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The amount of information involved in hyperspectral imaging is large. Hyperspectral band selection is a popular method
for reducing dimensionality. Several information based measures such as mutual information have been proposed to reduce
information redundancy among spectral bands. Unfortunately, mutual information does not take into account the spatial
dependency between adjacent pixels in images thus reducing its robustness as a similarity measure. In this paper, we propose a
new band selection method based on spatial mutual information. As validation criteria, a supervised classification method using
support vector machine (SVM) is used. Experimental results of the classification of hyperspectral datasets show that the proposed
method can achieve more accurate results.

1. Introduction

Hyperspectral imaging consists of a large number of closely
spaced bands that range from 0.4𝜇m to 2.5 𝜇m [1]. The
high dimensionality in hyperspectral imagerymakes it useful
for many applications such as agriculture, medicine, and
surveillance. However, the high dimensionality of hyperspec-
tral data leads to high computational cost and can contain
redundant information. Thus, there is need to select the
relevant bands to reduce computational cost and data storage
while maintaining accuracy.

Band selection or feature extraction can be used to reduce
hyperspectral data. In band selection, a representative subset
of the original hyperspectral information is selected [2, 3].
Feature extraction involves the reduction of the original
information by transforming the initial information [4, 5]. In
hyperspectral imaging band selection is preferred since orig-
inal information is preserved, whereas in feature extraction
the original and required informationmay be distorted [6]. In
pixel classification a good band selectionmethod can not only
reduce computational cost but also improve the classification
accuracy.

Typically, in band selection, the similarity space is defined
among hyperspectral bands after converting the image bands
into vectors, where a dissimilarity measure is defined based

on the information measures such as mutual information
between a pair of vectors. The vectors are then clustered into
several groups based on their dissimilarity. In our work, we
use hierarchical clustering [7] in the dissimilarity space. In
the end, for each of the clusters, a band is selected to represent
each cluster. The dissimilarity metric used will influence the
shape of the clusters, as some elements may be close to one
another according to one distance and farther away according
to another.

Themaximization ofmutual information criterion postu-
lates that mutual information is maximal, when image bands
are similar. Mutual information has been demonstrated to
be a very general and powerful similarity metric, which
can be applied automatically and very reliably, without prior
preprocessing, on a large variety of applications [8]. Mutual
information treats all pixels the same during signal matching
regardless of the position and usefulness of the pixel in
the image. However, it does not incorporate useful spatial
information which is a drawback.

In this work, we propose spatial mutual information
which combines mutual information and a weighting func-
tion based on absolute difference of corresponding pixels as
the dissimilarity metric and hierarchical clustering to select
the bands considered most relevant. We tested our proposed
algorithm on two hyperspectral AVIRIS datasets with 220
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Figure 1: Dissimilarity matrix of hyperspectral image with 220 bands using MI.

and 204 band images, respectively, and their corresponding
ground truths. The experimental results show that using our
proposed dissimilaritymetric provides amore suitable subset
of bands for pixel classification.

2. Dissimilarity Measures

The independence of bands is one of the main factors used
to select a subset of image bands for pixel classification.
Dissimilarity measures are used to quantify the degree of
independence of image bands. Information measures such
as mutual information are widely used to measure the
correlation between information from different sensors.

2.1. Mutual Information. If𝑋 and𝑌 are two image bands, the
mutual information MI can be defined by

MI = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) , (1)

where 𝐻(𝑋) and 𝐻(𝑌) are the Shannon entropies [8] of 𝑋
and 𝑌, respectively, and 𝐻(𝑋, 𝑌) is the Shannon entropy of
the joint distribution of𝑋 and 𝑌.𝐻(𝑋) is defined as

𝐻(𝑋) =

𝑁

∑

𝑖=1

𝑝
𝑋 (𝑖) log𝑝𝑋 (𝑖) , (2)

where 𝑝
𝑋
(𝑖) is the probability distribution.

Equation (1) contains the term −𝐻(𝑋, 𝑌), and it means
minimizing joint entropy is increasing mutual information.
Since generally joint entropy increases with increasing dis-
similarity, the mutual information decreases with increasing
dissimilarity. In other words, if image bands are similar the
amount of mutual information they contain about each other
is high.

In our work, the histogram method was used to estimate
the MI between image bands; thus,

MI = 1
𝐸
∑

𝑥

∑

𝑦

Hist
𝑥𝑦 (𝑋, 𝑌) ∗ log(

𝐸 ∗Hist
𝑥𝑦 (𝑋, 𝑌)

Hist
𝑥 (𝑋) ∗Hist𝑦 (𝑌)

) ,

(3)

where 𝐸 is the number of entries. Hist
𝑥
(𝑋) and Hist

𝑦
(𝑌)

are defined as their histograms and Hist
𝑥𝑦
(𝑋, 𝑌) as joint

histogram.
Figure 1 shows the dissimilarity matrix of 220-band

AVIRIS Indian Pines image scene using MI.

2.2. Spatial Mutual Information. We have extended MI to
include spatial information.MI is estimated on a pixel to pixel
basis,meaning that it takes into account only the relationships
between corresponding individual pixels and not those of
each pixel in the respective neighbourhood. As a result, much
of spatial information inherent in images is not utilized. If an
image band is reshuffled it will yield the same MI. Thus, the
MI between Figure 2(a) and Figure 2(a) (itself) and the MI
between Figure 2(a) and Figure 2(b) are the same. Figure 2(c)
is the histogram of image in Figure 2(a) or Figure 2(b).

Our proposed spatial mutual information (SMI) com-
bines mutual information with a weighting function based
on the absolute difference of corresponding pixel values. The
absolute differences provide the spatial information.The sum
of absolute difference can be considered as another similarity
metric.

If𝑋 and𝑌 are image bands the spatialmutual information
is defined by

SMI = 1
𝑀
∑

𝑥

∑

𝑦

Diff (𝑋, 𝑌) ∗Hist𝑥𝑦 (𝑋, 𝑌)

∗ log(
𝑀 ∗Hist

𝑥𝑦 (𝑋, 𝑌)

Hist
𝑥 (𝑋) ∗Hist𝑦 (𝑌)

) ,

(4)

where Diff(𝑋, 𝑌) is the weighting function based on the
absolute difference of corresponding pixels. Figure 3 shows
the dissimilarity matrix of 220-band AVIRIS Indian Pines
image scene using SMI.

3. Our Proposed Band Selection Algorithm

The goal of our algorithm is to select a subset of image
bands that are independent as possible. The independence
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Figure 2: (a) 144th band of AVIRIS Indian Pines scene. (b) Randomized image in (a). (c) Histogram of images in (a) and (b).
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Figure 3: Dissimilarity matrix of hyperspectral image with 220 bands using SMI.
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of selected bands increases the accuracy of classification of
pixels [9]. We use the dissimilarity measure spatial mutual
information to define a dissimilarity space as shown in
Figure 3.Then, clustering is used to group bands according to
the information they share. Finally, a band representing each
cluster is selected for classification purposes.

Hierarchical clustering is used in this work. It is normally
represented in tree structures with a nested set of partitions.
The dissimilarity space is used to obtain a sequence of disjoint
partitions. The distance between each pair of groups is used
to decide how to link nested clusters in the consecutive levels
of the hierarchy. One interesting characteristic of hierarchical
methods is the fact that different linkage strategies create
different tree structures. We use an agglomerative strategy
in this work. That is, it starts with 𝑚 initial clusters and, at
each step, merges the two most similar groups to form a new
cluster. Thus, the number of groups is reduced one by one
[10].

In the end, bands are grouped according to the amount of
information they share. In a final stage, a band representing
each cluster is chosen, in such away that the band selectedwill
share as much information with respect to the other bands in
the cluster.

4. Experiments and Results

In our experiments, datasets are used to evaluate the per-
formance of the proposed method. The first dataset is the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
image taken over northwestern Indiana’s Indian Pine test site,
which has been widely used for experiments [11, 12]. The
Indian Pine dataset is with the resolution of 145 × 145 pixels
and has 220 spectral bands. There are 16 classes in total,
ranging in size from 20 to 2455 pixels. The dataset is accom-
panied with a reference map, indicating the ground truth.
The background class was not considered for classification.
The Salinas dataset consists of 204 spectral bands with size
of 217 × 512 pixels [13]. There are 16 classes in total ranging
from 916 to 11721 pixels. The background area was not used
for classification.

In this work, use the support vector machine (SVM) for
classification. The SVM classifies data into two groups by
constructing a hyperplane [14]. Intuitively, a good separation
is achieved by the hyperplane that has the largest distance to
the nearest training data point of two classes. Generally the
larger the margin the lower the generalization error of the
classifier. In this work, we use the multiclass SVM scheme,
named one-versus-all. The one-versus-all scheme involves
the division of an 𝑁 number of classes dataset into 𝑁 two-
class cases. The radial basis function (RBF) is used as the
kernel function in this experiment.

The pixels from every 16 classes are randomly sepa-
rated into 55% and 45% as the training and testing data,
respectively. For our experiment, 5,702 and 61107 pixels form
the training data of the Indian Pines and Salinas datasets,
respectively. The rest of the pixels for each dataset form
the testing data. The ground truths of the Indian Pines and
Salinas datasets are shown in Figures 5 and 6, respectively.

The following lists show the classes of the Indian Pines and
Salinas datasets, respectively.

Indian Pines AVIRIS Ground Truth Classes

(1) Background
(2) Alfalfa
(3) Corn no Till
(4) Corn-min Till
(5) Corn
(6) Grass-pasture
(7) Grass-trees
(8) Grass/Pasture-mowed
(9) Hay-windrowed
(10) Oats
(11) Soybean no Till
(12) Soybean min Till
(13) Soybean-clean
(14) Wheat
(15) Woods
(16) Building-Grass Tree-Drives
(17) Stone-Steel Towers.

Salinas AVIRIS Ground Truth Classes

(1) Background
(2) Brocoli green weeds 1
(3) Brocoli green weeds 2
(4) Fallow
(5) Fallow rough plow
(6) Fallow smooth
(7) Stubble
(8) Celery
(9) Grapes untrained
(10) Soil vineyard develop
(11) Corn senesced green weeds
(12) Lettuce romaine 4wk
(13) Lettuce romaine 5wk
(14) Lettuce romaine 6wk
(15) Lettuce romaine 7wk
(16) Vinyard untrained
(17) Vinyard vertical trellis.

We evaluated the overall accuracy which is the total
number of correctly classified samples versus the number
of samples. Figures 4(a) and 4(b) compare the classification
accuracy using our proposed algorithm and one of the
popular methods used for band selection [15–17], which has
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Figure 4: Classification results between our proposed algorithm and usingmutual information to define the dissimilarity space for (a) Indian
Pines dataset and (b) Salinas dataset.
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Figure 5: Ground truth for Indian Pines dataset.

a similar configuration as in our proposed algorithm but MI
is used to define the dissimilarity space as shown in Figure 1.

The classification accuracy of our proposed algorithm
is generally higher than using MI. For smaller numbers of
band selection our proposed method is particularly more
robust. The average classification accuracy for the Indian
Pines dataset using number of bands selected from 2 to
10 for our proposed method and using MI is 70% and
65%, respectively. The average classification accuracy for
the Salinas dataset using the same number of bands range
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Figure 6: Ground truth for Salinas dataset.

for our proposed method and using MI is 73% and 67%,
respectively. Figures 7 and 8 visualize the classification results
of our experiment. The figures show that there is general
improvement in classification accuracy with the increasing
with number of bands selected.

5. Conclusions

In this paper, we propose a new hyperspectral band selection
algorithm for pixel classification. The algorithm uses spatial
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Figure 7: Classification results of Indian Pines dataset using our proposed algorithm.
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Figure 8: Classification results of Salinas dataset using our proposed algorithm.
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mutual information to calculate the dissimilarity space for
band selection. We compare our method to a state-of-the-art
methodwheremutual information is used as the dissimilarity
metric. The experiments demonstrate that our proposed
method can achieve more accurate pixel classification results
than using mutual information. In future, we will apply our
proposed method to other large datasets and investigate
optimization algorithms to reduce computational cost.
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