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Paxos is a prominent theory of state-machine replication. Recent data intensive systems that implement state-machine replication
generally require high throughput. Earlier versions of Paxos as few of them are classical Paxos, fast Paxos, and generalized Paxos
have a major focus on fault tolerance and latency but lacking in terms of throughput and scalability. A major reason for this is the
heavyweight leader.Through offloading the leader, we can further increase throughput of the system. Ring Paxos, Multiring Paxos,
and S-Paxos are few prominent attempts in this direction for clustered data centers. In this paper, we are proposing HT-Paxos, a
variant of Paxos that is the best suitable for any large clustered data center. HT-Paxos further offloads the leader very significantly
and hence increases the throughput and scalability of the system, while at the same time, among high throughput state-machine
replication protocols, it provides reasonably low latency and response time.

1. Introduction

State-machine replication (SMR) is a fundamental technique
for increasing availability of the system [1, 2]. It lies in the
heart of themany real time applications. Replicating a service
on multiple servers ensures that even if some replica fails the
service is still available. State-machine replication prevalently
uses the variants of Paxos. Google’s Megastore [3], chubby
lock service [4], and yahoo’s Zab [5] are few of the popular
applications that use the variant of Paxos. Since in leader
based protocols, leader does most of the work, the bottleneck
is found at the leader and the maximum throughput is
limited by the leader’s resources (such as CPU and network
bandwidth), further increasing the number of client requests
decreases the throughput. Since the bottleneck is at the leader,
more additional replicas will not improve performance; in
fact, it decreases throughput since the leader requires to
process additional messages.

Ring Paxos [6] offloads the leader by adopting the con-
cepts of (i) ordering of client IDs by the leader instead of
full requests, (ii) dissemination of requests and learned-ids by
the leader through IP-multicasting, (iii) a ring of acceptors,

(iv) batching of requests at leader, and (v) pipelining (i.e.,
parallel execution of ring Paxos instances). Concept of ip-
multicasting allows the leader to order the IDs instead of
full requests and hence offloads the leader. Ring of acceptors
reduces the number of messages sent to other acceptors and
received from other acceptors by the leader. Because of the
ring, learners learn the decision only from the leader. In other
Paxos protocols those are optimized for latency instead for
messages and learners learn the decision from any quorum
of acceptors; that is, ring of acceptors reduces the load on
the learners. Batching of requests at leader also significantly
offloads the leader.Moreover, concept of cheap Paxos reduces
the latency.

However, in ring Paxos leader still requires to handle all
client communications. Moreover, it assigns unique ID to cli-
ent requests and sends all client requests with their ID to
all acceptors and learners. Furthermore, leader forwards ID
to the first acceptor of the ring and on receiving ID from
the last acceptor of the ring, leader broadcasts their decision
to all the acceptors and learners. In ring Paxos, clients also
require knowing about the leader; if leader fails then service
will interrupt until the election of a new leader.
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S-Paxos [7] offloads the leader by using the concepts as
(i) distributing the work of handling all client communica-
tions among all nonfaulty replicas, (ii) disseminating client
requests among replicas in a distributed fashion, (iii) ordering
of IDs by the leader instead of full client requests, (iv) batch-
ing the client requests, and (v) pipelining. Receiving of client
request by any replica has certain advantages as it offloads the
leader and failure of the leader does not interrupt service.

However, in S-Paxos, every nonfaulty replica including
leader receives all client requests either directly from clients
or through other replicas. All these client requests may reach
the leader in less number of messages because of the batching
at various replicas (unlike ring Paxos). Moreover, leader
may not require disseminating all client requests because
of the aforementioned second concept of S-Paxos, (unlike
ring Paxos) but partially disseminates the client requests and
partially handles client communications. In addition, leader
uses classical Paxos for ordering IDs (instead of full client
requests), so leader and other replicas handle all messages
belonging to classical Paxos. A large number of messages at
leader adversely affect throughput.

Multiring Paxos [8] uses the concept of state partitioning
[9] for increasing the throughput of the system. Each parti-
tion uses a different instance of ring Paxos. The performance
of ring Paxos directly affects this protocol.

In this paper, we are proposing HT-Paxos (HT stands for
High Throughput) a variant of Paxos that adopts all afore-
mentioned concepts of S-Paxos for offloading the leader. In
addition, HT-Paxos adopts few major concepts as (i) elim-
inating the work of handling client communications and
request dissemination from the leader; that is, leader does not
require either receiving or disseminating the client requests;
instead it only receives the batch IDs (or request IDs) and
orders them (unlike S-Paxos and ring Paxos). This signifi-
cantly reduces acknowledgement messages at disseminators
in large clustered data centers (unlike S-Paxos, where every
disseminator sends acknowledgement messages to every
other disseminator). In this way, leader as well as other
disseminators becomes truly lightweight and hence for any
large clustered data center, HT-Paxos provides significantly
higher throughput.

Organization of this paper is as follows: tomake the paper
self-sufficient; next section revisits Paxos. Section 3 presents a
system model. HT-Paxos is discussed in Section 4. Section 5
presents a comparative analysis of proposed work with other
related works. Finally, concluding section discusses the ad-
vantages of HT-Paxos.

2. Revisiting Paxos

Under this section, theory of Paxos is briefly reviewed. Paxos
is a family of protocols that implements a replicated state-
machine and assumes a distributed system of processes
communicating via messages. Processes can fail only by
stopping, and messages can be lost or duplicated but not
corrupted. Timely actions by nonfailed processes and timely
delivery of messages among them are required for progress;
safety is maintained despite arbitrary delays and any number
of failures.

Any of the Paxos protocol has three types of agents: pro-
posers, acceptors, and learners. In an implementation, a sin-
gle process may act as more than one agent. Proposers
propose the commands. Acceptors choose the sequence of
commands and Learners learn and execute the commands.
If only one proposer proposes all the commands and resolves
the conflicts then it is called a leader.

2.1. Classical Paxos. In classical Paxos [10, 11] clients send
their command to the leader. Leader creates a separate
instance of Paxos protocol for every command and assigns an
instance number to each instance sequentially. If an instance
of Paxos protocol at any server communicates with another
server then another server creates a new instance of Paxos
protocol, with the same instance number provided the same
instance number does not exist. But, if leader fails then leader
election protocol elects a new leader.

Every instance of Paxos protocol takes one or more
rounds to decide on a single output value. A successful round
has two phases.

Phase 1a. Proposer (leader) selects a proposal number 𝑛 and
sends a prepare message that contains a proposal along with
proposal number 𝑛 to a majority of acceptors.

Phase 1b. If the proposal number 𝑛 of the current proposal is
larger than the proposal number of any previous proposals,
then Acceptor promises not to accept proposals less than 𝑛
and sends the last accepted proposal (if any) to the proposer.
Otherwise, acceptor sends a denial to the proposer.

Phase 2a. If the Proposer receives a response (numbered
𝑛) from a majority of acceptors then it chooses the highest
numbered proposal received from all such responses. If the
proposer does not receive any accepted proposal then it
chooses any one of the proposed proposals. Now proposer
sends an accept message to a majority of acceptors along with
a chosen proposal and proposal number 𝑛.

Phase 2b. If an acceptor receives an accept message for a
proposal numbered 𝑛 then it accepts the proposal unless it
has already responded to a preparemessage having a proposal
number greater than 𝑛. After accepting the proposal, it sends
an acceptedmessage along with accepted proposal to the pro-
poser and every learner. A round fails when multiple pro-
posers send conflicting prepare messages or the proposer
does not receive a majority of responses. In these cases,
another round starts with a higher proposal number.

In addition, different proposers choose their proposal
numbers from the disjoint sets of numbers. Therefore, two
different proposers never issue a proposal with the same
proposal number. Moreover, each proposer maintains the
highest numbered proposal with proposal number in a stable
storage and phase 1 always uses a higher proposal number
than any it has already used. An acceptor always records its
intended response in a stable storage before actually sending
the response. Furthermore, every learner executes the learned
commands sequentially as per the instance numbers.
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2.1.1. Optimizations of Classical Paxos. If leader is relatively
stable then phase one becomes quite unnecessary. Thus, it is
possible to skip phase one for future instances of the protocol
with the same leader. To achieve this, the instance number
is included along with each value. It reduces the failure free
message delay (proposal to learning) from four delays to two
delays.

Another optimization reduces the number of messages,
as phase 2b messages reach only the leader; if leader receives
such messages for the same value from majority of acceptors
then leader decides this value and sends this decision to all
learners. However, this optimization increases the latency.

2.2. Fast Paxos. Fast Paxos [12] generalizes basic Paxos to
reduce end-to-end message delays. In basic Paxos, the mes-
sage delay from client request to learning is three message
delays. Fast Paxosallows two message delays but requires the
Client to send its request to multiple destinations. Intuitively,
if the leader has no value to propose, then a client could send
an accept message to the acceptors directly. The acceptors
would respond as in basic Paxos, sending accepted messages
to the leader and every learner achieving two message delays
from client to learner. If the leader detects a collision, it
resolves the collision by sending accept messages for a new
round, which are accepted as usual. This coordinated recov-
ery technique requires four message delays from client to
learner. The final optimization occurs when the leader spec-
ifies a recovery technique in advance, allowing the acceptors
to perform the collision recovery themselves. Thus, unco-
ordinated collision recovery can occur in three message
delays (and only two message delays if all learners are also
acceptors).

2.3. Generalized Paxos. Generalized Paxos [13] generalizes
the classical Paxos, multi-Paxos, and fast Paxos. Moreover, it
explores the relationship between the operations of a dis-
tributed state-machine for improving performance. When
conflicting proposals are commutative operations of the
state-machine, in such cases, coordinator accepts all such
conflicting operations at once, avoiding the delays required
for resolving conflicts and reproposing the rejected operation.
This Paxos uses ever growing sets of commutative operations,
after some reasonable time, these sets become stable and
then leader accepts this set. Larger set reduces the number
of messages and time taken by the state-machine.

2.4. Ring Paxos. Ring Paxos [6] has a logical ring of acceptors.
One acceptor of the ring plays a role of the coordinator
(leader). Coordinator accepts client requests and assigns a
unique ID to each client request. Moreover, in phase 1, coor-
dinator and majority of acceptors make an agreement about
the ring of acceptors. Moreover, As soon as coordinator
receives enough client requests to make a batch or timeout
reaches, phase two triggers. In phase 2, coordinator ip-mul-
ticasts the client requests alongwith their IDs, round number,
and instance number to all acceptors and learners. Ring Paxos
executes consensus on IDs.

Upon receiving a phase 2 message, first acceptor in the
ring creates a small message containing the round number,
IDs, and its own decision and forwards it along the logical
ring. Moreover, upon receiving a message from an acceptor
of the ring, other than coordinator, each acceptor in the ring
appends its decision to the message and forwards it along the
logical ring, if it has the corresponding client requests.

Upon receiving the phase 2message from the last acceptor
of the ring, coordinator informs all the learners that some IDs
have been chosen. In high load conditions, this information
can be piggybacked on the next ip-multicast message. More-
over, learner delivers the corresponding client value in the
appropriate instance.

2.5. Multiring Paxos. Multiring Paxos [8] uses the concept
of logical partitioning for increasing the throughput of the
system; proposers, acceptors, and learners subscribe to one
or more logical partitions. Each partition uses a different
instance of Ring Paxos.

2.6. S-Paxos. S-Paxos [7] assumes that all the replicas servers
play the roles of all agents and out of them, one replica plays
a role of the leader. Moreover, any client may send their
request with their unique IDs to any of the replica. Replica
accepts client requests and creates a batch that contains client
requests and their IDs. After that, replica assigns an ID to that
batch. Now replica forwards this batch and batch ID to all the
replicas (including self). When a replica receives a forwarded
batch with their batch ID, it records the batch and the batch
ID in the requests set. It then sends an acknowledgment
containing the batch ID to all replicas. Replica retransmits
acknowledgementmessage periodically until batch stabilizes.
Batch stabilizes after receiving 𝑓 + 1 acknowledgments from
different replicas for a particular batch ID (𝑓 represents an
upper bound for faulty replicas). A replica records this fact by
adding the batch ID to its stable Ids set. If replica receives an
acknowledgement for a particular batch id from any replica
𝑞 but does not has corresponding batch then it requests 𝑞 for
resending the corresponding batch.

Moreover, the leader replica passes the batch IDs available
in stable Ids set to the ordering layer, which will then use
the classical Paxos protocol to order it. Here it is significant
that classical Paxos achieves consensus on IDs rather than
full requests. Replicas execute client requests in the order
as suggested by classical Paxos. After executing the request,
the replica that received the request from the client sends
the corresponding reply. In the low load condition, we may
avoid batches but S-Paxos is designed for high throughput;
therefore, batching and pipelining are quite well desirable. In
high load conditions, any outgoingmessage that contains any
batch may piggyback acknowledgement messages.

3. System Model

HT-Paxos is a variant of Paxos. However, we have divided
the role of acceptors into two separate subcategories as (i)
disseminators and (ii) sequencers. In this way, HT-Paxos
has four classes of agents: proposers (clients), disseminators,
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sequencers, and learners. One sequencer assumes a role of
the leader. Proposers propose proposals (requests); dissem-
inators accept proposals and disseminate accepted proposals
to all other disseminators and learners; sequencers work for
establishing an order by using classical Paxos (classical Paxos
uses both sequencers and learners for determining and learn-
ing an order). Learners receive proposals from disseminators
and execute them in an order as indicated by the leader.
Although agents work differently for improving throughput
but fundamental guarantees (nontriviality, stability, consis-
tency, and liveness) of Paxos are the same in HT-Paxos.

It is proposed that clustered data center has two LANs
(local area networks), calling them first LAN and second
LAN. All disseminators and learners subscribe to both the
LANs.Moreover, all sequencers subscribe to the second LAN.
Furthermore, proposers either subscribe to the both the
LANs or connect both the LANs via one or more routers.

Any computing node that has a disseminator will also
have a learner and in such nodes, both agents can share all
incomingmessages and data structures.Moreover, nodes that
have sequencers do not have any other agent. Furthermore,
each computing node has two buffers one for incoming
messages and another for outgoing messages for each LAN.

Like classic Paxos, it is assumed that agents communicate
by sending messages. These messages can take arbitrarily
long for reaching their destinations, can be delivered out of
order, can be duplicated, and can be lost. Moreover, system
detects all corrupted messages and considers such messages
(corrupt in communication medium and finally detected)
as lost. Furthermore, agents discard duplicate messages and
learners discard duplicate proposals.

Like classic Paxos, the customary partially synchronous,
distributed, and non-Byzantine model of computation is
assumed where agents operate at arbitrary speed, may fail by
stopping,may restart, and always perform an action correctly.
Agents have access to stable storage whose state survives
failures.

Further it is assumed that at least (i) ⌊𝑛/2⌋+1disseminator
will always remain nonfaulty out of the total 𝑛 disseminators,
(ii) ⌊𝑚/2⌋ + 1 sequencers will always remain nonfaulty out
of the total𝑚 sequencers, and (iii) one learner will always be
nonfaulty.

Optimized version of HT-Paxos with slight modification
is discussed in Section 4.2.

For sending amessage, two primitives (i) send ⟨𝑚𝑒𝑠𝑠𝑎𝑔𝑒⟩
to one receiver (ii) multicast ⟨𝑚𝑒𝑠𝑠𝑎𝑔𝑒⟩ to multiple receivers
are used. Send primitive is for one to one communication
and Multicast primitive represents that sender sends a single
message but specified multiple receivers can receive this
message. Multicasting can be implemented by using Ether-
net/hardware multicasting or by IP-multicasting or by Dr.
Multicast. Dr. Multicast [14] explains that IPmulticast in data
centers becomes disruptive in the presence of large number
of groups and requires a proper administrative control. How-
ever, HT-Paxos has only few groups. In addition, use of mul-
tiple LANs further reduces the number of groups per LAN.

Like S-Paxos, all activities of HT-Paxos are divided into
two layers, (i) dissemination layer and (ii) ordering layer.
All work performed by classical Paxos comes under ordering

layer and rest of the work (dissemination of requests) is
related to the dissemination layer.

4. HT-Paxos

4.1. Basic Algorithm

4.1.1. An Overview. Any client sends their request (with a
request value and a unique request id) to any one dissemi-
nator (randomly chosen) using first LAN. Moreover, if client
does not receive a reply message ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ in a reasonably
long time, then it periodically sends same request to any one
disseminator (randomly chosen) using first LAN until it gets
a reply. Furthermore, if client gets a reply message, then it
replies with ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩message to that disseminator using
second LAN.

If request is available from any client then disseminator
receives a request. After that, it multicasts this request using
first LAN to all disseminators and learners. Moreover, when
a disseminator receives a request from any disseminator then
(i) it records the request in the requests set, (ii) replies back
an acknowledgment message ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ to that dissem-
inator using second LAN and (iii) periodically multicasts
⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ message to all sequencers using second LAN
until request id become an element of decided set.

Disseminator that received the request from the client
sends a reply message ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ to the corresponding
client using second LAN in either of the two conditions (i) on
receiving ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩message from at least amajority of dis-
seminators (including self) or (ii) on observing that request id
is an element of decided set.Moreover, this disseminator peri-
odically sends a reply to the corresponding client until it gets
a reply message ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ or detects a failure of the client.

If disseminator does not receive sufficient desired ac-
knowledgement messages ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ then it periodically
multicasts ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ message to all disseminators using
second LAN until it receives desired acknowledgment mes-
sage(s) or when request id becomes an element of decided set.

If any disseminator 𝑝 receives ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩message from
any disseminator 𝑞 but does not has the corresponding
request, then 𝑝 sends a message ⟨Resend, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ to 𝑞
using second LAN.Moreover, on receiving ⟨Resend, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡
𝑖𝑑⟩ message from any disseminator 𝑝, disseminator 𝑞 sends
the corresponding request to the disseminator 𝑝 using first
LAN.

After receiving a ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ message from any learner,
disseminator replies with the corresponding request to that
learner.

After receiving same ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩messages from at least
a majority of disseminators, sequencer inserts this request id
into its stable ids set.

Moreover, leader repeatedly launches (up to the allowable
number of instances at a time) an instance of classical Paxos
for each request id from the stable ids. Classical Paxos uses
second LAN for their all communications. After learning a
request id, learner inserts this request id into the decided set.

Each disseminator also maintains requests set at the per-
manent storage device, initially the value of this set is null
and at every startup, and disseminator will initialize this set
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through reading permanent storage device. Moreover, if
learner is not at disseminator’s site then learner similarly
maintains this set. Furthermore, if learner is on disseminator’s
site then learner does not maintain this set but may read this
set when required.

Each learner also maintains decided set at permanent
storage device and initially the value of this set is null and at
every startup, learner will initialize this set through reading
permanent storage device. The disseminator on the same
computing node may read this set when required.

Each sequencer also maintains stable ids and decided set
at permanent storage device and initially the values of both
these sets are null and at every startup, sequencer will initial-
ize these sets through reading permanent storage device.

4.1.2. Pseudocode of Dissemination Layer. See Algorithm 1.

4.1.3. Ordering Layer. Ordering layer uses classical Paxos
(by adopting aforementioned optimizations) which is a well-
defined theory in literature. Instead of using the request value
from any client, classical Paxos achieves consensus on the
request id available in the stable ids. Every learner learns
request id sequentially as per the instance numbers of clas-
sical Paxos and inserts these request id into the decided set.

When the leader fails, only sequencers are required to
participate in leader election process, one of the nonfaulty
sequencers assumes the role of the leader. Clients, dissemina-
tors, and learners are not required to know who the leader is.
In HT-Paxos, leader election process does not affect request
dissemination (i.e., no burden on disseminator and learner
sites, unlike S-Paxos).

In HT-Paxos, all sequencers maintain only two sets (i)
stable ids set and (ii) decided set (unlike S-Paxos, where every
replica maintains four sets). The leader sequentially proposes
a request id from the stable ids set, in a new instance of
classical Paxos (up to the allowable number of instances at a
time). When leader learns a request id after receiving phase
2b messages (of classical Paxos), it inserts this request id
into the decided set and then deletes this request id from
the stable ids set. New leader always makes sure that before
proposing new request id from stable ids, all the request ids
received in phase 1b messages (of classical Paxos) must be
decided by as usual working of classical Paxos.

Unlike S-Paxos, HT-Paxos does not require proposed and
reproposed sets, even though, same optimization (i.e., no
duplicate request id will be proposed by the new leader) as
claimed in S-Paxos will be achieved here.

4.2. Optimizations of HT-Paxos. Before multicasting any
request to all disseminators and learners, a disseminator can
wait for a certain time for more requests from one or more
clients and then group them into a batch and assign them a
unique batch id; after that, this disseminator multicasts
⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑, 𝑏𝑎𝑡𝑐ℎ⟩ message to all disseminators and learners.
Upon receiving a ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑, 𝑏𝑎𝑡𝑐ℎ⟩ message any dissemi-
nator replies ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ message to that disseminator and
multicasts ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ to all sequencers. Rest of the proce-
dure of HT-Paxos applies to the batch id, similarly as the

request id. At sequencers, stable ids set will contain batch ids
and classical Paxoswill order the batch ids. Since the ordering
layer uses the classical Paxos, it can use the traditional opti-
mizations of batching and pipelining, as well as any other
optimization that applies to the classical Paxos.

Another optimization is to piggyback the acknowledg-
ments on themessages used to forward batches; disseminator
sends separate acknowledgmentmessages only in the absence
of such messages. This optimization is especially effective
when the system is under high load.

In proposed protocol, two LANs are used. However, one
may use one or more LANs depending upon various factors.
These factors may be either technological or economical. Use
of multiple LANs may increase the reliability and perfor-
mance of the communication network. As per [14], increasing
more multicast group can degrade the performance of the
communicationnetwork.We can reducemulticast groups per
LAN using more LANs. This may have a positive impact on
performance. If we do not have a technology for required
bandwidth in a LAN then in such case, use of multiple
LANs can provide the required bandwidth using the same
technology.

Further, proposed optimization increases the fault toler-
ance of the system for any given number of total computing
nodes. In this optimization, it is assumed that all disseminator
sites also have a sequencer. This optimization may increase
fault tolerance of the system but at the cost of comparatively
(as compared to HT-Paxos without this optimization) lower
throughput of the system. However, throughput under this
optimization is still better than any other aforementioned
high throughput protocols. We believe that increasing too
much fault tolerance at the cost of performance is unneces-
sary for any large clustered data center, since massive failures
are the rarest events.

4.3. Safety

4.3.1. Safety Criteria. For the safety of any protocol that
implements state-machine replication, no two learners can
learn the values in different order despite any number of (in
our case, non-Byzantine) failures.

4.3.2. Proof of Safety (Sketch). Proposed protocol fulfills the
safety requirement by adopting the following provisions.

Nontriviality. Learners can learn only values (client requests
or batches) as indicated by classical Paxos. Nontriviality
ensures that learners can learn only the proposed values
(client requests). As per the proposed protocol, leader of the
classical Paxos can only propose the request id or batch id
that corresponds to client requests; therefore, learners can
learn only the request id or batch id and, hence, correspond-
ing request or batch of requests.

Consistency. Learners can learn the requests only in same se-
quence as indicated by classical Paxos. Since classical Paxos
is a well-proven theory of literature that guarantees safety,
therefore, no two learners can learn the values (client
requests) in different order.
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(1) /∗ Task of a proposer (client) ∗/
(2) Create a new request
(3) Choose any disseminator 𝑑 randomly.
(4) Send <request> to 𝑑 using first LAN
(5) Upon not receiving any reply message <request id> from any disseminator until Δ1 time,
(6) Repeat from step 3
(7) Upon receiving a reply message <request id> from any disseminator 𝑑
(8) Send <request id> to 𝑑 using second LAN
(9) If (want to send more requests?)
(10) Repeat from step 2,
(11) Else, exit.
(12) /∗ Task of a disseminator ∗/
(13) Upon receiving <request> from any client
(14) Multicast <request> to all disseminators and learners using first LAN
(15) Upon receiving <request> from any disseminator 𝑑
(16) 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 ∪ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

(17) Send <request id> to d using second LAN
(18) Multicast <request id> to all sequencers using second LAN,
(19) Repeat from step 18 after every Δ2 time, until (𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑)
(20) Upon receiving <request id>message from at least a majority of disseminators or 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑
(21) If (received the corresponding request from the client)
(22) Then
(23) Send <request id> to the corresponding client using second LAN
(24) Repeat from step 23 after every Δ3 time, until it receives a reply message <request id> from the corresponding client

or client’s failure is detected

(25) Upon receiving <request id> from any disseminator 𝑞, (
∀𝑟𝑒𝑞𝑢𝑒𝑠𝑡 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡

∧𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∉ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

) and after Δ4 time

(26) Send <Resend, request id> to 𝑞 using second LAN
(27) Upon receiving <Resend, request id> from any disseminator p
(28) Send <request> to 𝑝 using first LAN
(29) Upon receiving <Resend, request id > from a learner 𝑙

(30) If (
∃𝑟𝑒𝑞𝑢𝑒𝑠𝑡 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡

∧𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

)

(31) Send < request > to 𝑙 using first LAN

(32) If (𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ∧ (
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 :

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

))

(33) Send <Resend, request id> to any other disseminator using second LAN
(34) Upon not receiving corresponding request after Δ5 time Repeat from step 32
(35) /∗ Task of a sequencer ∗/
(36) Upon receivingsame <request id> from at least a majority of disseminators
(37) 𝑆𝑡𝑎𝑏𝑙𝑒 𝑖𝑑𝑠 ← 𝑆𝑡𝑎𝑏𝑙𝑒 𝑖𝑑𝑠 ∪ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑

(38) /∗ Task of a learner ∗/
(39) If (learner is not at disseminator’s site)
(40) Then
(41) Upon receiving <request> from any disseminator
(42) 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 ∪ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

(43) If

((

∀𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 :

learner has learned 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑∧

(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ∉ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑠𝑒𝑡 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

))

(44) Send <Resend, request id> to any disseminator using second LAN
(45) Upon not receiving corresponding request after Δ6 time Repeat from step 43
(46) Execute requests in an order as provided by ordering layer.

Algorithm 1: Dissemination layer of HT-Paxos.
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4.4. Progress. HT-Paxos ensures that if any client receives
a reply for their request or request becomes an element of
stable id set at any disseminator then all available learnerswill
surely learn that request.Moreover, protocol also ensures that
if client does not crash for an enough time then client will
definitely receive a reply for their request.

4.4.1. Requirements for Ensuring Progress. At least ⌊𝑚/2⌋ + 1
sequencers out of total𝑚, ⌊𝑛/2⌋+1 disseminators out of total
𝑛 and one learner are always required to remain nonfaulty
for the progress of the proposed protocol (these requirements
are only for ensuring progress. Safety does not require these
conditions).

4.4.2. Proof of Progress (Sketch). As per the protocol, if any
client sends a request to any disseminator, there could be
two cases; it may be faulty or nonfaulty. If disseminator is
faulty then client will not receive a reply for this request.
Therefore, client will resend the request to any randomly
chosen disseminator. Since system always has at least a
majority of nonfaulty disseminators, therefore, there is a fair
chance that one of the nonfaulty disseminators will receive
the client request.

If nonfaulty disseminator receives a request from any
client, after that this disseminator may or may not fail before
forwarding the request to all disseminators and learners. If
disseminator fails then client will not receive a reply and
therefore will resend the request to any randomly chosen
disseminator. This phenomenon may get repeated up to
maximum 𝑓 times, where 𝑓 = ⌊𝑛/2⌋, because system may
have only maximum 𝑓 faulty disseminators.

If disseminator does not fail and forwards the request to
all disseminators and learners then some or all disseminators
and learners may or may not receive request due to the mes-
sage loss. If no disseminators receive request due to message
loss and sender disseminator fails then client will not receive
a reply; in this case, client will resend the request. This
phenomenon may repeat up to maximum 𝑓 times, because
system may have only maximum 𝑓 faulty disseminators.

If some or all disseminators receive request from any
disseminator, then all such disseminators reply ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩
message. If disseminator does not receive replies from at least
a majority of disseminators in a certain time limit for the
request and also observes that request id is not an element of
decision set, then it multicasts request id to all disseminators.
If request id is an element of decision set, it means at least
(𝑓 + 1) disseminators have the request, since, ordering layer
can decide request id only when it is an element of stable ids
set. Request id can become an element of stable ids set only
when at least (𝑓 + 1) disseminators have the request.

Moreover, on receiving a request id by any dissemi-
nator indicating that corresponding request is not avail-
able at this disseminator, then this disseminator sends a
⟨Resend, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ message to a disseminator from where
it has received request id. In reply of this message, dissem-
inator receives the corresponding request. Furthermore, if
disseminator observes that the request id is an element of
decision set then it periodically sends a ⟨Resend, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩

message to any other disseminator. If learner is not on the
disseminator’s node, then on learning a request id, if corre-
sponding request is not available then it periodically sends
⟨Resend, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ message to any disseminator until it
receives the request.

Statements in the above two paragraphs ensure that all
nonfaulty disseminators and learners will receive the request.
Nonfaulty disseminator that received the client request either
receives a majority of reply messages or observes that
request id is an element of decided set. Hence, client will
receive a reply if it does not fail, because disseminator will
periodically send reply to the client until it receives a reply or
detects a failure.

Leader will receive same ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ messages from at
least (𝑓+1) disseminators, because at least (𝑓+1) dissemina-
tors are always nonfaulty as per assumption and all nonfaulty
disseminators have the request as per the above paragraph
and all disseminators that have request periodically multi-
casts ⟨𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑖𝑑⟩ to all sequencers. Hence, request id will
definitely become an element of stable id set at the leader and
then classical Paxos will order all the elements of stable id
set. As we already know, classical Paxos guarantees progress
under aforementioned requirements, therefore, at least one
nonfaulty learner will definitely learn the request id. Since,
all nonfaulty learners have the corresponding request as
per statements of above paragraph. Therefore, all nonfaulty
learners will learn the corresponding request.

Hence, we can say that under aforementioned specific
requirements, HT-Paxos ensures progress.

5. Comparative Analysis

As we observe, the workload of most of the real time appli-
cations that use state-machine replication for increasing
availability is increasing day by day. Therefore, requirement
of high throughput is also increasing accordingly. We can
increase throughput by increasing the processing power of
computers and increasing the bandwidth of communication
network. Every time this solution for higher throughput may
not be practical for either technological or economical rea-
sons because replacement of existing computers and commu-
nication network with higher processing power computers
and higher bandwidth communication network may be a
costly affair and may not be practical every time. Moreover,
there may be the case that higher technology of computers
and communication networkmay not be available every time.

Alternatively, we can adopt a more scalable and through-
put efficient protocol, that is, a protocol that requires com-
paratively less computation at individual computers and
less traffic at individual LANs. In addition, it may increase
throughput by increasing more computers and more LANs,
although after a certain limit, we cannot scale up the system
because of coordination overload; instead, it may start reduc-
ing the throughput after certain limit. This limit depends on
the protocol that we use.

Earlier versions of Paxos (as classical Paxos, fast Paxos
and generalized Paxos) lack in terms of scalability and
throughput, because particularly leader has more process-
ing and bandwidth requirements. Other variants of Paxos
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like ring Paxos, multiring Paxos, and S-Paxos increase the
scalability and throughput by reducing the processing and
bandwidth requirements, especially at the leader (Figure 3).
We are going to compare the processing and bandwidth
requirements among various Paxos protocols that affected
system scalability and throughput.

5.1. Processing Requirements. In general, for state-machine
replication protocols, processing requirements at any indi-
vidual computer reduce, if computer processes less number
of messages. Therefore, we require analyzing the number of
incoming and outgoing messages. For the analysis, we are
considering here the case of normal operations.

Moreover, we also require some processing for the trans-
mission of the data. If any individual computing node
requires higher data transmission then it requires higher
processing requirement for the data transmission. We will
discuss this requirement in the next bandwidth requirements
section.

5.1.1. Message Analysis of HT-Paxos. Assume clients issue
total number of 𝑛 requests per unit time to all 𝑚 dissemi-
nators then on an average; each disseminator receives 𝑛/𝑚
requests per unit time. Further, assume that each dissemina-
tor makes a batch of 𝑛/𝑚 requests per unit time and leader
makes a batch of𝑚 batch ids with total 𝑠 sequencers.

For processing client requests of one unit time, number
of messages at various sites is determined as follows.

(1) At Any Disseminator Site

Total incoming messages = ((𝑛/𝑚) + 2𝑚).

Since disseminatorwill receive𝑚/𝑛 requests directly from the
clients, 𝑚 batches from all disseminators (including self), 𝑚
reply messages ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ from all disseminators (including
self), and one decision message containing𝑚 batch ids from
the leader (since, learner is also on disseminator’ site).

Total outgoing messages = (𝑚 + 3).

Since disseminator multicasts their own batch to all dis-
seminators and learners and per batch there is one reply
⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ message. Moreover, disseminator multicasts one
multicast ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ message to all sequencers and sends a
reply message to the client.

Total messages at a disseminator’s site = (3𝑚 + (𝑛/
𝑚) + 3).

(2) At the Leader Site

Total incoming messages = (𝑚 + ⌊𝑠/2⌋).

Since leader receives𝑚 batch ids and ⌊𝑠/2⌋ phase 2bmessages
of classical Paxos, as leader is also a one of the acceptors of
classical Paxos, so ⌊𝑠/2⌋ + 1 sequences (acceptors of classical
Paxos) create a required majority.

Total outgoing messages = 2.

Since leader multicasts one phase 2a message to majority of
sequencers (acceptors of classical Paxos). In addition, it also
multicasts a decision message to all the sequencers, dissemi-
nators and learners.

Total messages at the leader’s site = (𝑚+ ⌊𝑠/2⌋ + 2).

(3) At Any Sequencer Site (Other Than the Leader)

Total incoming messages = 𝑚 + 2.

Since, sequencer receives𝑚 batch IDs, one phase 2a message
of classical Paxos and one decision message from the leader.

Total outgoing messages = 1.

Since, sequencer sends only one phase 2bmessage of classical
Paxos.

Total messages at a sequencer = 𝑚 + 3.

(4) At Any Learner Site (without Disseminator)

Total incoming messages = 𝑚 + 1.

Since learner receives 𝑚 batches and one decision message
from the leader.

In normal operations, there is no outgoing message.
Therefore, total messages = 𝑚 + 1.

5.1.2. Message Analysis of Ring Paxos. Because of the process-
ing, bottleneck may be at the leader. Therefore, total number
of messages at the leader is calculated. Just like HT-Paxos, it
is assumed that out of total 𝑛 requests leadermakes𝑚 batches
of 𝑛/𝑚 requests each.

Total incoming messages = 𝑛 + 𝑚.

Since leader will receive 𝑛 requests directly from the clients
and for 𝑚 batches leader will receive 𝑚 messages from the
last acceptor of the ring.

Total outgoing messages = 𝑛 + 𝑚 + 1.

Since leader will send 𝑛 reply messages to the clients, for
𝑚 batches leader will ip-multicast𝑚messages to all acceptors
and learners and ip-multicast one decision message contain-
ing𝑚 batch ids to all acceptors and learners.

Total messages at the leader’s site = 2(𝑛 + 𝑚) + 1.

5.1.3. Message Analysis of S-Paxos. Because of the processing,
bottleneck may be at the leader. Therefore, the total number
ofmessages at the leader is calculated. Just like HT-Paxos, it is
assumed that various clients issue total number of 𝑛 requests
per unit time and total𝑚 disseminators are there then on an
average and each disseminator receives 𝑛/𝑚 requests per unit
time. Moreover, it is assumed that each disseminator makes
a batch of 𝑛/𝑚 requests per unit time and the leader makes a
batch of𝑚 batch ids.

Total incomingmessages= (((𝑛/𝑚)+𝑚+𝑚2)+⌊𝑚/2⌋+
1).
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Leader receives 𝑛/𝑚 requests directly from the clients and𝑚
batches from all disseminators (including self). In addition,
per batch it also receives 𝑚 reply messages ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ from
all disseminators (including self), ⌊𝑚/2⌋ messages of phase
2b of classical Paxos and one decision message from itself.

Total outgoing messages = 𝑛/𝑚 + 𝑚 + 3.

Leader sends 𝑛/𝑚 reply messages to the clients and per batch
one multicast of reply ⟨𝑏𝑎𝑡𝑐ℎ 𝑖𝑑⟩ message to all replicas. In
addition, it also multicasts own batch to all the replicas, one
multicast of phase 2a message of classical Paxos and one
multicast of decision message to all the replicas.

Total messages at the leader’s site = (𝑚2 + 2(𝑛/𝑚) +
2𝑚 + ⌊𝑚/2⌋ + 4).

5.1.4. Message Analysis of Classical-Paxos. Because of the
processing, bottleneck may be at the leader. Therefore, the
total number of messages at the leader is calculated under
batching optimization for reducing the number of messages.
Just like HT-Paxos, it is assumed that out of total 𝑛 requests
leader makes 𝑚 batches of 𝑛/𝑚 requests each. Let there be
total𝑚 acceptors.

Total incoming messages = 𝑛 + 𝑚 ∗ ⌊𝑚/2⌋.

Since, leader receives 𝑛 client requests as well as per batch
⌊𝑚/2⌋messages in phase 2b.

Total outgoing messages = 𝑛 + 2𝑚.

Since, leader sends 𝑛 reply messages to the clients. Moreover,
per batch leader multicasts a phase 2a message and one
multicast of decision message.

Total messages at the leader’s site = 2(𝑛 + 𝑚) + 𝑚 ∗
⌊𝑚/2⌋.

5.1.5. Comparative Message Analysis. As we can see in
Figure 1, large number of messages in classical Paxos and
in ring Paxos are because all client communications are
through the leader. S-Paxos and HT-Paxos decentralize the
client communication; that is, clients may approach any
disseminator. Message advantage of HT-Paxos over S-Paxos
is because of the fact that in S-Paxos, every disseminator
is required to reply to every other disseminator. On the
other hand, in proposed HT-Paxos reply goes to only one
disseminator and disseminator sites are not concerned with
the most of the messages of ordering layer.

It can be observed from Figure 2 that leader in HT-Paxos
is verymuch lightweight as compared to any disseminators. It
means bottleneck may not be at the leader’s site in HT-Paxos
(if optimized for throughput rather than fault tolerance).

In fault tolerant version of HT-Paxos, ordering layer
messages also become the part of the busiest computing
node (leader’s site) as similar to the S-Paxos. The message
advantage of this version ofHT-Paxos over S-Paxos is because
of the aforementioned reply mechanism of disseminators.
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Figure 1: Comparison among mentioned variants of Paxos for the
messages requirements at the busiest computing nodes, where 𝑚 =

1000, 𝑠 = 20.
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Figure 2: Comparison between any one disseminator and the leader
of the HT-Paxos for the messages requirements, where 𝑚 = 1000

and 𝑠 = 20.

5.2. Bandwidth Requirements. Size of data and number of
messages required to transmit by any computer affect the
bandwidth requirements of the communication network. If
any protocol requires more number of messages than due to
message overhead, more data will pass through the commu-
nication network, hence requiring higher bandwidth. Bottle-
neck may be the bandwidth of communication network due
to large data size and high number of messages. In any
data center, if bandwidth is bottleneck, then there are two
options either replacing the lower bandwidth LAN with
higher bandwidth LAN or adopting multiple LANs of same
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Figure 3: Comparison among mentioned variants of Paxos for the
messages requirements at the busiest computing nodes, where 𝑚 =

1000 and every disseminator site also has a sequencer and a learner,
that is, fault tolerant version of HT-Paxos.

bandwidth. First option may not be practical for either
technological or economical reasons. As data centers do not
require big cables, therefore, it is not a costly affair and hence
not a big issue in any large data center.

However, if any computing node requires transmitting
and receivingmore data, then bottleneckmay be the network
subsystem of computing node that works for the transmitting
and receiving of the data. Replacements of computing nodes
with higher processing powers may really be a big issue,
because it may be a costly affair.

Therefore, bandwidth requirements of individual com-
puting nodes of the various variant of Paxos need to be
checked. For that, same assumptions will be applicable as
discussed in the previous section.Moreover, it is assumed that
message overhead is 64 bytes, and request id, batch id, round
number, and instance number are 4 bytes each.

On the basis of what incoming and outgoingmessages are
there, one can calculate the incoming and outgoing data per
unit time.

In any clustered data center, if classical Paxos is used
then leader of classical Paxos handles extremely large amount
of data (as mentioned in Figure 4) just because protocol
achieves consensus on request (or batch) instead of request id
(or batch id). Other variants of Paxos for high throughput
achieve consensus on request id (or batch id) instead of
request (or batch) because, in general, request id (or batch id)
remains very small as compared to the corresponding request
(or batch).

If number of requests increases, the leader of ring Paxos
handles large amount of data as compared to other high
throughput Paxos (as shown in Figure 5). Major reason is
that the leader handles all client communications. Moreover,
in case of fewer requests, ring Paxos performs better than
S-Paxos. The reason for this is the comparatively large
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Figure 4: Comparison of bandwidth requirements at thementioned
computing nodes of the various mentioned variant of Paxos, where
𝑚 = 1000, 𝑠 = 20, and data size of request = 1 k byte.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400

D
at

a i
n 

M
By

te
s/

un
it 

tim
e

Number of requests/unit time

HT-Paxos (disseminator)
HT-Paxos (leader)

S-Paxos (leader)
Ring Paxos (leader)

Thousands

Th
ou

sa
nd

s

Figure 5: Comparison of bandwidth requirements at thementioned
computing nodes of the various mentioned variant of Paxos, where
𝑚 = 1000, 𝑠 = 20 and data size of request = 1 k byte.

number of reply messages at the disseminators. Furthermore,
disseminator ofHT-Paxos handles less data because of decen-
tralized client communications like S-Paxos; in addition, it
reduces the number of reply messages at the disseminators.
Furthermore, leader of HT-Paxos is significantly lightweight
because it handles lightweight request ids or batch ids.

As the data size of the client request reduces, it can be
observed that the gap of S-Paxos with HT-Paxos widens as
shown in Figure 6. This is because of high ratio of metadata
in S-Paxos as compared to HT-Paxos. Moreover, S-Paxos
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Figure 6: Comparison of bandwidth requirements at thementioned
computing nodes of the various mentioned variant of Paxos, where
𝑚 = 1000, 𝑠 = 20, and data size of request = 512 bytes.
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Figure 7: Comparison among mentioned variants of Paxos for the
messages requirements at the busiest computing nodes, where 𝑚 =

1000, every disseminator site also has a sequencer and a learner, that
is, fault tolerant version of HT-Paxos, and data size of request = 512
bytes.

becomes better than ring Paxos in such case only after larger
number of requests/per unit time.

In fault tolerant version of HT-Paxos, leader’s site com-
bines the dissemination and ordering layer data, but ordering
layer data is too low and therefore impact in data terms at
leader’s site is not too much as shown in Figure 7.

5.3. Latency. HT-Paxos and S-Paxos both take six message
delays for learning the client requests in the best case (if
message-optimized version of classical Paxos in the ordering
layer is considered). In the best case classical Paxos takes four
message delays in message-optimized version and three mes-
sage delays otherwise. Moreover, fast Paxos and generalized
Paxos take only twomessage delays in the best case, while ring
Paxos takes (𝑚 + 2) message delays in the best case, where𝑚
represents the total number of acceptors in the ring.

5.4. Response Time. HT-Paxos takes only fourmessage delays
for responding to the client request in the best case, because a
slightly optimistic approach for sending a reply to the client is
chosen that is, on being sure that the request is available at any
majority of disseminators, disseminator who has received the
request from the client sends the corresponding reply. Under
mentioned assumptions, request will definitely be executed.
However, if clients want to get a reply only after the execution
of requests, as in the case of S-Paxos, HT-Paxos will also take
six message delays like S-Paxos. Ring Paxos takes (𝑚 + 2)
message delays in the best case, where 𝑚 represents the total
number of acceptors in the ring. In this regard classical Paxos
has a comparatively good performance as it takes only four
message delays.

5.5. Other Related Works. Zab [5] is a variant of the Paxos
designed for the primary-backup data replication systems
such as Yahoo’s Zookeeper coordination service. In zoo-
keeper, any client approaches any replica (either leader or
follower) for their requests. Follower replica forwards all
update requests to the primary replica for taking the services
of state-machine replication protocol Zab. Zab is a centralized
protocol that has one primary that disseminates the update
requests to all other replicas and the leader that generally
is on the same primary site works for ensuring a proper
order. However, HT-Paxos is a more decentralized state-
machine replication protocol that hasmultiple disseminators;
any client for their update request may directly approach any
replica that has a disseminator and after that disseminator
forwards the update request to all other replicas. In case of
read request client may approach any replica. Because of the
centralized nature of the Zab, bottleneckmay be the resources
of the leader’s site (or primacy’s site as Zab considers both on
the same site) in any large clustered data centers. Therefore,
throughput and scalability will obviously be less in any large
clustered data center where workload is very high.

Mencius [15] takes an alternative approach that is a mov-
ing sequencer approach [16] to prevent the leader from
becoming the bottleneck. Mencius partitions the sequence
of consensus protocol instances among all replicas and
each replica becomes a (initial) leader of an instance in a
round-robin fashion. Protocol excludes all failed replicas by
adopting a reconfiguration mechanism. This protocol is a
quite decentralized protocol like HT-Paxos. However, every
replica failure requires a reconfiguration of the system this
is not the case with HT-Paxos. Moreover, even in the case
of failure free execution, leader of Mencius does the work of
dissemination as well as ordering. However, in throughput-
optimized version of HT-Paxos, leader is only responsible for
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ordering of request ids and is very much lightweight. Under a
large clustered data center and heavy load environment that
is the basic motivation of this paper, leader of Mencius will
handle more number of messages as well as more data as
compared to any disseminator or the leader. Performance of
Mencius against fault-tolerant version of HT-Paxos in failure
free environment may be quite comparable. However, design
goal of Mencius was to provide an optimized state-machine
replication protocol for WAN environment. Contrary to this
HT-Paxos is for clustered environment.

LCR [17] is a high throughput state-machine replication
protocol based on virtual synchrony model [18] of data
replication instead of Paxos. LCR arranges replicas along a
logical ring and uses vector clocks for message ordering. LCR
is a high-throughput protocol, where all replicas are equally
loaded, thereby utilizing all available system resources. How-
ever, latency and response times increase linearly with the
number of processes in the ring. For any large clustered
data center, this will be very significant. Although LCR has
slightly better bandwidth efficiency, in LCR, every failure of
the replica requires a view change for ensuring progress and
perfect failure detection. In other words, erroneously con-
sidering a process as crashed is not tolerated which implies
stronger synchrony assumptions.

State partitioning [9] is another technique that can
achieve scalability. Multiring Paxos [8] uses this concept and
keeps various logical groups. Each logical group has an
instance of ring Paxos (in optimized version, multiple logical
groups may also have a single instance of ring Paxos). Any
learner may subscribe to any one or more logical groups.
If a learner subscribes to multiple groups then it uses a
deterministic procedure tomergemessages coming from dif-
ferent instances of ring Paxos. However, HT-Paxos can easily
adopt the concept of state partitioning by slightly changing
the dissemination layer, as disseminator can multicast the
request to only interested learners, while ordering layerwould
deliver the order to all learners (like S-Paxos). In ring Paxos
or in multiring Paxos, any failure of acceptor requires a
view change. Moreover, latency and response times increase
linearly with the number of acceptors in the ring.

6. Conclusion and Future Work

HT-Paxos is a variant of Paxos designed for large clustered
data centers that achieves significantly high throughput and
scalability. It achieves all this by further offloading the leader;
that is, HT-Paxos is very much decentralized protocol. As the
primary focus of earlier versions of Paxos was fault tolerance
and latency because of comparatively very low throughput
requirement. In Paxos based protocols, the major obstacle
for high throughput was bottleneck at the leader. In such
systems, very soon on increasingmore computing nodes fault
tolerance increases rather than throughput. Practically this is
highly undesirable, because massive failures could be a very
rare event in the clustered data centers. Instead, it is quite
more desirable in the data centers that on increasing more
computing nodes, it should increase performance in terms of
throughput.

Moreover, throughput may be limited because of pro-
cessing power of CPU or data handling capacity of network
subsystem of any computing node or bandwidth of com-
munication networks. As commuting resources are generally
very much costly as compared to data cables, in clustered
data centers length of data cables required may not be too
much as compared to WAN environment. Therefore, high
throughput state-machine replication protocols should avoid
bottleneck of CPU and network subsystems at any computing
node through less computing requirements of CPU and less
bandwidth requirements at any individual computing node.
Proposed HT-Paxos achieves all these goals very significantly
for improvement of throughput and scalability. Moreover,
at the same time, latency and response times of the HT-
Paxos as comparable to other high throughput state-machine
replication protocols are quite less.

As future work, we plan to apply our technique to Byzan-
tine faults and will optimize HT-Paxos for WAN.
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