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We apply the classical theory of hyperrings to vague soft sets to derive the concepts of vague soft hyperrings, vague soft hyperideals,
and vague soft hyperring homomorphism. The properties and structural characteristics of these concepts are also studied and
discussed. Furthermore, the relationship between the concepts introduced here and the corresponding concepts in classical
hyperring theory and soft hyperring theory is studied and investigated.

1. Introduction

Hyperstructure theory which is a generalization of the notion
of classical algebraic structures was introduced by Marty in
1934 (see [1]). Since its inception, hyperstructure theory has
seen tremendous development. Corsini (see [2]) introduced
the concept of a hyperring and gave the definition of the
most general form of hyperring, besides being responsible
for introducing the notion of hyperring homomorphism.
In 1994, Vougiouklis (see [3]) introduced another type of
hyperrings called the𝐻]-ring which is a generalization of the
notion of hyperring introduced by [2]. Vougiouklis (see [3])
also introduced the notion of 𝐻]-subring and left and right
𝐻]-ideal of a𝐻]-ring.

The theory of hyperstructures has also been actively
applied to variousmathematical theories such as the theory of
fuzzy sets introduced by Zadeh in 1965 (see [4]), intuitionistic
fuzzy theory introduced by Atanassov in 1986 (see [5]), and
soft set theory introduced by Molodtsov in 1999 (see [6]),
to produce several important concepts and theories. The
study of fuzzy algebra began with the introduction of the
notion of a fuzzy subgroup of a group by Rosenfeld (see
[7]). Consequently, this led to the study of fuzzy hyperalgebra
beginning with the introduction of the notion of a fuzzy

subhyperring of a hyperring (resp., fuzzy 𝐻]-subrings) of a
hyperring (resp.,𝐻]-ring) and fuzzy hyperideals (resp., fuzzy
𝐻]-ideals) of hyperrings (resp.,𝐻]-rings).Thenotion of fuzzy
hyperideals introduced byDavvaz (see [8]) is a generalization
of the concept of Liu’s (see [9]) definition of a fuzzy ideal of a
ring.

Soft set theory is a general mathematical tool which
was designed to deal with uncertainties and is widely ac-
knowledged as an effective alternative to the classical mathe-
matical tools that were used to deal with uncertainties and
imprecision. Prior to the introduction of soft set theory,
mathematical theories such as the theory of fuzzy sets,
rough sets, and probability theory were used as tools to deal
with uncertainties, imprecision, and vagueness. However,
soft set theory has been proven to be a superior alternative
to these classical theories as it is free from the inherent
difficulties that affect these classical mathematical tools. Soft
set theory has been successfully applied in various areas of
mathematics such as in classical algebra and hyperalgebra,
fuzzy algebra, and fuzzy hyperalgebra to develop various
algebraic structures. However, an inherent weakness of soft
set theory is that it is difficult to be used to represent the
vagueness of problem parameters, particularly in problem-
solving and decision making contexts. To overcome this
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disadvantage, various generalizations of soft sets such as fuzzy
soft sets, vague soft sets, and intuitionistic fuzzy soft sets were
introduced as better alternatives to the concept of soft sets.
In the context of this paper, the notion of vague soft sets
is used as a base to develop the initial theory of vague soft
hyperrings.

In this paper, we develop the initial theory of vague
soft hyperrings in Rosenfeld’s sense as a continuation to the
theory of vague soft hypergroups introduced in [10]. Subse-
quently some of the fundamental properties and structural
characteristics of these concepts are studied and discussed.
Lastly, we prove that there exists a one-to-one correspon-
dence between some of these concepts and their correspond-
ing concepts in soft hyperring theory as well as classical
hyperring theory.

2. Preliminaries

In this section, some well-known and useful definitions
pertaining to the development of the theory of vague
soft hyperrings introduced here will be presented. These
definitions and concepts will be used throughout this
chapter.

Definition 1 (see [6]). A pair (𝐹, 𝐴) is called a soft set over 𝑈,
where 𝐹 is a mapping given by 𝐹 : 𝐴 → 𝑃(𝑈). In other
words, a soft set over 𝑈 is a parameterized family of subsets
of the universe 𝑈. For 𝜀 ∈ 𝐴, 𝐹(𝜀) may be considered as the
set of 𝜀-elements of the soft set (𝐹, 𝐴) or as the 𝜀-approximate
elements of the soft set.

Definition 2 (see [6]). For a soft set (𝐹, 𝐴), the set
Supp(𝐹, 𝐴) = {𝑥 ∈ 𝐴 : 𝐹(𝑥) ̸= 0} is called the support
of the soft set (𝐹, 𝐴). Thus a null soft set is a soft set with an
empty support and a soft set (𝐹, 𝐴) is said to be nonnull if
Supp(𝐹, 𝐴) ̸= 0.

Definition 3 (see [11]). Let 𝑋 be a space of points (objects)
with a generic element of𝑋 denoted by 𝑥. A vague set 𝑉 in𝑋
is characterized by a truth membership function 𝑡

𝑉
: 𝑋 →

[0, 1] and a false membership function 𝑓
𝑉
: 𝑋 → [0, 1]. The

value 𝑡
𝑉
(𝑥) is a lower bound on the grade of membership of

𝑥 derived from the evidence for 𝑥 and 𝑓
𝑉
(𝑥) is a lower bound

on the negation of 𝑥 derived from the evidence against 𝑥.The
values 𝑡

𝑉
(𝑥) and 𝑓

𝑉
(𝑥) both associate a real number in the

interval [0, 1] with each point in𝑋, where 𝑡
𝑉
(𝑥) + 𝑓

𝑉
(𝑥) ≤ 1.

This approach bounds the grade of membership of 𝑥 to a
subinterval [𝑡

𝑉
(𝑥), 1 − 𝑓

𝑉
(𝑥)] of [0, 1]. Hence a vague set

is a form of fuzzy set, albeit a more accurate form of fuzzy
set.

Definition 4 (see [12]). A pair (𝐹, 𝐴) is called a vague soft set
over 𝑈 where 𝐹 is a mapping given by 𝐹 : 𝐴 → 𝑉(𝑈) and
𝑉(𝑈) is the power set of vague sets over 𝑈. In other words, a
vague soft set over𝑈 is a parameterized family of vague sets of
the universe 𝑈. Every set 𝐹(𝑒), for all 𝑒 ∈ 𝐴, from this family
may be considered as the set of 𝑒-approximate elements of
the vague soft set (𝐹, 𝐴). Hence the vague soft set (𝐹, 𝐴) can

be viewed as consisting of a collection of approximations of
the following form:

(𝐹, 𝐴)

= {𝐹
𝑎
(𝑥
𝑖
) : 𝑖 = 1, 2, 3, . . .}

= {

[𝑡
𝐹(𝑒𝑖)

(𝑥
𝑖
) , 1 − 𝑓

𝐹(𝑒𝑖)
(𝑥
𝑖
)]

𝑥
𝑖

: 𝑖 = 1, 2, 3, . . .} ,

(1)

where 𝐹
𝑎
(𝑥
𝑖
) is a subset of (𝐹, 𝐴) for all 𝑒 ∈ 𝐴 and for all

𝑥 ∈ 𝑈.

Example 5 (see [12]). Consider a vague soft set (𝐹, 𝐸),
where 𝑈 is a set of six houses under consideration of a
decision maker to purchase which is denoted by 𝑈 =

{ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
, ℎ
6
} and 𝐸 is a parameter set, where

𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
} = {expensive, beautiful, wooden,

cheap, in the green surroundings}. The vague soft set (𝐹, 𝐸)
describes the “attractiveness of the houses” to this decision
maker.

Suppose that

𝐹 (𝑒1) = (
[0.1, 0.2]

ℎ1
,
[0.9, 1]
ℎ2

,
[0.3, 0.5]

ℎ3
,
[0.8, 0.9]

ℎ4
,

[0.2, 0.4]
ℎ5

,
[0.4, 0.6]

ℎ6
) ,

𝐹 (𝑒2) = (
[0.9, 1]
ℎ1

,
[0.2, 0.7]

ℎ2
,
[0.6, 0.9]

ℎ3
,
[0.2, 0.4]

ℎ4
,

[0.3, 0.4]
ℎ5

,
[0.1, 0.6]

ℎ6
) ,

𝐹 (𝑒3) = (
[0, 0]
ℎ1

,
[0, 0]
ℎ2

,
[1, 1]
ℎ3

,
[1, 1]
ℎ4

,
[1, 1]
ℎ5

,
[0, 0]
ℎ6

) ,

𝐹 (𝑒4) = (
[0.8, 0.9]

ℎ1
,
[0, 0.1]
ℎ2

,
[0.5, 0.7]

ℎ3
,
[0.1, 0.2]

ℎ4
,

[0.6, 0.8]
ℎ5

,
[0.4, 0.6]

ℎ6
) ,

𝐹 (𝑒5) = (
[0.9, 1]
ℎ1

,
[0.2, 0.3]

ℎ2
,
[0.1, 0.4]

ℎ3
,
[0.1, 0.2]

ℎ4
,

[0.2, 0.4]
ℎ5

,
[0.7, 0.9]

ℎ6
) .

(2)

The vague soft set (𝐹, 𝐸) is a parameterized family {𝐹(𝑒
𝑖
), 𝑖 =

1, 2, 3, 4, 5} of vague sets on 𝑈, and

(𝐹, 𝐸) = {Expensive Houses=([0.1, 0.2]
ℎ1

,
[0.9, 1]
ℎ2

,

[0.3, 0.5]
ℎ3

,
[0.8, 0.9]

ℎ4
,
[0.2, 0.4]

ℎ5
,
[0.4, 0.6]

ℎ6
) ,
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Beautiful Houses=([0.9, 1]
ℎ1

,
[0.2, 0.7]

ℎ2
,

[0.6, 0.9]
ℎ3

,
[0.2, 0.4]

ℎ4
,
[0.3, 0.4]

ℎ5
,
[0.1, 0.6]

ℎ6
) , . . .} .

(3)

Definition 6 (see [10]). Let (𝐹, 𝐴) be a vague soft set over 𝑋.
The support of (𝐹, 𝐴) denoted by Supp(𝐹, 𝐴) is defined as

Supp (𝐹, 𝐴) = {𝑎 ∈𝐴 : 𝐹
𝑎 (𝑥) ̸= 0̂, i.e., 𝑡

𝐹𝑎
(𝑥)

̸= 0, 1 − 𝑓
𝐹𝑎
(𝑥) ̸= 0} ,

(4)

for all 𝑥 ∈ 𝑋.
It is to be noted that a null vague soft set is a vague soft

set where both the truth and false membership functions are
equal to zero. Therefore, a vague soft set (𝐹, 𝐴) is said to be
nonnull if Supp(𝐹, 𝐴) ̸= 0.

Definition 7 (see [12]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be vague soft sets
over 𝑈.The set (𝐹, 𝐴) is called a vague soft subset of (𝐺, 𝐵) if
𝐴 ⊆ 𝐵 and, for every 𝑎 ∈ 𝐴, 𝐹(𝑎) and 𝐺(𝑎) are the same
approximation. In this case, (𝐺, 𝐵) is called the vague soft
superset of (𝐹, 𝐴) and this relationship is denoted by (𝐹, 𝐴) ⊆
(𝐺, 𝐵).

Definition 8 (see [12]). If (𝐹, 𝐴) and (𝐺, 𝐵) are two vague soft
sets over 𝑈, the intersection of (𝐹, 𝐴) and (𝐺, 𝐵) denoted as
“(𝐹, 𝐴) ∩̃ (𝐺, 𝐵)” is defined by (𝐹, 𝐴) ∩̃ (𝐺, 𝐵) = (�̂�, 𝐴 × 𝐵),
where

𝑡
�̂�𝑐
(𝑥) =

{{{{

{{{{

{

𝑡
𝐹𝑐
(𝑥) , 𝑐 ∈ 𝐴 − 𝐵,

𝑡
𝐺𝑐
(𝑥) , 𝑐 ∈ 𝐵 − 𝐴,

min (𝑡
𝐹𝑐
(𝑥) , 𝑡
𝐺𝑐
(𝑥)) , 𝑐 ∈ 𝐵 ∩ 𝐴,

1 − 𝑓
�̂�𝑐
(𝑥)

=

{{{{

{{{{

{

1 − 𝑓
𝐹𝑐
(𝑥) , 𝑐 ∈ 𝐴 − 𝐵,

1 − 𝑓
𝐺𝑐
(𝑥) , 𝑐 ∈ 𝐵 − 𝐴,

min (1 − 𝑓
𝐹𝑐
(𝑥) , 1 − 𝑓

𝐺𝑐
(𝑥)) , 𝑐 ∈ 𝐵 ∩ 𝐴,

(5)

for all 𝑐 ∈ Supp(�̂�, 𝐶) and for all 𝑥 ∈ 𝑈.

Definition 9 (see [12]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be vague soft sets
over𝑈.Then “(𝐹, 𝐴) AND (𝐺, 𝐵)” denoted by (𝐹, 𝐴) ∧̃ (𝐺, 𝐵)
is defined as (𝐹, 𝐴) ∧̃ (𝐺, 𝐵) = (�̂�, 𝐴 × 𝐵), where

𝑡
�̂�(𝛼,𝛽)

(𝑥) = min {𝑡
𝐹𝛼
(𝑥) , 𝑡
𝐺𝛽

(𝑥)} ,

1−𝑓
�̂�(𝛼,𝛽)

(𝑥) = min {1−𝑓
𝐹(𝛼)

(𝑥) , 1−𝑓
𝐺(𝛽)

(𝑥)} ,

(6)

for every (𝛼, 𝛽) ∈ 𝐴 × 𝐵 and 𝑥 ∈ 𝑈, where 𝑡
�̂�(𝛼,𝛽)

and 𝑓
�̂�(𝛼,𝛽)

are the truth membership function and false membership
function of �̂�

(𝛼,𝛽)
, respectively. This relationship can be

written as �̂�
(𝛼,𝛽)

(𝑥) = 𝐹
𝛼
(𝑥) ∩ 𝐺

𝛽
(𝑥), where ∩ represents the

intersection operation between two vague soft sets as defined
in the case of 𝑐 ∈ 𝐵 ∩ 𝐴 in Definition 8.

Definition 10 (see [10]). Let (𝐹, 𝐴) be a vague soft set over 𝑈.
Then, for all 𝛼, 𝛽 ∈ [0, 1], where 𝛼 ≤ 𝛽, the (𝛼, 𝛽)-cut or
the vague soft (𝛼, 𝛽)-cut of (𝐹, 𝐴) is a subset of 𝑈 which is
as defined below:

(𝐹, 𝐴)
(𝛼,𝛽)

= {𝑥 ∈𝑈 : 𝑡
𝐹𝑎
(𝑥) ≥ 𝛼, 1 − 𝑓

𝐹𝑎
(𝑥)

≥ 𝛽, i.e., 𝐹
𝑎 (𝑥) ≥ [𝛼, 𝛽]} ,

(7)

for all 𝑎 ∈ 𝐴.
If 𝛼 = 𝛽, then it is called the vague soft (𝛼, 𝛼)-cut of (𝐹, 𝐴)

or the 𝛼-level set of (𝐹, 𝐴), denoted by (𝐹, 𝐴)
(𝛼,𝛼)

, is a subset
of 𝑈 which is as defined below:

(𝐹, 𝐴)
(𝛼,𝛼)

= {𝑥 ∈𝑈 : 𝑡
𝐹𝑎
(𝑥) ≥ 𝛼, 1 − 𝑓

𝐹𝑎
(𝑥)

≥ 𝛼, i.e., 𝐹
𝑎 (𝑥) ≥ [𝛼, 𝛼]} ,

(8)

for all 𝑎 ∈ 𝐴.

Definition 11 (see [10]). Let (𝐹, 𝐴) be a vague soft set over 𝑋
and let 𝐺 be a nonnull subset of 𝑋. Then (𝐹, 𝐴)

𝐺
is called

a vague soft characteristic set over 𝐺 in [0, 1] and the lower
bound and upper bound of (𝐹

𝑎
)
𝐺
are as defined below:

𝑡
(𝐹𝑎)𝐺

(𝑥) = 1−𝑓
(𝐹𝑎)𝐺

(𝑥) =

{

{

{

𝑠, if 𝑥 ∈ 𝐺,

𝑤, otherwise,
(9)

where (𝐹
𝑎
)
𝐺
is a subset of (𝐹, 𝐴)

𝐺
, 𝑥 ∈ 𝑋, 𝑠, 𝑤 ∈ [0, 1], and

𝑠 > 𝑤.

This paper pertains to the application of classical hyper-
ring theory to the concept of vague soft sets. Furthermore, the
relationships that exist between the concepts introduced in
this paper and the corresponding concepts in classical hyper-
ring theory are also studied and discussed. The definitions
of several important concepts pertaining to the theory of
hyperstructures are presented below.

Definition 12 (see [1]). A hypergroup ⟨𝐻, ∘⟩ is a set 𝐻

equipped with an associative hyperoperation (∘) : 𝐻 × 𝐻 →

𝑃(𝐻)which satisfies the reproduction axiom given by 𝑥∘𝐻 =

𝐻 ∘ 𝑥 = 𝐻 for all 𝑥 in𝐻.

Definition 13 (see [13]). A hyperstructure ⟨𝐻, ∘⟩ is called an
𝐻V-group if the following axioms hold:

(i) 𝑥 ∘ (𝑦 ∘ 𝑧) ∩ (𝑥 ∘ 𝑦) ∘ 𝑧 ̸= 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝐻,
(ii) 𝑥 ∘ 𝐻 = 𝐻 ∘ 𝑥 = 𝐻 for all 𝑥 in𝐻.

If ⟨𝐻, ∘⟩ only satisfies the first axiom, then it is called a 𝐻V-
semigroup.
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Definition 14 (see [1]). A subset 𝐾 of 𝐻 is called a subhyper-
group if ⟨𝐾, ∘⟩ is a hypergroup.

Definition 15 (see [3]). A 𝐻]-ring is a multivalued system
(𝑅, +, ∘) which satisfies the following axioms:

(i) (𝑅, +) is a𝐻]-group,
(ii) (𝑅, ∘) is a𝐻]-semigroup,
(iii) the hyperoperation “∘” is weak distributive over the

hyperoperation “+”; that is, for each 𝑥, 𝑦, 𝑧 ∈ 𝑅 the
following holds true:

𝑥 ∘ (𝑦 + 𝑧) ∩ ((𝑥 ∘ 𝑦) + (𝑥 ∘ 𝑧)) ̸= 𝜙,

(𝑥 + 𝑦) ∘ 𝑧 ∩ ((𝑥 ∘ 𝑧) + (𝑦 ∘ 𝑧)) ̸= 𝜙.

(10)

Definition 16 (see [3]). A nonempty subset 𝑅 of 𝑅 is called a
subhyperring of (𝑅, +, ∘) if (𝑅, +) is a subhypergroup of (𝑅, +)
and for all 𝑥, 𝑦, 𝑧 ∈ 𝑅

, 𝑥 ∘𝑦 ∈ 𝑃
∗
(𝑅

), where 𝑃∗(𝑅) is the set

of all nonempty subsets of 𝑅.

Definition 17 (see [3]). Let𝑅 be a𝐻V-ring. A nonempty subset
𝐼 of 𝑅 is called a left (resp., right) 𝐻V-ideal if the following
axioms hold:

(i) (𝐼, +) is a𝐻V-subgroup of (𝑅, +),
(ii) 𝑅 ∘ 𝐼 ⊆ 𝐼 (resp., 𝐼 ∘ 𝑅 ⊆ 𝐼).

If 𝐼 is both left and right𝐻V-ideals of 𝑅, then 𝐼 is said to be a
𝐻V-ideal of 𝑅.

3. Vague Soft Hyperrings

In this section, the concept of vague soft hyperrings in
Rosenfeld’s sense is introduced as a continuation to the theory
of vague soft hypergroups introduced by [10]. We derive the
definition of vague soft hyperrings by applying the theory of
hyperrings to vague soft sets. The properties of this concept
are studied and discussed.

From now on, let (𝑅, +, ∘) be a hyperring (or 𝐻]-ring),
let 𝐸 be a set of parameters, and let 𝐴 ⊆ 𝐸. For the sake of
simplicity, we will denote (𝑅, +, ∘) by 𝑅.

Definition 18 (see [14]). Let (𝐹, 𝐴) be a nonnull soft set over
𝑅. Then (𝐹, 𝐴) is called a soft hyperring over 𝑅 if 𝐹(𝑥) is a
subhyperring of 𝑅 for all 𝑥 ∈ Supp(𝐹, 𝐴).

Definition 19 (see [10]). Let (𝐹, 𝐴) be a nonnull vague soft
set over a hypergroup ⟨𝐻, ∘⟩. Then (𝐹, 𝐴) is called a vague
soft semihypergroup over ⟨𝐻, ∘⟩ if the following conditions are
satisfied for all 𝑎 ∈ Supp(𝐹, 𝐴):

For all 𝑥, 𝑦 ∈ ⟨𝐻, ∘⟩, min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) : 𝑧 ∈

𝑥 ∘ 𝑦} and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤ inf{1 − 𝑓

𝐹𝑎
(𝑧) : 𝑧 ∈

𝑥 ∘ 𝑦}; that is, min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}.

Definition 20 (see [10]). Let (𝐹, 𝐴) be a nonnull vague soft
set over 𝐻. Then (𝐹, 𝐴) is called a vague soft hypergroup

over 𝐻 if the following conditions are satisfied for all
𝑎 ∈ Supp(𝐹, 𝐴):

(i) For all 𝑥, 𝑦 ∈ 𝐻,min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥∘𝑦} andmin{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤ inf{1−

𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}; that is, min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤

inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}.

(ii) For all 𝑤, 𝑥 ∈ 𝐻, there exists 𝑦 ∈ 𝐻 such that
𝑥 ∈ 𝑤 ∘ 𝑦 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑦) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑦); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦).

(iii) For all 𝑤, 𝑥 ∈ 𝐻, there exists 𝑧 ∈ 𝐻 such that
𝑥 ∈ 𝑧 ∘ 𝑤 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑧) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑧); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑧).

Conditions (ii) and (iii) represent the left and right repro-
duction axioms, respectively. Then 𝐹

𝑎
is a nonnull vague

subhypergroup of ⟨𝐻, ∘⟩ (in Rosenfeld’s sense) for all 𝑎 ∈

Supp(𝐹, 𝐴).

Definition 21. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then (𝐹, 𝐴) is called a vague soft hyperring over 𝑅 if, for all
𝑎 ∈ Supp(𝐹, 𝐴), the following conditions are satisfied:

(i) For all 𝑥, 𝑦 ∈ 𝑅, min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥 + 𝑦} and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦}, which means

min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦}.

(ii) For all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑦 ∈ 𝑅 such that
𝑥 ∈ 𝑤 + 𝑦 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑦) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑦); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦).

(iii) For all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑧 ∈ 𝑅 such that
𝑥 ∈ 𝑧 + 𝑤 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑧) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑧); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑧).

(iv) For all 𝑥, 𝑦 ∈ 𝑅, min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥 ∘ 𝑦} and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦}; that is, min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤

inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}.

That is, 𝐹
𝑎
is a nonnull vague subhyperring (in Rosenfeld’s

sense) of 𝑅 for each 𝑎 ∈ Supp(𝐹, 𝐴).
Conditions (i), (ii), and (iii) indicate that 𝐹

𝑎
is a vague

subhypergroup of (𝑅, +) while condition (iv) indicates that
𝐹
𝑎
is a vague subsemihypergroup of (𝑅, ∘). Therefore it can

be concluded that (𝐹, 𝐴) is a vague soft hyperring over 𝑅 if
(𝐹, 𝐴) is a vague soft hypergroup over (𝑅, +) and a vague soft
semihypergroup over (𝑅, ∘).

Theorem 22. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then the necessary and sufficient condition for (𝐹, 𝐴) to be
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a vague soft hyperring over 𝑅 is for (𝐹, 𝐴) to be a vague soft
semihypergroup over (𝑅, ∘) and also a vague soft hypergroup
over (𝑅, +).

Proof. The proof is straightforward by Definition 21.

Example 23. A vague soft hyperring (𝐹, 𝐴) for which 𝐴 is a
singleton is a vague subhyperring. Hence vague subhyper-
rings and classical hyperrings are a particular type of vague
soft hyperrings.

Example 24. Let (𝐹, 𝐴) be a nonnull vague soft set over a
hyperring 𝑅 which is as defined below:

(𝐹, 𝐴)
+

= {(𝐹
𝑎
)
+

= {𝑥 ∈𝑅 : 𝑡
(𝐹𝑎)
+ (𝑥) = 𝑡

𝐹𝑎
(𝑥) + 1

− 𝑡
𝐹𝑎
(𝑒) , 1 − 𝑓

(𝐹𝑎)
+ (𝑥) = 1 − 𝑓

𝐹𝑎
(𝑥)

+𝑓
𝐹𝑎
(𝑒) , i.e., (𝐹𝑎)

+

(𝑥) = 𝐹𝑎 (𝑥) + 1−𝐹
𝑎 (𝑒)}} .

(11)

Then (𝐹, 𝐴)
+ is a vague soft hyperring over 𝑅.

Example 25. Let𝐹
𝑎
be a vague subhyperring of a hyperring𝑅.

Thismeans that𝐹
𝑎
satisfies the axioms stated inDefinition 21.

Now consider the family of 𝛼-level sets for 𝐹
𝑎

given
by

(𝐹, 𝐴)
𝛼
= {𝑥 ∈𝐻 : 𝐹

𝑎 (𝑥) ≥ 𝛼} , (12)

for all 𝑎 ∈ 𝐴 and 𝛼 ∈ [0, 1]. Then, for all 𝛼 ∈ [0, 1], 𝐹
𝑎
is a

subhyperring of 𝑅. Hence (𝐹, [0, 1]) is a soft hyperring over
𝑅.

Example 26. Any soft hyperring is a vague subhyperring
since any characteristic function of a subhyperring is a vague
subhyperring.

Proposition 27. Let (𝐹, 𝐴) and (𝐺, 𝐵) be vague soft hyperrings
over 𝑅.Then (𝐹, 𝐴) ∧̃ (𝐺, 𝐵) is a vague soft hyperring over 𝑅 if
it is nonnull.

Proof. Suppose that (𝐹, 𝐴) and (𝐺, 𝐵) are vague soft hyper-
rings over 𝑅. Now let (𝐹, 𝐴) ∧̃ (𝐺, 𝐵) = (�̂�, 𝐴 × 𝐵). Then for
all (𝛼, 𝛽) ∈ Supp(�̂�, 𝐴 × 𝐵) and for all 𝑥 ∈ 𝑅 we have

𝑡
�̂�(𝛼,𝛽)

(𝑥) = min {𝑡
𝐹𝛼
(𝑥) , 𝑡
𝐺𝛽

(𝑥)} ,

1−𝑓
�̂�(𝛼,𝛽)

(𝑥) = min {1−𝑓
𝐹𝛼
(𝑥) , 1−𝑓

𝐺𝛽
(𝑥)} ;

(13)

that is,

�̂�
(𝛼,𝛽) (𝑥) = 𝐹

𝛼 (𝑥) ∩𝐺𝛽 (𝑥) . (14)

Since (𝐹, 𝐴) and (𝐺, 𝐵) are both nonnull and (�̂�, 𝐴 × 𝐵)

represents the basic intersection between (𝐹, 𝐴) and (𝐺, 𝐵)

it follows that (�̂�, 𝐴 × 𝐵) must be nonnull. For the sake of

similarity, we only show the proof for the truth membership
function of �̂�

(𝛼,𝛽)
given by 𝑡

�̂�(𝛼,𝛽)
. The proof for 1 − 𝑓

�̂�(𝛼,𝛽)
can

be derived in the same manner.
Hence for all 𝑥, 𝑦 ∈ 𝑅 and (𝛼, 𝛽) ∈ Supp(�̂�, 𝐴 × 𝐵) we

obtain

min {𝑡
�̂�(𝛼,𝛽)

(𝑥) , 𝑡
�̂�(𝛼,𝛽)

(𝑦)}

= min {𝑡
𝐹𝛼
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐹𝛼
(𝑦) ∩ 𝑡

𝐺𝛽
(𝑦)}

≤ min {𝑡
𝐹𝛼
(𝑥) ∩ 𝑡

𝐹𝛼
(𝑦) , 𝑡

𝐺𝛽
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑦)}

≤ min {𝑡
𝐹𝛼
(𝑥) , 𝑡
𝐹𝛼
(𝑦)} ∩min {𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐺𝛽

(𝑦)}

≤ inf {𝑡
𝐹𝛼
(𝑧) : 𝑧 ∈ 𝑥 +𝑦}

∩ inf {𝑡
𝐺𝛽

(𝑧) : 𝑧 ∈ 𝑥 +𝑦}

≤ inf {𝑡
𝐹𝛼
(𝑧) ∩ 𝑡

𝐺𝛽
(𝑧) : 𝑧 ∈ 𝑥 +𝑦}

= inf {𝑡
�̂�(𝛼,𝛽)

: 𝑧 ∈ 𝑥 +𝑦} .

(15)

Furthermore for all 𝑤, 𝑥 ∈ 𝑅 we have

min {𝑡
�̂�(𝛼,𝛽)

(𝑤) , 𝑡
�̂�(𝛼,𝛽)

(𝑥)}

= min {𝑡
𝐹𝛼
(𝑤) ∩ 𝑡

𝐺𝛽
(𝑤) , 𝑡

𝐹𝛼
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑥)}

≤ min {𝑡
𝐹𝛼
(𝑤) ∩ 𝑡

𝐹𝛼
(𝑥) , 𝑡
𝐺𝛽

(𝑤) ∩ 𝑡
𝐺𝛽

(𝑥)}

≤ min {𝑡
𝐹𝛼
(𝑤) , 𝑡

𝐹𝛼
(𝑥)} ∩min {𝑡

𝐺𝛽
(𝑤) , 𝑡

𝐺𝛽
(𝑥)}

≤ {𝑡
𝐹𝛼
(𝑦) ∩ 𝑡

𝐺𝛽
(𝑦)} = 𝑡

�̂�(𝛼,𝛽)
(𝑦) ,

(16)

where 𝑦 ∈ 𝑅 such that 𝑥 ∈ 𝑤 + 𝑦. Similarly, it can also be
proved that min{𝑡

�̂�(𝛼,𝛽)
(𝑤), 𝑡
�̂�(𝛼,𝛽)

(𝑥)} ≤ 𝑡
�̂�(𝛼,𝛽)

(𝑧), where 𝑧 ∈ 𝑅

such that 𝑥 ∈ 𝑧+𝑤.Therefore it has been proved that �̂�
(𝛼,𝛽)

is
a vague subhypergroup of (𝑅, +), whichmeans that (�̂�, 𝐴×𝐵)

is a vague soft hypergroup over (𝑅, +).
Lastly for all 𝑥, 𝑦 ∈ 𝑅 we have

min {𝑡
�̂�(𝛼,𝛽)

(𝑥) , 𝑡
�̂�(𝛼,𝛽)

(𝑦)}

= min {𝑡
𝐹𝛼
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐹𝛼
(𝑦) ∩ 𝑡

𝐺𝛽
(𝑦)}

≤ min {𝑡
𝐹𝛼
(𝑥) ∩ 𝑡

𝐹𝛼
(𝑦) , 𝑡

𝐺𝛽
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑦)}

≤ min {𝑡
𝐹𝛼
(𝑥) , 𝑡
𝐹𝛼
(𝑦)} ∩min {𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐺𝛽

(𝑦)}
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≤ inf {𝑡
𝐹𝛼
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

∩ inf {𝑡
𝐺𝛽

(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

≤ inf {𝑡
𝐹𝛼
(𝑧) ∩ 𝑡

𝐺𝛽
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

= inf {𝑡
�̂�(𝛼,𝛽)

: 𝑧 ∈ 𝑥 ∘ 𝑦} .

(17)

This proves that �̂�
(𝛼,𝛽)

is a vague subhyperring of 𝑅 for all
(𝛼, 𝛽) ∈ Supp(�̂�, 𝐴 × 𝐵). Hence (�̂�, 𝐴 × 𝐵) = (𝐹, 𝐴) ∧̃ (𝐺, 𝐵)

is a vague soft hyperring over 𝑅.

Theorem 28. Let (𝐹, 𝐴) be a vague soft set over𝑅.Then (𝐹, 𝐴)
is a vague soft hyperring over 𝑅 if and only if, for every 𝑡 ∈

[0, 1], (𝐹, 𝐴)
(𝑡,𝑡)

is a soft hyperring over 𝑅.

Proof. (⇒) Since 𝑅 is a hyperring, (𝑅, +) is a commutative
hypergroup and (𝑅, ∘) is a semihypergroup. Let (𝐹, 𝐴) be a
vague soft hyperring over (𝑅, +, ∘) and 𝑡 ∈ [0, 1].Then, for all
𝑎 ∈ Supp(𝐹, 𝐴), the corresponding𝐹

𝑎
is a vague subhyperring

of 𝑅. Now let 𝑥, 𝑦 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

. Then 𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦) ≥ 𝑡 and

1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝑡, which means that 𝐹

𝑎
(𝑥) ≥ 𝑡 and

𝐹
𝑎
(𝑦) ≥ 𝑡. Furthermore since 𝐹

𝑎
is a vague subhypergroup of

(𝑅, +), we have inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥+𝑦} ≥ min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≥ 𝑡.

This implies that 𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

and therefore, for every 𝑧 ∈ 𝑥+𝑦,
we obtain 𝑥 + 𝑦 ⊆ (𝐹

𝑎
)
(𝑡,𝑡)

. As such, for every 𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

,
we obtain 𝑧 + (𝐹

𝑎
)
(𝑡,𝑡)

⊆ (𝐹
𝑎
)
(𝑡,𝑡)

. Now let 𝑥, 𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

.
Then 𝑡

𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑧) ≥ 𝑡 and 1 − 𝑓

𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑧) ≥ 𝑡, which

means that 𝐹
𝑎
(𝑥) ≥ 𝑡 and 𝐹

𝑎
(𝑧) ≥ 𝑡. Due to the fact that

𝐹
𝑎
is a vague subhypergroup of (𝑅, +), there exists 𝑦 ∈ 𝑅

such that 𝑥 ∈ 𝑧 + 𝑦 and min{𝐹
𝑎
(𝑧), 𝐹
𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦). Since

𝑥, 𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

, we obtain min{𝐹
𝑎
(𝑧), 𝐹
𝑎
(𝑥)} ≥ min{𝑡, 𝑡} = 𝑡

and this implies that 𝐹
𝑎
(𝑦) ≥ 𝑡 and as a result, 𝑦 ∈ (𝐹

𝑎
)
(𝑡,𝑡)

.

Therefore, we obtain (𝐹
𝑎
)
(𝑡,𝑡)

⊆ 𝑧+(𝐹
𝑎
)
(𝑡,𝑡)

. As such, we obtain
𝑧 + (𝐹

𝑎
)
(𝑡,𝑡)

= (𝐹
𝑎
)
(𝑡,𝑡)

. As a result, (𝐹
𝑎
)
(𝑡,𝑡)

is a subhypergroup
of (𝑅, +). Hence (𝐹, 𝐴)

(𝑡,𝑡)
is a soft hypergroup over (𝑅, +).

Furthermore, since (𝑅, ∘) is a semihypergroup,𝐹
𝑎
is a nonnull

vague subsemihypergroup of (𝑅, ∘) for all 𝑎 ∈ Supp(𝐹, 𝐴) and
min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}. Now let 𝑥, 𝑦 ∈

(𝐹
𝑎
)
(𝑡,𝑡)

. Then 𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦) ≥ 𝑡 and 1 − 𝑓

𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦) ≥

𝑡, which means that 𝐹
𝑎
(𝑥) ≥ 𝑡 and 𝐹

𝑎
(𝑦) ≥ 𝑡. Therefore

it follows that min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≥ min{𝑡, 𝑡} = 𝑡 and this

implies that inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦} ≥ 𝑡.This in turn implies that

𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

and consequently 𝑥 ∘ 𝑦 ⊆ (𝐹
𝑎
)
(𝑡,𝑡)

. Therefore, for
every 𝑥, 𝑦 ∈ (𝐹

𝑎
)
(𝑡,𝑡)

, we obtain 𝑥∘𝑦 ∈ 𝑃
∗
(𝑅). As such, (𝐹

𝑎
)
(𝑡,𝑡)

is a subhyperring of 𝑅. Hence (𝐹, 𝐴)
(𝑡,𝑡)

is a soft hyperring
over 𝑅.

(⇐)Assume that (𝐹, 𝐴)
(𝑡,𝑡)

is a soft hyperring over𝑅.Thus
for every 𝑡 ∈ [0, 1], (𝐹

𝑎
)
(𝑡,𝑡)

is a nonnull subhyperring of 𝑅.
Now for every 𝑥, 𝑦 ∈ 𝑅, we have min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ 𝐹

𝑎
(𝑥)

ormin{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ 𝐹

𝑎
(𝑦). So if we letmin{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} =

𝑡0, then 𝑥, 𝑦 ∈ (𝐹
𝑎
)
(𝑡0 ,𝑡0)

and therefore 𝑥 + 𝑦 ⊆ (𝐹
𝑎
)
(𝑡0 ,𝑡0)

.
Therefore, for every 𝑧 ∈ 𝑥 + 𝑦, we have 𝐹

𝑎
(𝑧) ≥ 𝑡0 which

implies that min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 +

𝑦}. As such, condition (i) of Definition 21 is verified. Next,
let 𝑤, 𝑥 ∈ 𝑅 and min{𝐹

𝑎
(𝑤), 𝐹

𝑎
(𝑥)} = 𝑡1. This implies

that 𝑤, 𝑥 ∈ (𝐹
𝑎
)
(𝑡1 ,𝑡1)

which means that there exists 𝑦 ∈

(𝐹
𝑎
)
(𝑡1 ,𝑡1)

such that 𝑥 ∈ 𝑤 ∘ 𝑦. Since 𝑦 ∈ (𝐹
𝑎
)
(𝑡1 ,𝑡1)

, we
have 𝑡

𝐹𝑎
(𝑦) ≥ 𝑡1 and 1 − 𝑡

𝐹𝑎
(𝑦) ≥ 𝑡1 which means that

𝐹
𝑎
(𝑦) ≥ 𝑡1 and thus min{𝐹

𝑎
(𝑤), 𝐹

𝑎
(𝑥)} = 𝑡1 ≤ 𝐹

𝑎
(𝑦)

which means that min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦). Therefore

condition (ii) of Definition 21 has been verified. Condition
(iii) of Definition 21 can be verified in a similar manner.Thus
it has been proven that 𝐹

𝑎
is a vague subhypergroup of (𝑅, +).

Now (𝐹
𝑎
)
(𝑡,𝑡)

is a subsemihypergroup of the semihypergroup
(𝑅, ∘). Let min{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} = 𝑡2 for every 𝑥, 𝑦 ∈ 𝑅. Thus

𝑥, 𝑦 ∈ (𝐹
𝑎
)
(𝑡2 ,𝑡2)

and therefore we have 𝑥 ∘ 𝑦 ⊆ (𝐹
𝑎
)
(𝑡2 ,𝑡2)

.
Thus, for every 𝑧 ∈ 𝑥 ∘ 𝑦, we obtain 𝐹

𝑎
(𝑧) ≥ 𝑡2. As a result,

we obtain min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} which

proves that condition (iv) of Definition 21 has been verified.
As such, 𝐹

𝑎
is a vague subhyperring of 𝑅 and therefore (𝐹, 𝐴)

is a vague soft hyperring over 𝑅.

Theorem 28 proves that there exists a one-to-one corre-
spondence between vague soft hyperrings and softhyperrings
over a hyperring.

Theorem 29. Let (𝐹, 𝐴) be a vague soft hyperring over 𝑅.
Then, for each 𝛼, 𝛽 ∈ [0, 1], (𝐹, 𝐴)

(𝛼,𝛽)
is a subhyperring of 𝑅.

Proof. Let (𝐹, 𝐴) be a vague soft hyperring over (𝑅, +, ∘).Then
for each 𝑎 ∈ Supp(𝐹, 𝐴), the corresponding 𝐹

𝑎
is a vague

subhyperring of𝑅. Now let𝑥, 𝑦 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

.Then 𝑡
𝐹𝑎
(𝑥) ≥ 𝛼,

1 − 𝑓
𝐹𝑎
(𝑥) ≥ 𝛽 and 𝑡

𝐹𝑎
(𝑦) ≥ 𝛼, 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝛽. Thus the

following is obtained:

min {𝑡
𝐹𝑎
(𝑥) , 𝑡
𝐹𝑎
(𝑦)} ≥ min {𝛼, 𝛼} = 𝛼,

min {1 − 𝑓
𝐹𝑎
(𝑥) , 1−𝑓

𝐹𝑎
(𝑦)} ≥ min {𝛽, 𝛽} = 𝛽.

(18)

However, since𝐹
𝑎
is a vague subhypergroup of (𝑅, +), we have

inf{𝑡
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥+𝑦} ≥ 𝛼 and inf{1 − 𝑓

𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥+𝑦} ≥ 𝛽.

Therefore, for every 𝑧 ∈ 𝑥 + 𝑦, we obtain 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

and
thus 𝑥 + 𝑦 ⊆ (𝐹, 𝐴)

(𝛼,𝛽)
. As such, it can be concluded that

𝑧 + (𝐹, 𝐴)
(𝛼,𝛽)

⊆ (𝐹, 𝐴)
(𝛼,𝛽)

. Furthermore, since 𝐹
𝑎
is a vague

subhypergroup of (𝑅, +), there exists𝑦 ∈ 𝑅 such that 𝑥 ∈ 𝑧+𝑦

and min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑧)} ≤ 𝐹

𝑎
(𝑦). Now let 𝑥, 𝑧 ∈ (𝐹, 𝐴)

(𝛼,𝛽)
.

Then the following is obtained:

min {𝑡
𝐹𝑎
(𝑥) , 𝑡
𝐹𝑎
(𝑧)} ≥ min {𝛼, 𝛼} = 𝛼,

min {1 − 𝑓
𝐹𝑎
(𝑥) , 1−𝑓

𝐹𝑎
(𝑦)} ≥ min {𝛽, 𝛽} = 𝛽.

(19)

This means that 𝑡
𝐹𝑎
(𝑦) ≥ 𝛼 and 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝛽 which implies

that𝑦 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

.Therefore for all𝑥, 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

, we have
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𝑥 ∈ 𝑧 + 𝑦 and 𝑦 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

. As such, it can be concluded
that (𝐹, 𝐴)

(𝛼,𝛽)
⊆ 𝑧 + (𝐹, 𝐴)

(𝛼,𝛽)
and this implies that, for

any 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

, 𝑧 + (𝐹, 𝐴)
(𝛼,𝛽)

= (𝐹, 𝐴)
(𝛼,𝛽)

. Hence it
has been proven that (𝐹, 𝐴)

(𝛼,𝛽)
is a subhypergroup of (𝑅, +).

Furthermore (𝑅, ∘) is a semihypergroup and 𝐹
𝑎
is also a vague

subsemihypergroup of (𝑅, ∘) for all 𝑎 ∈ Supp(𝐹, 𝐴). Now let
𝑥, 𝑦 ∈ (𝐹, 𝐴)

(𝛼,𝛽)
. Then min{𝑡

𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≥ min{𝛼, 𝛼} = 𝛼

and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≥ min{𝛽, 𝛽} = 𝛽 and this

results in

inf {𝑡
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ min {𝑡

𝐹𝑎
(𝑥) , 𝑡
𝐹𝑎
(𝑦)} ≥ 𝛼,

inf {1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

≥ min {1 − 𝑓
𝐹𝑎
(𝑥) , 1−𝑓

𝐹𝑎
(𝑦)} ≥ 𝛽.

(20)

This implies that, for all 𝑧 ∈ 𝑥∘𝑦, we obtain 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

and
therefore 𝑥 ∘ 𝑦 ⊆ (𝐹, 𝐴)

(𝛼,𝛽)
. Thus, for every 𝑥, 𝑦 ∈ (𝐹, 𝐴)

(𝛼,𝛽)
,

we obtain 𝑥 ∘ 𝑦 ∈ 𝑃
∗
((𝐹, 𝐴)

(𝛼,𝛽)
). As such, (𝐹, 𝐴)

(𝛼,𝛽)
is

a subsemihypergroup of the semihypergroup (𝑅, ∘). Hence
(𝐹, 𝐴)

(𝛼,𝛽)
is a subhyperring of 𝑅.

As a result of Theorem 29, we obtain Corollary 30.

Corollary 30. Let (𝐹, 𝐴) be a vague soft hyperring over 𝑅.
Then, for each 𝛼 ∈ [0, 1], (𝐹, 𝐴)

(𝛼,𝛼)
is a subhyperring of 𝑅.

Theorem 31. Let 𝑇 be a nonempty subset of 𝑅, let (𝐹, 𝐴) be a
nonnull vague soft set over 𝑅, and let (𝐹, 𝐴)

𝑇
be a vague soft

characteristic set over 𝑇. If (𝐹, 𝐴) is a vague soft hyperring over
𝑅, then 𝑇 is a subhyperring of 𝑅.

Proof. Let (𝐹, 𝐴) be a vague soft hyperring over 𝑅. Then,
by Definition 21, (𝐹, 𝐴) is a vague soft hypergroup over
(𝑅, +) and a vague soft semihypergroup over (𝑅, ∘) and for
each 𝑎 ∈ Supp(𝐹, 𝐴), the corresponding vague subset 𝐹

𝑎

is a vague subhyperring of 𝑅. Furthermore, since (𝑅, +, ∘)

is a hyperring, (𝑅, +) is a commutative hypergroup and
(𝑅, ∘) is a semihypergroup. Now let 𝑥, 𝑦 ∈ 𝑇. Then
𝑡
(𝐹𝑎)𝑇

(𝑥) = 𝑡
(𝐹𝑎)𝑇

(𝑦) = 𝑠 and 𝑓
(𝐹𝑎)𝑇

(𝑥) = 𝑓
(𝐹𝑎)𝑇

(𝑦) = 𝑤,
which means that (𝐹

𝑎
)
𝑇
(𝑥) = (𝐹

𝑎
)
𝑇
(𝑦) = 𝑠. Therefore,

min{(𝐹
𝑎
)
𝑇
(𝑥), (𝐹

𝑎
)
𝑇
(𝑦)} = min{𝑠, 𝑠} = 𝑠 and so inf{(𝐹

𝑎
)
𝑇
(𝑧) :

𝑧 ∈ 𝑥+𝑦} ≥ 𝑠 (∵ 𝐹
𝑎
is a vague subhyperring of 𝑅 and a vague

subhypergroup of (𝑅, +)). Thus, for every 𝑧 ∈ 𝑥 + 𝑦, we have
𝑧 ∈ 𝑇 and so it follows that 𝑥 + 𝑦 ⊆ 𝑇. As such, for every
𝑧 ∈ 𝑇, we have 𝑧 + 𝑇 ⊆ 𝑇.

Now let 𝑥, 𝑧 ∈ 𝑇. Then 𝑡
(𝐹𝑎)𝑇

(𝑥) = 𝑡
(𝐹𝑎)𝑇

(𝑧) = 𝑠 and
𝑓
(𝐹𝑎)𝑇

(𝑥) = 𝑓
(𝐹𝑎)𝑇

(𝑧) = 𝑤 and so (𝐹
𝑎
)
𝑇
(𝑥) = (𝐹

𝑎
)
𝑇
(𝑧) =

𝑠. Since 𝐹
𝑎
is a vague subhypergroup of (𝑅, +) for all 𝑎 ∈

Supp(𝐹, 𝐴), there exists 𝑦 ∈ 𝑅 such that 𝑥 ∈ 𝑧 + 𝑦

and min{(𝐹
𝑎
)
𝑇
(𝑥), (𝐹

𝑎
)
𝑇
(𝑧)} ≤ (𝐹

𝑎
)
𝑇
(𝑦). Thus we obtain

min{(𝐹
𝑎
)
𝑇
(𝑥), (𝐹

𝑎
)
𝑇
(𝑧)} = min{𝑠, 𝑠} = 𝑠 and therefore

(𝐹
𝑎
)
𝑇
(𝑦) ≥ 𝑠 which implies that 𝑦 ∈ 𝑇. Since 𝑥, 𝑦 ∈ 𝑇, this

implies that 𝑇 ⊆ 𝑧+𝑇 and so we have 𝑧 +𝑇 = 𝑇 for all 𝑧 ∈ 𝑇.

Therefore it has been proven that (𝑇, +) is a subhypergroup
of (𝑅, +). Let 𝑥, 𝑦 ∈ 𝑇. Then 𝑡

(𝐹𝑎)𝑇
(𝑥) = 𝑡

(𝐹𝑎)𝑇
(𝑦) =

𝑠 and 𝑓
(𝐹𝑎)𝑇

(𝑥) = 𝑓
(𝐹𝑎)𝑇

(𝑦) = 𝑤 and thus (𝐹
𝑎
)
𝑇
(𝑥) =

(𝐹
𝑎
)
𝑇
(𝑦) = 𝑠. Now since (𝑅, ∘) is a semihypergroup, 𝐹

𝑎
is a

vague subhypergroup of (𝑅, ∘) for all 𝑎 ∈ Supp(𝐹, 𝐴). Thus
it follows that min{(𝐹

𝑎
)
𝑇
(𝑥), (𝐹

𝑎
)
𝑇
(𝑦)} = min{𝑠, 𝑠} = 𝑠 and

therefore inf{(𝐹
𝑎
)
𝑇
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝑠 too. As a result, for

every 𝑧 ∈ 𝑥 ∘ 𝑦, we have 𝑧 ∈ 𝑇 and therefore 𝑥 ∘ 𝑦 ⊆ 𝑇. As
such, for every 𝑥, 𝑦 ∈ 𝑇, we have 𝑥 ∘ 𝑦 ∈ 𝑃

∗
(𝑇). Hence 𝑇 is a

subhyperring of 𝑅.

Theorem 32. Let 𝑇 be a nonempty subset of 𝑅, let (𝐹, 𝐴) be a
nonnull vague soft set over 𝑅, and let (𝐹, 𝐴)

𝑇
be a vague soft

characteristic set over 𝑇. Then (𝐹, 𝐴) is a vague soft hyperring
over 𝑅 if and only if 𝑇 is a subhyperring of 𝑅.

Proof. The proof is similar to that of Theorem 31.

Theorem 32 implies that there exists a one-to-one cor-
respondence between vague soft hyperrings and classical
subhyperrings of a hyperring.

4. Vague Soft Hyperideals

The ideal of a ring is an important concept in the study of
rings. The concept of a fuzzy ideal of a ring was introduced
by Liu (see [9]). Davvaz (see [8]) introduced the notion
of a fuzzy hyperideal (resp., fuzzy 𝐻]-ideal) of a hyperring
(resp., 𝐻]-ring). In this section the notion of vague soft
hyperideals of a hyperring is defined using Rosenfeld’s
approach.

Definition 33. Let (𝐹, 𝐴) be a nonnull soft set over 𝑅. Then
(𝐹, 𝐴) is called a soft left (resp., right) hyperideal of 𝑅 if 𝐹(𝑥)
is a left (resp., right) hyperideal of 𝑅 for all 𝑥 ∈ Supp(𝐹, 𝐴).

Definition 34. Let (𝐹, 𝐴) be a nonnull soft set over 𝑅. Then
(𝐹, 𝐴) is called a soft hyperideal of 𝑅 if 𝐹(𝑥) is a hyperideal of
𝑅; that is, 𝐹(𝑥) is both right and left hyperideals of 𝑅 for all
𝑥 ∈ Supp(𝐹, 𝐴).

Definition 35. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then (𝐹, 𝐴) is called a vague soft left (resp., right) hyperideal
of 𝑅 if the following axioms hold for all 𝑎 ∈ Supp(𝐹, 𝐴):

(i) for all 𝑥, 𝑦 ∈ 𝑅, min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥 + 𝑦} and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦}, which means that

min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦},

(ii) for all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑦 ∈ 𝑅 such that
𝑥 ∈ 𝑤 + 𝑦 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑦) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑦); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦),

(iii) for all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑧 ∈ 𝑅 such that
𝑥 ∈ 𝑧 + 𝑤 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑧) and
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min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑧); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑧),

(iv) for all 𝑥, 𝑦 ∈ 𝑅, 𝑡
𝐹𝑎
(𝑦) ≤ inf{𝑡

𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} (resp.,

𝑡
𝐹𝑎
(𝑥) ≤ inf{𝑡

𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}) and 1 − 𝑓

𝐹𝑎
(𝑦) ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} (resp., 1 − 𝑓

𝐹𝑎
(𝑥) ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦}); that is,𝐹

𝑎
(𝑦) ≤ inf{𝐹

𝑎
(𝑧) :

𝑧 ∈ 𝑥 ∘ 𝑦} (resp., 𝐹
𝑎
(𝑥) ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}).

That is, 𝐹
𝑎
is a vague left (resp., right) hyperideal of 𝑅 (in

Rosenfeld’s sense) for all 𝑎 ∈ Supp(𝐹, 𝐴).
Conditions (i), (ii), and (iii) prove that 𝐹

𝑎
is a vague

subhypergroup of (𝑅, +).Thismeans that (𝐹, 𝐴) is a vague soft
left (resp., right) hyperideal of 𝑅 if, for all 𝑎 ∈ Supp(𝐹, 𝐴), 𝐹

𝑎

is a vague subhypergroup of (𝑅, +) and 𝐹
𝑎
also satisfies the

condition 𝐹
𝑎
(𝑦) ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} (resp., 𝐹

𝑎
(𝑥) ≤

inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}).

Definition 36. Let (𝐹, 𝐴) be a nonnull vague soft set over
𝑅. Then (𝐹, 𝐴) is called a vague soft hyperideal of 𝑅 if the
following axioms hold for all 𝑎 ∈ Supp(𝐹, 𝐴):

(i) for all 𝑥, 𝑦 ∈ 𝑅, min{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥 + 𝑦} and min{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦}, which means that

min{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 + 𝑦},

(ii) for all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑦 ∈ 𝑅 such that
𝑥 ∈ 𝑤 + 𝑦 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑦) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑦); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑦),

(iii) for all 𝑤, 𝑥 ∈ 𝑅, there exists 𝑧 ∈ 𝑅 such that
𝑥 ∈ 𝑧 + 𝑤 and min{𝑡

𝐹𝑎
(𝑤), 𝑡
𝐹𝑎
(𝑥)} ≤ 𝑡

𝐹𝑎
(𝑧) and

min{1 − 𝑓
𝐹𝑎
(𝑤), 1 − 𝑓

𝐹𝑎
(𝑥)} ≤ 1 − 𝑓

𝐹𝑎
(𝑧); that is,

min{𝐹
𝑎
(𝑤), 𝐹

𝑎
(𝑥)} ≤ 𝐹

𝑎
(𝑧),

(iv) for all 𝑥, 𝑦 ∈ 𝑅, max{𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦)} ≤ inf{𝑡

𝐹𝑎
(𝑧) :

𝑧 ∈ 𝑥 ∘ 𝑦} and max{1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦)} ≤

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦}; that is,max{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤

inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}.

That is, 𝐹
𝑎
is a vague hyperideal of 𝑅 (in Rosenfeld’s sense) for

all 𝑎 ∈ Supp(𝐹, 𝐴).
Similar to Definition 35, conditions (i), (ii), and (iii) of

Definition 36 indicate that 𝐹
𝑎
is a vague subhypergroup of

(𝑅, +) while condition (iv) is a combination of both the
conditions given in Definition 35 (condition (iv)).

Theorem 37. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then the necessary and sufficient condition for (𝐹, 𝐴) to be a
vague soft hyperideal is for (𝐹, 𝐴) to be a vague soft hypergroup
of (𝑅, +) and (𝐹, 𝐴) is both a vague soft left hyperideal and a
vague soft right hyperideal of 𝑅.

Proof. The proof is straightforward by Definitions 35 and 36.

Proposition 38. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two vague soft
hyperideals of𝑅.Then (𝐹, 𝐴) ∧̃ (𝐺, 𝐵) is a vague soft hyperideal
of 𝑅 if it is nonnull.

Proof. Suppose that (𝐹, 𝐴) and (𝐺, 𝐵) are vague soft hyperide-
als of𝑅.Now to prove that (�̂�, 𝐴×𝐵) is a vague soft hyperideal
of 𝑅, we have to prove that all the conditions of Definition 36
have been satisfied. However, in Proposition 27, it has been
proven that conditions (i), (ii), and (iii) have been satisfied.
Therefore it is only necessary to prove that (�̂�, 𝐴×𝐵) satisfies
condition (iv) of Definition 36.

Thus for all 𝑥, 𝑦 ∈ 𝑅 and (𝛼, 𝛽) ∈ Supp(�̂�, 𝐴×𝐵)we have

max {𝑡
�̂�(𝛼,𝛽)

(𝑥) , 𝑡
�̂�(𝛼,𝛽)

(𝑦)}

= max {𝑡
𝐹𝛼
(𝑥) ∩ 𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐹𝛼
(𝑦) ∩ 𝑡

𝐺𝛽
(𝑦)}

≤ max {𝑡
𝐹𝛼
(𝑥) , 𝑡
𝐹𝛼
(𝑦)} ∩max {𝑡

𝐺𝛽
(𝑥) , 𝑡
𝐺𝛽

(𝑦)}

≤ inf {𝑡
𝐹𝛼
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

∩ inf {𝑡
𝐺𝛽

(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

≤ inf {𝑡
𝐹𝛼
(𝑧) ∩ 𝑡

𝐺𝛽
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}

= inf {𝑡
�̂�(𝛼,𝛽)

: 𝑧 ∈ 𝑥 ∘ 𝑦} .

(21)

Similarly, it can be proven that the condition
max{1 − 𝑓

�̂�(𝛼,𝛽)
(𝑥), 1 −𝑓

�̂�(𝛼,𝛽)
(𝑦)} ≤ inf{1 − 𝑓

�̂�(𝛼,𝛽)
: 𝑧 ∈ 𝑥 ∘ 𝑦}

is satisfied. This means that max{�̂�
(𝛼,𝛽)

(𝑥), �̂�
(𝛼,𝛽)

(𝑦)} ≤

inf{�̂�
(𝛼,𝛽)

(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}. Thus it has been proven that �̂�
(𝛼,𝛽)

is a vague hyperideal of 𝑅 for all (𝛼, 𝛽) ∈ Supp(�̂�, 𝐴 × 𝐵) and
as such (�̂�, 𝐴×𝐵) = (𝐹, 𝐴) ∧̃ (𝐺, 𝐵) is a vague soft hyperideal
of 𝑅.

Theorem 39. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then (𝐹, 𝐴) is a vague soft hyperideal of 𝑅 if and only if, for
each 𝑡 ∈ [0, 1], (𝐹, 𝐴)

(𝑡,𝑡)
is a soft hyperideal of 𝑅.

Proof. (⇒) Let (𝐹, 𝐴) be a vague soft hyperideal of 𝑅 and
𝑡 ∈ [0, 1]. Then 𝐹

𝑎
is a vague subhypergroup of (𝑅, +).

Now let 𝑥, 𝑦 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

. Then 𝑡
𝐹𝑎
(𝑥), 𝑡
𝐹𝑎
(𝑦) ≥ 𝑡 and

1 − 𝑓
𝐹𝑎
(𝑥), 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝑡, which means that 𝐹

𝑎
(𝑥) ≥ 𝑡 and

𝐹
𝑎
(𝑦) ≥ 𝑡. In Theorem 28, it was proved that if 𝐹

𝑎
is a vague

subhypergroup of (𝑅, +), then (𝐹
𝑎
)
(𝑡,𝑡)

is a subhypergroup
of (𝑅, +). This means that it is only necessary to prove that
(𝐹
𝑎
)
(𝑡,𝑡)

satisfies the following conditions:

𝑅 ∘ (𝐹
𝑎
)
(𝑡,𝑡)

⊆ (𝐹
𝑎
)
(𝑡,𝑡)

,

(𝐹
𝑎
)
(𝑡,𝑡)

∘ 𝑅 ⊆ (𝐹
𝑎
)
(𝑡,𝑡)

.

(22)
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Now let 𝑥 ∈ 𝑅 and 𝑦 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

. Then 𝑡
𝐹𝑎
(𝑦) ≥ 𝑡 and

1 − 𝑓
𝐹𝑎
(𝑦) ≥ 𝑡 which means that 𝐹

𝑎
(𝑦) ≥ 𝑡. Since 𝐹

𝑎
is a

vague hyperideal of 𝑅 for all 𝑎 ∈ Supp(𝐹, 𝐴), 𝐹
𝑎
must satisfy

the following condition:

𝑡
𝐹𝑎
(𝑦) ≤ inf {𝑡

𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ,

1 − 𝑓
𝐹𝑎
(𝑦) ≤ inf {1 − 𝑓

𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ,

(23)

which means 𝐹
𝑎
(𝑦) ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}. Therefore we

obtain inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝐹

𝑎
(𝑦) ≥ 𝑡. This proves

that 𝑧 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

for all 𝑧 ∈ 𝑥 ∘ 𝑦 and as a result we obtain
𝑥 ∘ 𝑦 ⊆ (𝐹

𝑎
)
(𝑡,𝑡)

. Thus for every 𝑥 ∈ 𝑅 and 𝑦 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

, we
obtain 𝑅 ∘ (𝐹

𝑎
)
(𝑡,𝑡)

⊆ (𝐹
𝑎
)
(𝑡,𝑡)

and this proves that (𝐹
𝑎
)
(𝑡,𝑡)

is
a left hyperideal of 𝑅. This implies that (𝐹, 𝐴)

(𝑡,𝑡)
is a soft left

hyperideal of 𝑅. Similarly, it can been proven that (𝐹, 𝐴)
(𝑡,𝑡)

is a soft right hyperideal of 𝑅. Thus (𝐹, 𝐴)
(𝑡,𝑡)

is a soft right
hyperideal of 𝑅. Hence (𝐹, 𝐴)

(𝑡,𝑡)
is a soft left hyperideal of 𝑅

and a soft right hyperideal of 𝑅which proves that (𝐹, 𝐴)
(𝑡,𝑡)

is
a soft hyperideal of 𝑅.

(⇐) Let (𝐹, 𝐴)
(𝑡,𝑡)

be a soft hyperideal of 𝑅. Then, for
each 𝑎 ∈ Supp(𝐹, 𝐴), (𝐹

𝑎
)
(𝑡,𝑡)

is a nonnull hyperideal of
𝑅. Therefore by Definition 16, (𝐹

𝑎
)
(𝑡,𝑡)

is a subhypergroup
of (𝑅, +). This implies that (𝐹, 𝐴)

(𝑡,𝑡)
is a soft hypergroup

over (𝑅, +). In [10], it was proven that if (𝐹, 𝐴)
(𝑡,𝑡)

is a soft
hypergroup, then (𝐹, 𝐴) is a vague soft hypergroup. Thus it
can be concluded that (𝐹, 𝐴) is a vague soft hypergroup over
(𝑅, +). Furthermore, since (𝐹

𝑎
)
(𝑡,𝑡)

is both a left hyperideal and
a right hyperideal of 𝑅, the following conditions are satisfied:

𝑅 ∘ (𝐹
𝑎
)
(𝑡,𝑡)

⊆ (𝐹
𝑎
)
(𝑡,𝑡)

,

(𝐹
𝑎
)
(𝑡,𝑡)

∘ 𝑅 ⊆ (𝐹
𝑎
)
(𝑡,𝑡)

.

(24)

Now let 𝑥 ∈ 𝑅 and 𝑦 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

or 𝑥 ∈ (𝐹
𝑎
)
(𝑡,𝑡)

and 𝑦 ∈ 𝑅.
Thus we obtain 𝑥 ∘ 𝑦 ⊆ (𝐹

𝑎
)
(𝑡,𝑡)

and 𝑦 ∘ 𝑥 ⊆ (𝐹
𝑎
)
(𝑡,𝑡)

which
implies that 𝑧 ∈ 𝑥 ∘ 𝑦, where 𝑧 ∈ (𝐹

𝑎
)
(𝑡,𝑡)

. As such, we obtain
inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝑡. Now let 𝑥, 𝑦 ∈ (𝐹

𝑎
)
(𝑡,𝑡)

. Then
𝐹
𝑎
(𝑥) ≥ 𝑡 and 𝐹

𝑎
(𝑦) ≥ 𝑡. Therefore, we obtain inf{𝐹

𝑎
(𝑧) : 𝑧 ∈

𝑥 ∘ 𝑦} ≥ 𝐹
𝑎
(𝑥) ≥ 𝑡 as well as inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝐹

𝑎
(𝑦) ≥ 𝑡

which means that 𝐹
𝑎
(𝑥) ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} and 𝐹

𝑎
(𝑦) ≤

inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦}. Combining these conditions, we obtain

max{𝐹
𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦}. Thus condition

(iv) of Definition 36 has also been verified. This means that
𝐹
𝑎
is a vague hyperideal of 𝑅 and hence it proves that (𝐹, 𝐴)

is a vague soft hyperideal of 𝑅.

Theorem 39 proves that there exists a one-to-one cor-
respondence between vague soft hyperideal and the soft
hyperideal of a hyperring.

Theorem 40. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅
left (resp., right) hyperideal of 𝑅. Then, for all 𝛼, 𝛽 ∈ [0, 1],
(𝐹, 𝐴)

(𝛼,𝛽)
is a left (resp., right) hyperideal of 𝑅.

Proof. Let (𝐹, 𝐴) be a vague soft left (resp., right) hyperideal
of𝑅.Then, by Definition 35, (𝐹, 𝐴) is a vague soft hypergroup
over (𝑅, +). Now in Theorem 29 it was proven that if (𝐹, 𝐴)
is a vague soft hypergroup over (𝑅, +), then (𝐹, 𝐴)

(𝛼,𝛽)
is a

subhypergroup of (𝑅, +). Therefore, in order to prove that
(𝐹, 𝐴)

(𝛼,𝛽)
is a left (resp., right) hyperideal of 𝑅, we only have

to prove that 𝑅 ∘ (𝐹, 𝐴)
(𝛼,𝛽)

⊆ (𝐹, 𝐴)
(𝛼,𝛽)

(resp., (𝐹, 𝐴)
(𝛼,𝛽)

∘

𝑅 ⊆ (𝐹, 𝐴)
(𝛼,𝛽)

). Now let 𝑥 ∈ 𝑅 and 𝑦 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

. Then
𝑡
𝐹𝑎
(𝑦) ≥ 𝛼 and 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝛽. Since 𝐹

𝑎
is a vague left ideal of

𝑅 for all 𝑎 ∈ Supp(𝐹, 𝐴), 𝐹
𝑎
satisfies the conditions 𝑡

𝐹𝑎
(𝑦) ≤

inf{𝑡
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} and 1 − 𝑓

𝐹𝑎
(𝑦) ≤ inf{1 − 𝑓

𝐹𝑎
(𝑧) : 𝑧 ∈

𝑥∘𝑦}. Therefore we obtain inf{𝑡
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥∘𝑦} ≥ 𝑡

𝐹𝑎
(𝑦) ≥ 𝛼

and inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 1 − 𝑓

𝐹𝑎
(𝑦) ≥ 𝛽 which

implies that, for all 𝑧 ∈ 𝑥 ∘ 𝑦, 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

. As such,
we obtain 𝑥 ∘ 𝑦 ⊆ (𝐹, 𝐴)

(𝛼,𝛽)
. Thus for every 𝑥 ∈ 𝑅 and

𝑦 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

, we obtain 𝑅 ∘ (𝐹, 𝐴)
(𝛼,𝛽)

⊆ (𝐹, 𝐴)
(𝛼,𝛽)

. Hence
(𝐹, 𝐴)

(𝛼,𝛽)
is a left hyperideal of 𝑅. Next let 𝑥 ∈ (𝐹, 𝐴)

(𝛼,𝛽)

and 𝑦 ∈ 𝑅. Then 𝑡
𝐹𝑎
(𝑥) ≥ 𝛼 and 1 − 𝑓

𝐹𝑎
(𝑥) ≥ 𝛽. Similarly,

we obtain inf{𝑡
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝑡

𝐹𝑎
(𝑥) ≥ 𝛼 and

inf{1 − 𝑓
𝐹𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 1 − 𝑓

𝐹𝑎
(𝑥) ≥ 𝛽. This implies

that 𝑧 ∈ (𝐹, 𝐴)
(𝛼,𝛽)

for all 𝑧 ∈ 𝑥 ∘ 𝑦 and therefore we obtain
𝑥∘𝑦 ⊆ (𝐹, 𝐴)

(𝛼,𝛽)
. As such, for every𝑥 ∈ (𝐹, 𝐴)

(𝛼,𝛽)
and𝑦 ∈ 𝑅,

we obtain (𝐹, 𝐴)
(𝛼,𝛽)

∘ 𝑅 ⊆ (𝐹, 𝐴)
(𝛼,𝛽)

which means (𝐹, 𝐴)
(𝛼,𝛽)

is a right hyperideal of 𝑅.

Theorem 41. Let (𝐹, 𝐴) be a nonnull vague soft set over 𝑅.
Then (𝐹, 𝐴) is a vague soft left (resp., right) hyperideal of 𝑅 if
and only if, for all 𝛼, 𝛽 ∈ [0, 1], (𝐹, 𝐴)

(𝛼,𝛽)
is a left (resp., right)

hyperideal of 𝑅.

Proof. The proof is straightforward.

Theorem 42. Let 𝑀 be a nonempty subset of 𝑅 and (𝐹, 𝐴)
𝑀

be a vague soft characteristic set over 𝑀. If (𝐹, 𝐴) is a vague
soft hyperideal of 𝑅, then𝑀 is a hyperideal of 𝑅.

Proof. Let (𝐹, 𝐴) be a vague soft hyperideal of𝑅.Therefore, by
Definition 36, (𝐹, 𝐴) is a vague soft hypergroup over (𝑅, +)
and satisfies the condition max{𝐹

𝑎
(𝑥), 𝐹
𝑎
(𝑦)} ≤ inf{𝐹

𝑎
(𝑧) :

𝑧 ∈ 𝑥 ∘ 𝑦}. In order to prove that 𝑀 is a hyperideal of 𝑅, we
need to prove that (𝑀, +) is a subhypergroup of (𝑅, +) and
𝑅 ∘ 𝑀 ⊆ 𝑀 and 𝑀 ∘ 𝑅 ⊆ 𝑀. In Theorem 31, it was proven
that (𝑀, +) is a subhypergroup of (𝑅, +) if (𝐹, 𝐴) is a vague
soft hypergroup over (𝑅, +). Now let 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑀. Then
𝑡
𝐹𝑎
(𝑦) = 1 − 𝑓

𝐹𝑎
(𝑦) = 𝑠 which means that 𝐹

𝑎
(𝑦) = 𝑠. Since

𝐹
𝑎
is a vague hyperideal of 𝑅 for all 𝑎 ∈ Supp(𝐹, 𝐴), it must

satisfy the following conditions:

𝐹
𝑎
(𝑦) ≤ inf {𝐹

𝑎 (𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ,

𝐹
𝑎 (𝑥) ≤ inf {𝐹

𝑎 (𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} .

(25)

Therefore since 𝐹
𝑎
(𝑦) = 𝑠 for all 𝑎 ∈ Supp(𝐹, 𝐴) and 𝑦 ∈ 𝑀,

we obtain inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝐹

𝑎
(𝑦) = 𝑠 which means
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that inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝑠. This implies that 𝑧 ∈ 𝑀 for

all 𝑧 ∈ 𝑥 ∘ 𝑦 and this proves that 𝑥 ∘ 𝑦 ⊆ 𝑀 for all 𝑥 ∈ 𝑅 and
𝑦 ∈ 𝑀. Therefore we obtain 𝑅 ∘𝑀 ⊆ 𝑀 and this implies that
𝑀 is a left hyperideal of 𝑅. Now let 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑅. Then
𝑡
𝐹𝑎
(𝑥) = 1 − 𝑓

𝐹𝑎
= 𝑠 which means that 𝐹

𝑎
(𝑥) = 𝑠. Similarly,

we obtain inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝐹

𝑎
(𝑥) = 𝑠 which means

that inf{𝐹
𝑎
(𝑧) : 𝑧 ∈ 𝑥 ∘ 𝑦} ≥ 𝑠. This implies that 𝑧 ∈ 𝑀 for

all 𝑧 ∈ 𝑥 ∘ 𝑦 and consequently we obtain 𝑥 ∘ 𝑦 ⊆ 𝑀 for all
𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑅. This proves that𝑀∘𝑅 ⊆ 𝑀. As such,𝑀 is
a right hyperideal of 𝑅. Hence it has been proven that𝑀 is a
hyperideal of 𝑅.

Theorem 43. Let 𝑀 be a nonempty subset of 𝑅, let (𝐹, 𝐴) be
a nonnull vague soft set over 𝑅, and let (𝐹, 𝐴)

𝑀
be a vague soft

characteristic set over𝑀.Then (𝐹, 𝐴) is a vague soft hyperideal
of 𝑅 if and only if𝑀 is a hyperideal of 𝑅.

Proof. The proof is straightforward.

5. Vague Soft Hyperring Homomorphism

In this section, we introduce the notion of vague soft hyper-
ring homomorphism by applying the concept of vague soft
functions as well as the notion of the image and preimage of a
vague soft set under a vague soft function introduced by [10]
in the context of vague soft hyperrings. Lastly, it is proven that
the vague soft hyperring homomorphism preserves vague
soft hyperrings.

Definition 44 (see [2]). Let (𝑅1, +1, ∘1) and (𝑅2, +2, ∘2) be two
hyperrings. A map 𝑓 : 𝑅1 → 𝑅2 is called a hyperring
homomorphism if, for all 𝑥, 𝑦 ∈ 𝑅1, one has 𝑓(𝑥 +1 𝑦) ⊆

𝑓(𝑥) +2 𝑓(𝑦) and 𝑓(𝑥 ∘1 𝑦) ⊆ 𝑓(𝑥) ∘2 𝑓(𝑦).

Definition 45 (see [10]). Let 𝜑 : 𝑋 → 𝑌 and 𝜓 : 𝐴 → 𝐵

be two functions, where 𝐴 and 𝐵 are parameter sets for the
classical sets 𝑋 and 𝑌, respectively. Let (𝐹, 𝐴) and (𝐺, 𝐵) be
vague soft sets over 𝑋 and 𝑌, respectively. Then the ordered
pair (𝜑, 𝜓) is called a vague soft function from (𝐹, 𝐴) to (𝐺, 𝐵)
and is denoted by (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵).

Definition 46 (see [10]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be vague soft
sets over 𝑋 and 𝑌, respectively. Let (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵)

be a vague soft function.

(i) The image of (𝐹, 𝐴) under the vague soft function
(𝜑, 𝜓), which is denoted by (𝜑, 𝜓)(𝐹, 𝐴), is a vague soft
set over 𝑌, which is defined as

(𝜑, 𝜓) (𝐹, 𝐴) = (𝜑 (𝐹) , 𝜓 (𝐴)) , (26)

where

𝜑 (𝐹
𝑎
) (𝜑 (𝑥)) = (𝜑 (𝐹))

𝜓(𝑎)

(𝑦) , (27)

for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, and 𝑦 ∈ 𝑌.

(ii) The preimage of (𝐺, 𝐵) under the vague soft function
(𝜑, 𝜓), which is denoted by (𝜑, 𝜓)−1(𝐺, 𝐵), is a vague
soft set over𝑋, which is defined as

(𝜑, 𝜓)
−1
(𝐺, 𝐵) = (𝜑

−1
(𝐺) , 𝜓

−1
(𝐵)) , (28)

where

𝜑
−1
(𝐺
𝑏
) (𝜑
−1
(𝑦)) = (𝜑

−1
(𝐺))
𝜓
−1
(𝑏)

(𝑥) , (29)

for all 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑋, and 𝑦 ∈ 𝑌.

If 𝜑 and 𝜓 are injective (surjective), then the vague soft
function (𝜑, 𝜓) is said to be injective (surjective).

Definition 47. Let (𝑅
1
, +
1
, ∘
1
) and (𝑅

2
, +
2
, ∘
2
) be two hyper-

rings. Also let (𝐹, 𝐴) and (𝐺, 𝐵) be two vague soft hyperrings
over 𝑅

1
and 𝑅

2
, respectively, and let (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵)

be a vague soft function. Then (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵) is
called a vague soft hyperring homomorphism if the following
conditions are satisfied:

(i) 𝜑 is a hyperring homomorphism from 𝑅
1
to 𝑅
2
,

(ii) 𝜓 is a function from 𝐴 to 𝐵,

(iii) 𝜑(𝐹(𝑥)) = 𝐺(𝜓(𝑥)) for all 𝑥 ∈ Supp(𝐹, 𝐴).

Theorem 48. Let (𝑅1, +1, ∘1) and (𝑅2, +2, ∘2) be two hyper-
rings. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two vague soft hyperrings over𝑅1
and 𝑅2, respectively. Let (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵) be a vague
soft hyperring homomorphism and let 𝜓 : 𝐴 → 𝐵 be an
injective mapping. Then (𝜑(𝐹), 𝜓(𝐴)) is a vague soft hyperring
over (𝑅2, +2, ∘2).

Proof. Since (𝜑, 𝜓) is a vague soft hyperring homomorphism,
it can be seen that

Supp (𝜑 (𝐹) , 𝜓 (𝐴)) ⊆ 𝜓 (Supp (𝐹, 𝐴)) . (30)

Now let 𝑤1, 𝑤2 ∈ 𝑅2. Then there exists 𝑥, 𝑦 ∈ 𝑅1 such that
𝜑(𝑥) = 𝑤1 and 𝜑(𝑦) = 𝑤2. Therefore, for all 𝑥, 𝑦 ∈ 𝑅1, 𝑎 ∈

Supp(𝐹, 𝐴) we obtain

min {𝜑 (𝐹
𝑎
) (𝜑 (𝑥)) , 𝜑 (𝐹𝑎) (𝜑 (𝑦))}

= min{(𝜑 (𝐹))
𝜓(𝑎)

(𝑤1) , (𝜑 (𝐹))
𝜓(𝑎)

(𝑤2)}

≤ inf {(𝜑 (𝐹))
𝜓(𝑎)

(𝑢) : 𝑢 ∈𝑤1 +2 𝑤2}

= inf {𝜑 (𝐹
𝑎
) (𝜑 (𝑧))} ,

(31)

where 𝑧 ∈ 𝑅1 such that 𝑧 ∈ 𝑥 +1 𝑦 and 𝜑(𝑧) = 𝑢.



The Scientific World Journal 11

Furthermore, for all 𝑤, 𝑥 ∈ 𝑅1, there exists 𝑢1, 𝑢2 ∈ 𝑅2
such that 𝜑(𝑤) = 𝑢1 and 𝜑(𝑥) = 𝑢2. Therefore, for all 𝑤, 𝑥 ∈

𝑅1 and for each 𝑎 ∈ Supp(𝐹, 𝐴), we obtain

min {𝜑 (𝐹
𝑎
) (𝜑 (𝑤)) , 𝜑 (𝐹𝑎) (𝜑 (𝑥))}

= min{(𝜑 (𝐹))
𝜓(𝑎)

(𝑢1) , (𝜑 (𝐹))
𝜓(𝑎)

(𝑢2)}

≤ inf {(𝜑 (𝐹))
𝜓(𝑎)

(𝑏) : 𝑢2 ∈ 𝑢1 +2 𝑏}

= inf {𝜑 (𝐹
𝑎
) (𝜑 (𝑦))} ,

(32)

where 𝑦 ∈ 𝑅1 such that 𝑥 ∈ 𝑤 +1 𝑦 and 𝜑(𝑦) = 𝑏 and also

min {𝜑 (𝐹
𝑎
) (𝜑 (𝑤)) , 𝜑 (𝐹𝑎) (𝜑 (𝑥))}

= min{(𝜑 (𝐹))
𝜓(𝑎)

(𝑢1) , (𝜑 (𝐹))
𝜓(𝑎)

(𝑢2)}

≤ inf {(𝜑 (𝐹))
𝜓(𝑎)

(𝑐) : 𝑢2 ∈ 𝑐 +2 𝑢1}

= inf {𝜑 (𝐹
𝑎
) (𝜑 (𝑧))} ,

(33)

where 𝑧 ∈ 𝑅1 such that 𝑥 ∈ 𝑧 +1 𝑤 and 𝜑(𝑧) = 𝑐.
Thus it has been proven that 𝜑(𝐹

𝑎
) is a nonnull subhyper-

group of (𝑅, +
2
) and consequently (𝜑(𝐹), 𝜓(𝐴)) is a vague soft

hypergroup over (𝑅, +
2
).

Lastly, let 𝑥, 𝑦 ∈ 𝑅1. Then there exists 𝑤1, 𝑤2 ∈ 𝑅2 such
that 𝜑(𝑥) = 𝑤1 and 𝜑(𝑦) = 𝑤2. Therefore for all 𝑥, 𝑦 ∈ 𝑅1 and
𝑎 ∈ Supp(𝐹, 𝐴) we obtain

min {𝜑 (𝐹
𝑎
) (𝜑 (𝑥)) , 𝜑 (𝐹𝑎) (𝜑 (𝑦))}

= min{(𝜑 (𝐹))
𝜓(𝑎)

(𝑤1) , (𝜑 (𝐹))
𝜓(𝑎)

(𝑤2)}

≤ inf {(𝜑 (𝐹))
𝜓(𝑎)

(𝑝) : 𝑝 ∈𝑤1 ∘2 𝑤2}

= inf {𝜑 (𝐹
𝑎
) (𝜑 (𝑧))} ,

(34)

where 𝑧 ∈ 𝑅1 such that 𝑧 ∈ 𝑥∘1𝑦 and 𝜑(𝑧) = 𝑝.
Therefore it has been proven that 𝜑(𝐹

𝑎
) is a nonnull

subsemihypergroup of (𝑅, ∘
2
) and consequently (𝜑(𝐹), 𝜓(𝐴))

is a vague soft semihypergroup over (𝑅, ∘
2
). As such, 𝜑(𝐹

𝑎
) is

a vague subhyperring of (𝑅
2
, +
2
, ∘
2
). Hence (𝜑(𝐹), 𝜓(𝐴)) is a

vague soft hyperring over (𝑅
2
, +
2
, ∘
2
).

Theorem 49. Let (𝑅1, +1, ∘1) and (𝑅2, +2, ∘2) be two hyper-
rings. Let (𝐹, 𝐴) and (𝐺, 𝐵) be two vague soft hypergroups over
𝑅1 and 𝑅2, respectively. Let (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵) be a
vague soft hyperring homomorphism. Then (𝜑

−1
(𝐺), 𝜓

−1
(𝐵))

is a vague soft hyperring over (𝑅1, +1, ∘1).

Proof. The proof is similar to that of Theorem 48.

Theorems 48 and 49 prove that the homomorphic image
and preimage of a vague soft hyperring are also a vague soft
hyperring. This implies that the vague soft hyperring homo-
morphism preserves vague soft hyperrings.

Theorem 50. Let 𝑅1, 𝑅2, and 𝑅3 be nonnull hyperrings and let
(𝐹, 𝐴), (𝐺, 𝐵), and (𝐽, 𝐶) be vague soft hyperrings over 𝑅1, 𝑅2,
and𝑅3, respectively. Let (𝜑, 𝜓) : (𝐹, 𝐴) → (𝐺, 𝐵) and (𝜑, 𝜓) :
(𝐺, 𝐵) → (𝐽, 𝐶) be vague soft hyperring homomorphisms.
Then (𝜑 ∘𝜑, 𝜓 ∘𝜓) : (𝐹, 𝐴) → (𝐽, 𝐶) is a vague soft hyperring
homomorphism.

Proof. The proof is straightforward.

6. Conclusion

In this paper we introduced and developed the initial theory
of vague soft hyperrings as a continuation to the theory of
vague soft hypergroups. It was proved that there exists a
one-to-one correspondence between the concepts introduced
here and the corresponding concepts in soft hyperring theory
and classical hyperring theory. Lastly, it was proved that the
notion of vague soft hyperring homomorphism introduced
here preserves vague soft hyperrings. This is an important
step in the formulation and advancement of knowledge in the
area of vague soft hyperalgebra.
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