly.
There are very few situations in which a grid can be
coarsened to the extent that it is not practical to solve
the problem using a direct method but iteratively. In
this work the iterative solver used as a smoother is
applied to solve the problem at the coarsest level.

3.1. The Smoothers. The most crucial part is the proper
choice of a smoothing technique. Usually, the well-known
smoothing iterations for the scalar problems (damped Jacobi
or Gauss-Seidel relaxation) are not appropriate for saddle
point problems or are even not defined, for example, in saddle
point systems like (22). There are natural ways to generalize
scalar smoothing schemes to systems of PDEs. The smooth-
ing process is the main ingredient of the multigrid method.
The convergence of the multigrid method is influenced by
the smoothing process [11, 14, 18]. We perform a number of

iterations of an iterative solver to smooth the residual. The
main goal is to compare the effectiveness of different iterative
schemes as smoothers of the multigrid methods. On each
level of a multigrid method, a system involving operator S
has to be solved approximately. The smoother dumps out
highly oscillating error modes of the systems. In this paper
we consider the following smoothing process:

(
u𝑖+1
𝑙

𝑝
𝑖+1

𝑙

) = (
u𝑖
𝑙

𝑝
𝑖

𝑙

) −S
−1

𝑙
[(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
f
𝑙

0
)] . (34)

Several smoothers have been proposed and applied in litera-
ture. Brandt [4] advocates for the use of the distributed Gauss
Seidel smoothing. The Vanka-type smoother is widely used
with a coupled Gauss Seidel scheme [13, 14] that introduces
the idea of transforming smoothers and combines with
incomplete factorization to develop an efficient smoothing.
John and Tobska [14] and Pernice [15] used the Braess-
Sarazin-type smoother with the Schur complement schemes
as smoothers which exhibit wonderful smoothing properties.
The following algorithms describe the iterative schemes that
are used as smoothers in this study.

3.1.1. Braess-Sarazin-Type Smoother. The Braess-Sarazin
smoothers proposed in [17] and used in [13, 18] solve a
large saddle point problem in each smoothing step. This
Braess-Sarazin or SIMPLE-type iteration uses ( 𝐴 𝐵𝑇

𝐵 𝑂
) as a

smoother for the saddle point problem (22).The smoother as
presented in [17] and generalised in [18] consisted of constant
application of the smoothing iteration:

(
u𝑖+1
𝑙

𝑝
𝑖+1

𝑙

) = (
u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)

−1

[(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

u𝑖
𝑙

𝑝
𝑖

𝑙

) − (
f
𝑙

𝑔
𝑙

)]

(35)

with𝐴
𝑙
= 𝛼 diag(𝐴

𝑙
) and𝛼 = 2 given.The smoothing Braess-

Sarazin iteration (35) solves the auxiliary problem

(
𝛼𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝑂
)(

û𝑖
𝑙

𝑝
𝑖

𝑙

) = (
r𝑖
𝑙

𝑠
𝑖

𝑙

) (36)

with r𝑖
𝑙
= 𝐴
𝑙
u𝑖
𝑙
+ 𝐵
𝑇

𝑙
𝑝
𝑖

𝑙
− f
𝑙
and 𝑠𝑖
𝑙
= 𝐵
𝑙
u𝑖
𝑙
− 𝑔
𝑙
. Inherent in the

system system (36) is the problem of the auxiliary pressure
variable 𝑝

𝑙

𝑆
𝑙
𝑝
𝑙
= 𝐵
𝑙
𝐴
−1

𝑙
r𝑖
𝑙
− 𝛼𝐵
𝑙
u𝑖
𝑙
. (37)

This system is solved approximatively by an iterative solver.
From the system we get 𝑝

𝑙
approximately which can be used

to approximately determine û
𝑙
from

𝛼𝐴
𝑙
û
𝑙
= r𝑖
𝑙
− 𝐵
𝑇

𝑙
𝑝
𝑖

𝑙
. (38)

3.1.2. Inexact Uzawa Type Smoothers. The variant of the
inexact Uzawa iteration used as a smoother is outlined.

Algorithm 4. (1) For 𝑖 = 1: smoothing steps.
(2) Compute the residual r

𝑖
= f − 𝐴u

𝑖
− 𝐵
𝑇
𝑝
𝑖
.
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(3) Compute the residual 𝑠
𝑖
= 𝑔 − 𝐵u

𝑖
.

(4) Solve 𝐴w
𝑖
= r
𝑖
.

(5) Solve 𝑆𝑑
𝑖
= 𝐵
𝑇w
𝑖
− 𝑠
𝑖
.

(6) Solve 𝐴w
𝑖
= r
𝑖
− 𝐵𝑑
𝑖
.

(7) Update the velocity and pressure

(
u
𝑖+1

𝑝
𝑖+1

) = (
u
𝑖

𝑝
𝑖

) + (
w
𝑖

𝑑
𝑖

) ; (39)

End.

Step (6) in the outline may be rearranged as w
𝑖
:= w
𝑖
−

𝐴
−1
(𝐵𝑑
𝑖
) with 𝐴−1(𝐵𝑑

𝑖
) obtained as a by-product of step (5).

This saves the application of 𝐴−1 at the end of every outer
iteration and hence improves the efficiency of the algorithm.
The other variants of the inexact Uzawa method are analysed
in [26–28].

3.1.3. The Distributed Gauss Seidel Type Smoothers (DGS).
The standard smoothing iteration schemes like Jacobi and
Gauss Seidel smoothers are not applicable to the system (22)
because of the nature of the coefficientmatrix; particularly the
zero block in the diagonal hampers the smoothing process.
The distributive smoother transforms the vital operators to
the main diagonal and applied as a decoupled smoother.
The DGS was introduced in [4] is related to a successive
application of standard Gauss Seidel applied to the matrix
operator M (22) and G = (

𝐼𝑙 𝐵
𝑇

𝑙

𝑂 −𝐵𝑙𝐵
𝑇

𝑙

) with MG = (
𝐴𝑙 𝐵

𝑇

𝑙

𝐵𝑙 𝐵𝑙𝐵
𝑇

𝑙

).
We solve the transformed residual equation

(
𝐴
𝑙
𝐵
𝑇

𝑙

𝐵
𝑙
𝐴
𝑝

)(
w
𝑖

𝑞
𝑖

) = (
ru
𝑟
𝑝

) (40)

with 𝐴 and 𝐴
𝑝
being invertible approximations of 𝐴 and

𝐴
𝑝
:= 𝐵𝐵

𝑇, respectively. A single iteration with the update
through a distributivematrixG is performed by the following
algorithm.

Algorithm 5 ([u𝑖+1, 𝑝𝑖+1] ← DGS(u𝑖, 𝑝𝑖)). (1) Smooth
momentum equations

w = u𝑖 + 𝐴−1 (f − 𝐴u𝑖 − 𝐵𝑇𝑝𝑖) . (41)

(2) Smooth the transformed continuity equation

𝑞 = 𝐴
−1

𝑝
(𝑔 − 𝐵w) . (42)

(3) Transform the correction back to the original variables

u𝑖+1 = w + 𝐵𝑇𝑞,

𝑝
𝑖+1
= 𝑝
𝑖
− 𝐵𝐵
𝑇
𝑞.

(43)

The DGS has been widely used as a smoother for the
finite difference discretization. In this paper the DGS type
smoothers are used for finite element discretization of the
Stokes problem.

3.1.4. The Preconditioned Minimum Residual Smoother. The
preconditioned minimum residual method is a Krylov sub-
space method for solving symmetric indefinite systems and
uses popular block preconditioners. This method is used as
a smoother for the multigrid method of the Stokes problem
in this paper. For the Stokes equations, the classical block-
diagonal preconditioner for MINRES method [8] is

𝑃 = (
𝐴 0

0 𝑆
) (44)

with 𝑆 = 𝐵𝐴
−1
𝐵
𝑇. The block preconditioning requires the

solution of two systems of equations with matrices 𝐴 and
𝑆 at each MINRES iteration. If 𝑃−1 is computed exactly,
the preconditioned Krylov methods converge in two or
three steps [10]. For practical implementations, the Schur
complement 𝑆 is replaced by the mass matrix 𝑀

𝑝
of the

pressure space. For discontinuous pressure space,𝑀
𝑝
is block

diagonal and easy to invert. For continuous pressure space,
say 𝑄

1
, the mass matrix 𝑀

𝑝
can be further replaced by its

diagonal matrix [8].

3.2. Multigrid Convergence. The convergence analysis of the
multigrid method relies on the two properties, namely, the
approximation and the smoothing. The general convergence
rates are independent of ℎ (the mesh size), 𝑙 is the level
of discretization, and 𝑚

1
and 𝑚

2
are the number of pre-

and postsmoothing iterations [1, 12, 18]. The results for
the convergence of the multigrid method for the scalar
elliptic problems cannot apply to the Stokes equations. We
provide a snapshot of the available convergence results of the
multigrid method for Stokes equations. The ideas presented
in this paper are based on the work in [12, 16, 18]. An
iteration of single multigrid step consists of a combination
of smoothing step and a coarse grid correction step. We
will consider the multigrid convergence with the Braess-
Sarazin smoother with S

𝑙
being the iteration matrix of the

smoother (34) and theM
𝑙
being the Stokes stiffness matrix in

(22). The operator 𝑃
𝑙
and its adjoint 𝑅

𝑙
are intergrid transfer

operators, prolongation, and the restriction, respectively.The
convergence analysis of themultigridmethod begins with the
analysis of the two-gridmethod, with𝑚

1
and𝑚

2
the pre- and

post-smoothing steps, respectively, applied to (22) results in
the iteration matrix

𝐿
𝑙
= S
𝑚1

𝑙
(𝐼
𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
M
𝑙
)S
𝑚2

𝑙
. (45)

The key point on the analysis of the multigrid method is
that the error can be split into two components. That is
the one produced by the smoothing process and the one
produced by the coarse grid correction. The coarse grid
error consists of the low frequency components and the
smoothing consists of the high frequency components of
error.The ability to cope with the low frequency components
is called the approximation property and with the second
is called the smoothing property. For the analysis of the
multigrid convergence [2, 29] used the framework based on
the smoothing and approximation property. For analysis we
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define the following norms, Euclidean norm by ‖ ⋅ ‖, and on
R𝑛𝑙+𝑚𝑙 the following norm is applied:


(
u
𝑙

𝑝
𝑙

)



2

ℎ

:=
u𝑙

2

+ ℎ
2

𝑙

𝑝𝑙

2

=


Θ
𝑙
(
u
𝑙

𝑝
𝑙

)



2

ℎ

with Θ
𝑙
:= (

𝐼
𝑛𝑙
𝑂

𝑂 𝐼
𝑚𝑙

) .

(46)

Furthermore we introduce

M̂
𝑙
:= Θ
−1

𝑙
M
𝑙
Θ
−1

𝑙
, Ŝ

𝑙
:= Θ
−1

𝑙
S
𝑙
Θ
−1

𝑙
. (47)

Using the norms defined above and taking𝑚
1
= 𝑚 and𝑚

2
=

0 above we obtain
𝐿 𝑙
ℎ =


Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙
Θ
−1

𝑙
𝐿
𝑙
S
𝑚

𝑙
Θ
−1

𝑙



≤

Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙




M̂
𝑙
Ŝ
𝑙


.

(48)

The theorems below state the two properties and the multi-
grid convergence. For detailed proof we refer to [12, 18].

Theorem 6 (approximation property). Assume thatΩ is such
that the problem (5) is 𝐻2-regular. Let M

𝑙
be the coefficient

stiffness matrix and 𝑅
𝑙
and 𝑃

𝑙
the prolongation and the restric-

tion operators. Then there exists a constant 𝐶M independent of
𝑙 and using ℎ-scaling induced byM

𝑙
then


Θ
𝑙
(M
−1

𝑙
− 𝑃
𝑙
M
−1

𝑙−1
𝑅
𝑙
)Θ
𝑙

ℎ
≤ 𝐶M


M
−1

𝑙

2
, (49)

where 𝐶M = 𝐶ℎ
2.

The smoothing property is dependent on the smoother
used. It varies from one smoother to another. In this work
we used the Braess-Sarazin in which we solve the system (37)
exactly and sufficiently accurate inexact inner solver.

Theorem 7 (smoothing property). Let M
𝑙
be the coefficient

stiffness matrix and the smoothing operator S
𝑙
. Then


M̂
𝑙
Ŝ
𝑚

𝑙


≤ 𝑔 (𝑚)

M𝑙
 , (50)

where 𝑔(𝑚) = 𝑐ℎ2
𝑙
/(𝑚 − 1) for𝑚 ≥ 2 and 𝑔(𝑚) is a decreasing

function with lim
𝑚→∞

𝑔(𝑚) = 0.

Combining the approximation property Theorem 6 with
the smoothing property Theorem 7 produces a two-grid
convergence result.

Theorem 8. Assume that 𝑚
2
= 0 and that Ω is such that the

problem (5) is 𝐻2-regular. Then for the two-grid method the
following holds:

M𝑙
ℎ ≤

𝐶M

𝑚 − 1
, 𝑚 ≥ 2 (51)

with a constant 𝐶M independent of l and m.

Using this two-grid contraction number bound themulti-
grid 𝑊-cycle method convergence results can be derived
using ideas in [1, 2].

4. Numerical Results

In this section we present the numerical solution of classical
Stokes problem (1)–(3) using the solver presented above. The
solver is denoted by MGM (Algorithm 3). We present the
results of this method as outlined above to run the traditional
test problem, the driven cavity flow problem [11, 12, 27, 28].
It is a model of the flow in a square cavity (the domain is
Ω
◻
) with the top lid moving from left to right in our case

the regularized cavity model {𝑦 = 1 : −1 ≤ 𝑥 ≤ 1 |

𝑢
𝑥
= 1−𝑥

4
} [11].The Dirichlet no-slip boundary condition is

applied on the side and bottom boundaries. The mixed finite
element method was used to discretize the cavity domain
Ω = (−1, 1)

2.
We pay particular attention to the computational per-

formance of the multigrid method on the system (22) at
different grid levels. We compare the effectiveness of dif-
ferent smoothing/relaxation methods in the performance of
the multigrid method and different approximations for the
preconditioners 𝐴 and 𝑆 of the smoothers. The following
setup of the smoothers listed is considered.

(i) DistributedGauss Seidel (DGS) smoother: we use one
Gauss Seidel iteration for the evaluations of𝐴 and one
Gauss Seidel iteration for the computation of𝐴

𝑝
. The

method becomes DGSMG.
(ii) Inexact Uzawa smoother (IUzawa): the two cases are

considered for the evaluation of the preconditioners.
Firstly, the approximation 𝐴 = diag(𝐴) and one
V(1, 1)-cycle is used to approximate Schur compli-
ment matrix 𝐵𝐴𝐵𝑇. The second case is to use one
V(1, 1)-cycle for both evaluations of𝐴 and 𝐵𝐴𝐵𝑇. The
method becomes IUZAWAMG.

(iii) Braess-Sarazin smoother (B-S): the two cases are
conspired for the evaluation of the preconditioners.
Firstly, the approximation 𝐴 = diag(𝐴) and one
V(1, 1)-cycle is used to solve the approximate Schur
compliment matrix 𝐵𝐴𝐵𝑇. The second case is to use
one V(1, 1)-cycle for both evaluations of𝐴 and 𝐵𝐴𝐵𝑇.
The method becomes B-SMG.

(iv) PMINRES smoother: the first case is to use diagonal
preconditioner for 𝐴 and 𝑆 and the second case is
one V(1, 1)-cycle for committing the inversion of the
Laplacian operator for velocity as one V(1, 1) cycle is
used to approximate the Schur compliment using the
pressure mass matrix to accelerate the MINRES. The
method becomes PMINRESMG.

The comparison is made on the performance of the multigrid
schemes with different smoothers (i)–(iv) and cases involving
different approximations of preconditioners in terms of iter-
ative counts and CPU time.The numerical treatment is given
to the discrete Stokes problemwhich resulted from themixed
finite Hood-Taylor stable elements consisting of biquadratic
elements for the velocities and bilinear elements for the pres-
sure, on a uniform grid. Implementation of our algorithms
was performed on a Windows 7 platform with 2.13 GHz
speed intel dual core processor by using MATLAB 7.14
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Table 1: Refinement levels and number of nodes (𝑛
𝑙
: number of velocity unknowns (×2) and𝑚

𝑙
: number of pressure unknowns).

Refinement level (𝑙) 1 2 3 4 5 6 7 8

Mesh size (ℎ
𝑙
) 1

2

1

4

1

8

1

16

1

32

1

64

1

128

1

256

Velocity nodes (𝑛
𝑙
) 9 25 81 289 1089 4425 16641 66049

Pressure nodes (𝑚
𝑙
) 4 9 25 81 289 1089 4425 16641

Table 2: Number of iterations and CPU time for Braess-Sarazin (2diag(𝐴), V-cycle(1, 1)) multigrid 𝑉-cycle at different levels of refinement,
tolerance = 10−6.

Levels
MG-𝑉-cycle

V(1, 1) V(2, 2) V(3, 3) V(4, 4)
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
21 (7.1𝑒 − 02) 15 (7.3𝑒 − 02) 9 (2.1𝑒 − 02) 6 (8.6𝑒 − 02)

1

32
22 (5.4𝑒 − 01) 12 (6.4𝑒 − 01) 10 (1.6𝑒 − 01) 7 (7.7𝑒 − 01)

1

64
22 (1.6𝑒 − 01) 16 (5.14𝑒 − 01) 11 (1.6) 7 (5.3𝑒 − 01)

1

128
22 (1.64) 16 (2.58) 11 (2.17) 7 (4.45)

Table 3: Number of iterations and CPU time for Braess-Sarazin (2diag(𝐴), V(1, 1)) multigrid 𝑊-cycle at different levels of refinement,
tolerance = 10−6.

Levels
MG-𝑊-cycle

V(1, 1) V(2, 2) V(3, 3) V(4, 4)
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
16 (8.3𝑒 − 02) 11 (8.4𝑒 − 02) 7 (3.5𝑒 − 02) 5 (9𝑒 − 02)

1

32
17 (6𝑒 − 01) 12 (6𝑒 − 01) 7 (1.2𝑒 − 01) 5 (7.1𝑒 − 01)

1

64
17 (5𝑒 − 01) 13 (5.1𝑒 − 01) 8 (1.89) 6 (5.6𝑒 − 01)

1

128
16 (1.98) 13 (3.24) 8 (2.13) 6 (5.78)

programming language and the MATLAB built-in Minres
functions are used for the smoother. For the discretization we
start with a uniform square grid with ℎ

0
= 1/2 and we apply

regular refinements to this starting discretization to obtain
the finest grid level.Thediscretized equations are solved using
the multigrid iteration with the 𝑊-cycle and 𝑉-cycle and
𝑚
1
and 𝑚

2
being presmoothing and postsmoothing steps,

respectively. The smoothers are determined by specifying
approximations 𝐴 and 𝑆 as highlighted in (i)–(vi) and in
all cases where one V-cycle inner multigrid iteration is used
with 𝑛

1
and 𝑛

2
being Gauss Seidel iteration steps of the

presmoothing and the postsmoothing, respectively.
In this work we use the structured mesh and regular

refinements. The finite element matrices on the rectangular
grids are assembled and the meshes are generated by the
MATLAB IFISS toolbox [3] in a hierarchy of grids which
are produced by successive regular refinements. We need
to choose the coarse mesh (the starting mesh), the finest
mesh which corresponds to the maximum level of refine-
ment on which the final approximate solution is considered.

The assembled matrices are stored for each refinement
level for the system (22). Table 1 shows an example of the
refinement levels, we use the coarsest (starting) level to have
9 nodes for velocity and 4 nodes for pressure variables (level
1) but we start the computation at level 2.

Table 1 shows the refinement levels and the number of
grid points (nodes) for each level.

The zero initial guess is chosen for all the tests. In
all the tests the iterations are repeated until the tolerance
‖𝑅
𝑖
‖/‖𝑅
0
‖ < 10

−6, where 𝑅
𝑖
= (

f𝑖
𝑔𝑖
) − (

𝐴𝑙 𝐵
𝑇

𝑙

𝐵𝑙 𝑂
) (

u𝑖
𝑝𝑖
) is

satisfied. The schemes converge if the stopping criteria are
satisfied. The results show the first case of the evaluation, the
preconditioners of the smoothers𝐴 and 𝑆with𝐴 = 2 diag(𝐴),
and for all cases evaluation of 𝑆 by one V-cycle innermultigrid
iteration with 𝑛

1
and 𝑛

2
being Gauss Seidel iteration of the

presmoothing and postsmoothing steps, respectively.
Tables 2 and 3 show the number of iterations and

computing time to demonstrate the effects of different 𝑉-
cycle (1, 2, 3, and 4) and 𝑊-cycle (1, 2, 3, and 4) being
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Table 4: Number of iterations and CPU time for multigrid (𝑉-cycle) with different smoothers and smoother preconditioner approximations
at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑉-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
18 (8.6𝑒 − 02) 13 (6.3𝑒 − 02) 9 (2.1𝑒 − 02) 14 (7.1𝑒 − 02)

1

32
19 (7.4𝑒 − 01) 14 (2.0𝑒 − 01) 10 (1.6𝑒 − 01) 16 (6.5𝑒 − 01)

1

64
19 (3.12) 14 (1.64) 11 (1.6) 16 (4.898)

1

128
19 (8.66) 14 (3.2) 11 (2.17) 16 (7.97)

Table 5: Number of iterations and CPU time for multigrid (𝑊-cycle) with different smoothers and smoother preconditioner approximations
at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑊-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
15 (9.8𝑒 − 02) 9 (7.1𝑒 − 02) 7 (3.5𝑒 − 02) 15 (8.5𝑒 − 02)

1

32
16 (8.3𝑒 − 01) 10 (3.4𝑒 − 01) 8 (1.2𝑒 − 01) 14 (5.1𝑒 − 01)

1

64
17 (5.76) 9 (2.56) 8 (1.89) 14 (6.43)

1

128
17 (9.87) 9 (4.32) 8 (2.13) 14 (8.55)

pre- and postsmoothing steps with Braess-Sarazin (B-S)
smoother (diag(𝐴), V(1, 1)). We compare the performance of
the 𝑉-cycle and 𝑊-cycle multigrid iterations with various
smoothing steps at different grid levels using one of the
smoothers, Braess-Sarazin.

From Tables 2 and 3 we observe that the number of
iterations decreases when the smoothing steps decrease and
the CPU time increases as expected with the increase in
smoothing steps.

Tables 4 and 5 show the numerical results obtained of
the multigrid solver at different grid levels. The number of
𝑉-cycle and𝑊-cycle multigrid iterations and CPU time are
shown, respectively. All the results presented underline the
efficiency of the multigrid solver to indefinite systems of
equations. In both tables we present results of the four studied
smoothers of themultigrid solver. In Tables 4 and 5we choose
the approximation of the smoother preconditioners as 𝐴 =

2 diag(𝐴) and 𝑆 = V-cycle(1, 1) for Braess-Sarazin, IUzawa,
and PMINRES. For the DGS we use the one Gauss Seidel for
both𝐴 and𝐴

𝑝
.We fix the number of smoothing steps to (3,3)

for all the results in the tables.
Comparing the performance of the 𝑉-cycle and𝑊-cycle

multigrid solver, we observe that the smoothers have different
effects on the performance of the multigrid solver. The
multigrid solver is optimal and the iterations are bound for
all the grid levels. In Tables 4 and 5 we compare all smoothers
and we observe that the Braess-Sarazin smoother leads to
faster convergence of the multigrid with fewer iterations and

less CPU ahead of other smoothers. The inexact Uzawa did
not disappoint in relaxing the error but the DGS and the
PMINRES lead to more iterations and computing times. The
other observation in Tables 4 and 5 is that the 𝑊-cycle
converges in fewer iterations than the 𝑉-cycle though it has
more computing times for all smoothers.

In Tables 6 and 7 we use different approximations for the
preconditioner of the smoothers of themultigrid𝑉-cycle and
𝑊-cycle, respectively. In applying the preconditioners, we
approximate the preconditioner 𝐴 of the Laplacian stiffness
and sparse matrix 𝐴 and 𝑆 by a geometric multigrid V(1, 1)-
cyclemethod (𝐴

𝑚𝑔
).Themultigrid is awell-known fast solver

for such systems. The multigrid solver is an inner iteration
of the smoothers. The results in Tables 6 and 7 also show
that the one iteration of the multigrid V-cycle is a suitable
approximation of the smoothers since the multigrid solver
has improved iterations from the ones in Tables 4 and 5. In
both tables the multigrid method is optimal in solving the
indefinite systems and the number of iterations is bounded
for all smoothers independent of the mesh size or grid level.

Table 8 shows the changes in the estimated a posteriori
errors for regularized driven cavity flow using𝑄

2
-𝑄
1
approx-

imation for the flow: using the strategy built in IFISS [3, 8]
that, for every element error, the local error estimation is
given by the combination of the energy norm of the velocity
error and the 𝐿

2
norm of the divergence error; that is,

𝜂
2

𝑇
:=
∇e𝑇


2

𝑇
+
𝑅𝑇


2

𝑇
, (52)
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Table 6: Number of iterations and CPU time of iterations for multigrid (𝑉-cycle) with different smoothers and using one V-cycle multigrid
preconditioner approximation (for both 𝐴 and 𝑆) at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑉-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
14 (4𝑒 − 01) 10 (3.4𝑒 − 02) 6 (1.3𝑒 − 02) 13 (4.4𝑒 − 02)

1

32
15 (2.1𝑒 − 01) 10 (2.3𝑒 − 01) 7 (1.5𝑒 − 01) 14 (5.4𝑒 − 01)

1

64
16 (2.11) 11 (2.01) 8 (1.01) 14 ()

1

128
16 (4.56) 11 (3.67) 8 (2.02) 14 (9.01)

Table 7:Number of iterations andCPU time formultigrid (𝑊-cycle) with different smoothers and using one V-cyclemultigrid preconditioner
approximation (for both 𝐴 and 𝑆) at different levels of refinement, tolerance = 10−6.

Levels
MG-𝑊-cycle(3, 3)

DGS IUzawa Braess-Sarazin PMINRES
Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec)) Iter(cpu time (sec))

1

16
11 (6.7𝑒 − 01) 8 (5.6𝑒 − 02) 5 (3.2𝑒 − 02) 13 (5.8𝑒 − 02)

1

32
12 (2.4𝑒 − 01) 9 (3.2𝑒 − 01) 6 (2.2𝑒 − 01) 14 (7.3 − 01)

1

64
13 (4.62) 9 (4.31) 6 (1.01) 15 (3.21)

1

128
13 (7.009) 9 (3.35) 6 (2.98) 15 (6.23)

Table 8: Changes in the ‖∇ ⋅ u‖
Ω
estimated velocity divergence error using multigrid 𝑉-cycle. 𝜂: the global error estimator using different

smoothers from one level to the other.

Levels ‖∇ ⋅ u‖
Ω

𝜂

IUzawa Braess-Sarazin IUzawa Braess-Sarazin
1

16
3.2𝑒 − 001 2.7𝑒 − 002 7.97𝑒 − 002 1.81𝑒 − 001

1

32
1.24𝑒 − 002 1.2𝑒 − 002 3.08𝑒 − 002 1.44𝑒 − 001

1

64
5.7𝑒 − 003 5.93𝑒 − 003 1.15𝑒 − 003 1.12𝑒 − 002

1

128
3.18𝑒 − 003 3.93𝑒 − 003 4.8𝑒 − 003 1.12𝑒 − 002

where e
𝑇
is the velocity error estimate and 𝑅

𝑇
= ‖∇ ⋅ u‖

𝑇

and 𝜂 := (∑
𝑇∈𝑇ℎ

𝜂
2

𝑇
)
1/2 are the global error estimator, using

different smoothers from one level to the other.
From Table 8 we note that the velocity divergence is

clearly converging at a faster rate to 𝑂(ℎ3), which means that
the estimated global error 𝜂 is increasingly dominated by the
velocity error component as ℎ → 0.

Figure 1 shows the sample grid output at the levels
1/64 and 1/128, the sample velocity solution (exponential
streamlines), and the pressure plot at the same level with the
same smoother.

5. Conclusion

The purpose of this study was to explore the multigrid
solver for the Stokes equations. We have introduced four
smoother iterative methods for both multigrids 𝑉-cycle and
𝑊-cycle to solve the indefinite systems emanating for the
mixed finite element discretization of the Stokes problem.We
analyse the construction of themultigrid solver, construction
of the smoothers, computation costs, and CPU time as an
indicator of the performance of each smoother at all grid
levels. Numerical experimental results are given for both
𝑉-cycle and𝑊-cycle for the smoothers at different grid levels.
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Figure 1: Velocity streamlines (a) and pressure plot (b) of the Stokes equation at level 5.

We have found out that for both cases and for all smoothers
used in this study the multigrid solver is optimal and the
number of iterations is bounded for all the grid levels. For the
steady Stokes equations and the choices of the smoothers used
the Braess-Sarazin like smoother became the best iteration
to relax the error of the multigrid solver. All the numerical
results show that the one V-cycle multigrid iteration is also a
suitable preconditioner for the smoothers used.
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