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We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which
relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the
manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers
by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the
vehicles have fixed departure dates which are not part of the decisions.The problem is to find a feasible schedule that minimizes one
of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders
and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both
problems are solvable in polynomial time.

1. Introduction

An increasing number of companies now adopt make-to-
order business models in which products are custom-made
and delivered to customers within a very short lead time
directly from the factory. Consequently, there is little or no
finished product inventory in the supply chain such that pro-
duction and outbound distribution are intimately linked and
must be scheduled jointly. A majority of the companies
worldwide rely on the 3PL providers for their daily distribu-
tion and other logistics needs [1]. 3PL providers often follow a
fixed daily orweekly schedule for serving their customers. For
example, many package delivery service providers such as
UPS and FedEx have daily fixed package pickup times; and
most 3PL rail, ocean, and air freight service providers have a
fixed weekly schedule for a specific origin-destination pair.

In this paper, we study integrated production and out-
bound distribution scheduling decisions commonly faced by
many manufacturers that operate in a make-to-order mode
and rely on a 3PL provider for finished product delivery to
customers where the 3PL provider follows a fixed delivery
schedule. Examples of such manufacturers include most

high-end custom-made consumer electronics product man-
ufacturers based in Asia that rely on air flights (which have
fixed departure times) to deliver finished products to the US
and European markets. The production and distribution
scheduling problem faced by such a manufacturer can be
described as follows. At the beginning of a planning horizon,
the manufacturer has received a set 𝐽 = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
} of 𝑛

independent orders from its customers to be processed on a
single assembly line. Order 𝐽

𝑖
has a processing time 𝑝

𝑖
, a

weight 𝑤
𝑖
and a desired due date 𝑑

𝑖
which is negotiated and

agreed on by the manufacturer and the customer who placed
the order. Finished orders are delivered by vehicles which
have fixed departure times. In the planning horizon, there are
𝑧 possible vehicle departure time instants 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑧
,

whereby at time 𝑇
𝑗
, 1 ≤ 𝑗 ≤ 𝑧, there are V

𝑗
vehicles available

for delivery. In the air flight case, each vehicle represents an air
freight container. Based on a contractual agreement between
themanufacturer and the 3PL provider, themanufacturer can
use a certain number (e.g., V

𝑗
) of containers available on a

given flight with departure time 𝑇
𝑗
. Usually the 3PL provider

charges the manufacturer a fixed transportation cost for each
air freight container used. Thus, the total transportation cost
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is represented by the total number of vehicles (i.e., total
number of containers) used. Each order is packaged into a
standard-size pallet for delivery convenience regardless of the
order size. Each vehicle can deliver at most 𝐶 orders (e.g., in
the air flight case, each container can hold up to 𝐶 pallets).
The V
𝑗
vehicles can only deliver orders that are completed by

time 𝑇
𝑗
. A feasible schedule is one in which each order has

completed processing and delivered by one of the available
vehicles. Without loss of generality, we may assume that 𝑇

𝑧
≥

∑
𝑛

𝑖=1
𝑝
𝑖
; otherwise, there is at least one order that cannot be

delivered and hence there is no feasible schedule.
In a given feasible schedule, if order 𝐽

𝑖
is delivered at time

𝑇
𝑗
and 𝑇

𝑗
> 𝑑
𝑖
, we define 𝑈

𝑖
to be 1; if order 𝐽

𝑖
is delivered at

time 𝑇
𝑗
and 𝑇

𝑗
≤ 𝑑
𝑖
, we define 𝑈

𝑖
to be 0. We say in a given

feasible schedule an order 𝐽
𝑖
is early if𝑈

𝑖
= 0 and late if𝑈

𝑖
= 1.

The minimum total weight of late orders ∑𝑛
𝑖=1

𝑤
𝑖
𝑈
𝑖
measures

the delivery timeliness relative to the customers desired due
dates and is one of themost commonly usedmeasurements in
practice. The problem of minimizing∑

𝑛

𝑖=1
𝑤
𝑖
𝑈
𝑖
is NP-hard as

it contains the NP-hard classical single-machine total weight
of late orders scheduling problem [2] as a special case when
the delivery part is not considered. In this paper, we consider
the special case of the problem in which processing times
and weights are oppositely ordered; that is, if 𝑤

𝑖
< 𝑤
𝑗
, then

𝑝
𝑖
≥ 𝑝
𝑗
for all 𝐽

𝑖
, 𝐽
𝑗
∈ 𝐽.That processing times andweights are

oppositely ordered is the case in many practical applications.
For example, when production resources are comparative
shortage, one would prefer the order with shorter processing
time. Our problem is to find a feasible schedule that mini-
mizes one of the following objective functions: (1)∑𝑛

𝑖=1
𝑤
𝑖
𝑈
𝑖

and (2) the number of vehicles used subject to the condition
that ∑

𝑛

𝑖=1
𝑤
𝑖
𝑈
𝑖
is minimum. We show that all two problems

are solvable in polynomial time.
Research on integrated production and outbound dis-

tribution scheduling problems is relatively recent but has
attracted a rapidly growing interest in the last several years
[3]. In most of the problems considered in the literature,
vehicle departure times are not fixed and need to be deter-
mined alongwith other decisions.Only a handful of problems
considered in the literature involve fixed vehicle departure
times. Such problems can be classified into two types based
on vehicle availability.One type assumes that there are infinite
number of vehicles available at each departure time, whereas
the other type assumes that there are a limited number of
vehicles available at each departure time. Stecke andZhao [4],
Melo andWolsey [5], and Zhong et al. [6] all consider similar
problems with an infinite number of vehicles where each
order has a deadline which has to be satisfied and the objec-
tive is to minimize the total transportation cost. Their prob-
lems differ slightly in the structure of the transportation cost.
Since the focus of this paper is on problems with a finite
number of vehicles, we do not review these papers in detail.

Li et al. [7–9] and Zandieh and Molla-Alizadeh-
Zavardehi [10] study several similar problems with a finite
number of vehicles at each departure time which are all
motivated by applications involving synchronizing assembly
operations of consumer electronics products such as PCs and
air transportation schedules. Orders may have different sizes
and the capacity of a vehicle is measured by the total size

(weight or volume) of orders that it can carry. There is an
earliness or tardiness penalty if an order is delivered earlier or
later than the due date. The objective is to minimize the total
transportation cost and total weighted earliness and tardiness
penalty. Li et al. [9] consider the case where all the orders are
processed on a number of parallel production lines, whereas
the other papers consider the case with a single production
line. The problems are strongly NP-hard as they contain the
strongly NP-hard classical single-machine total weighted
tardiness scheduling problem [11] as a special case when the
delivery part is not considered.These papers propose various
heuristics for solving their problems. Wang et al. [12] study
a problem with a finite number of vehicles which involves
coordinating mail processing and distribution schedules at a
mail processing and distribution center. The objective is to
minimize the total unused vehicle capacity.The authors show
that this problem is strongly NP-hard and propose dis-
patching rules and heuristics.

Fu et al. [13] consider a problem where there is a limit on
the total delivery capacity at each departure time. Each order
has a delivery departure deadline, a production window, a
size, and a profit.The problem is to select a subset of orders to
accept so as tomaximize the total profit of the accepted orders
under the constraint that each accepted order is processed
within its production window, the delivery of this order is
departed by its delivery departure deadline, and the total size
of the orders delivered at each departure time does not exceed
the available vehicle capacity limit. The problem is strongly
NP-hard as it contains the bin packing problem as its special
case when only the delivery part is considered. The authors
propose a polynomial time approximation scheme for the
problem.

Leung and Chen [14] discuss an integrated production
and distribution scheduling problem. In the beginning of
a planning horizon, the manufacturer has received a set of
orders to be processed on a single production line. Completed
orders are delivered to customers by a finite number of vehi-
cles provided by the 3PL company which follows a fixed daily
or weekly shipping schedule such that the vehicles have fixed
departure dates. The problem is to find a feasible schedule
that minimizes one of the following objective functions: (a)
the maximum lateness of orders, (b) the number of vehicles
used subject to the condition that the maximum lateness is
minimum, and (c) the weighted sum of the maximum late-
ness and the number of vehicles used.They show that all three
problems are solvable in polynomial time.

The remainder of this paper is organized as follows. In
Section 2, we give a simple algorithm to check the feasibility
of a given instance of the problem. In Sections 3 and 4, we give
polynomial time algorithms to solve problems (1) and (2),
respectively. We conclude the paper in Section 5.

2. Feasibility

Given an instance of the problem, we first need to determine
whether there is any feasible schedule. The following Algo-
rithm FD come fromLeung andChen [14] and are stated.The
idea is to schedule the orders in Smallest-Processing-Time
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first (SPT) order. Let 𝑆 be a SPT schedule. Let 𝑆(𝑇
𝑖
, 𝑇
𝑗
) denote

the set of orders completed in the interval (𝑇
𝑖
, 𝑇
𝑗
] in 𝑆. Let

𝑇
𝑧+1

be any integer greater than𝑇
𝑧
. We then assign the orders

to the vehicles by the following algorithm.

Algorithm FD

Input. An SPT schedule 𝑆. For each departure time 𝑇
𝑗
, for 1 ≤

𝑗 ≤ 𝑧, there are V
𝑗
vehicles available for delivery at 𝑇

𝑗
.

Output. “Yes” if it is possible to deliver all the orders in the
schedule 𝑆, “No” otherwise.

Method

(1) 𝑆(𝑇
𝑧
, 𝑇
𝑧+1

) := 0; 𝑇
0
:= 0.

(2) For 𝑗 = 1 to 𝑧 do the following:

(a) assign the orders in 𝑆(𝑇
𝑗−1

, 𝑇
𝑗
) to one of the V

𝑗

vehicles available at time 𝑇
𝑗
;

after an order is assigned to a vehicle, it is
removed from 𝑆(𝑇

𝑗−1
, 𝑇
𝑗
);

(b) if all of the V
𝑗
vehicles are full and there is still at

least one unassigned order in 𝑆(𝑇
𝑗−1

, 𝑇
𝑗
), then

put all the unassigned orders into 𝑆(𝑇
𝑗
, 𝑇
𝑗+1

);

(3) if 𝑆(𝑇
𝑧
, 𝑇
𝑧+1

) = 0 then return “Yes,” else return “No.”

If the algorithm returns “Yes,” then there is a feasible schedule;
otherwise, there is no feasible schedule. The overall running
time of the algorithm is 𝑂(𝑛 log 𝑛) time.

Let (𝑆
1
, 𝑆
2
) be a SPT schedule of the instance of the

problem. Clearly, there is no feasible schedule for the instance
of the problem if |𝑆

2
| = ∑
𝑧

𝑗=𝑘
V
𝑗
𝐶 and ∑

𝐽𝑖∈𝑆1
𝑝
𝑖
> 𝑇
𝑘−1

, where
1 ≤ 𝑘 ≤ 𝑧. In the remainder of this paper, we will assume that
there is a feasible schedule for the given instance.

3. Total Weight of Late Orders

In this section we give a polynomial-time algorithm to solve
the total weight of late orders problem. For each 1 ≤ 𝑖 ≤ 𝑛, let
𝑑
𝑖
= max{𝑇

𝑚
| 𝑇
𝑚

≤ 𝑑
𝑖
, 1 ≤ 𝑚 ≤ 𝑧} and for each 1 ≤ 𝑗 ≤ 𝑧,

let𝑁
0,𝑗

= {𝐽
𝑖
| 𝑑
𝑖
= 𝑇
𝑗
, 1 ≤ 𝑖 ≤ 𝑛}. Clearly, an order 𝐽

𝑖
∈ 𝑁
0,𝑗

is
early if and only if it is completed and delivered by time𝑇

𝑗
for

a given schedule. The following algorithm decides whether
there is a feasible schedule that minimizes the total weight
of late orders. To break ties when sequencing the orders in
decreasing order of their weights, we employ the last-in first
rule; that is, we arrange order 𝐽

𝑗
before order 𝐽

𝑖
if 𝐽
𝑗
is merged

into a set of orders 𝑆 and 𝑤
𝑗
= 𝑤
𝑖
, where 𝐽

𝑖
∈ 𝑆.

AlgorithmWF

Input. 𝐽 and 𝑁
0,1

, . . . , 𝑁
0,𝑧
.

Output. A feasible schedule that minimizes the total weight
of late orders.

Method

(1) 𝑃 = ∑
𝑛

𝑖=1
𝑝
𝑖
; 𝑡 := 0. 𝑇

0
:= 0. 𝑁

0,0
:= 0.

(2) For 𝑗 = 𝑧 down to 1 do the following.

(2.1) Let 𝑅
𝑡,𝑗

be all the orders in 𝑁
𝑡,𝑗
, arranged in

decreasing order of their weights.
(2.2) If V

𝑗
𝐶 < |𝑅

𝑡,𝑗
|, then update 𝑁

𝑡,𝑗−1
:= 𝑁
𝑡,𝑗−1

∪

𝐹
𝑡,𝑗

and 𝑅
𝑡,𝑗

:= 𝑅
𝑡,𝑗

\ 𝐹
𝑡,𝑗
, where 𝐹

𝑡,𝑗
are the first

|𝑅
𝑡,𝑗
| − V
𝑗
𝐶 orders from 𝑅

𝑡,𝑗
.

(2.3) 𝑝 := ∑
𝐽𝑖∈𝑅𝑡,𝑗

𝑝
𝑖
.

(2.4) Schedule the orders in 𝑅
𝑡,𝑗

from time 𝑃 − 𝑝 to
𝑃. These orders will be delivered by the vehicles
available at time 𝑇

𝑗
.

(2.5) 𝑃 := 𝑃 − 𝑝.
(2.6) If 𝑃 > 𝑇

𝑗−1
, find 𝐽

𝑙𝑡
∈ 𝑁
𝑡,𝑗𝑙

such that 𝑤
𝑙𝑡

=

min{𝑤
𝑖

| 𝐽
𝑖

∈ ⋃
𝑗−1

𝑖=0
𝑁
𝑡,𝑖
}, where 0 ≤ 𝑗

𝑙
≤

𝑗 − 1. Update 𝑁
𝑡,0

:= 𝑁
𝑡,0

, 𝑁
𝑡,1

:= 𝑁
𝑡,1

, . . . ,

𝑁
𝑡,𝑗𝑙−1

:= 𝑁
𝑡,𝑗𝑙−1

, 𝑁
𝑡,𝑗𝑙

:= 𝑁
𝑡,𝑗𝑙

\ {𝐽
𝑙𝑡
}, 𝑁
𝑡,𝑗𝑙+1

:=

𝑁
𝑡,𝑗𝑙+1

, . . . , 𝑁
𝑡,𝑗−1

:= 𝑁
𝑡,𝑗−1

, 𝑁
𝑡,𝑗

:=

𝑅
𝑡,𝑗
, . . . , 𝑁

𝑡,𝑧−1
:= 𝑅
𝑡,𝑧−1

, 𝑁
𝑡,𝑧

:= 𝑅
𝑡,𝑧

∪ {𝐽
𝑙𝑡
}, and

𝑡 := 𝑡 + 1; return to (2).

(3) Stop. The schedule (𝑅
𝑡,1

, . . . , 𝑅
𝑡,𝑧

) is an optimal feasi-
ble schedule, where the orders in 𝑅

𝑡,𝑗
will be delivered

by the vehicles available at time 𝑇
𝑗
and ∑

𝑡−1

𝑖=0
𝑤
𝑙𝑖

=

min∑𝑤
𝑗
𝑈
𝑗
.

Algorithm WF consists of 𝑡 + 1 iterations. For ease of
presentation, we present the detailed output data obtained by
the 𝑡 + 1 iterations as follows:

(𝑅
0,𝑗0

, . . . , 𝑅
0,𝑧

) , 𝐽
𝑙0
, 𝑤
𝑙0
; . . . ; (𝑅

𝑡−1,𝑗𝑡−1
, . . . , 𝑅

𝑡−1,𝑧
) ,

𝐽
𝑙𝑡−1

, 𝑤
𝑙𝑡−1

; (𝑅
𝑡,1

, . . . , 𝑅
𝑡,𝑧

) ,

(1)

where for 𝑘 = 0, 1, . . . , 𝑡 − 1, 1 ≤ 𝑗
𝑘
≤ 𝑧, 𝑃 − ∑

𝐽𝑖∈⋃
𝑧

𝑗=𝑗
𝑘
𝑅𝑘,𝑗

𝑝
𝑖
>

𝑇
𝑗𝑘−1

, 𝐽
𝑙𝑘

∈ 𝐽 \ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
, and 𝑤

𝑙𝑘
= min{𝑤

𝑖
| 𝐽
𝑖

∈ 𝐽 \

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

}.
The following lemma describes some properties of the

data obtained by AlgorithmWF.

Lemma 1. Let the data in (1) be obtained by AlgorithmWF. All
of the following hold:

(i) 𝑗
0
≥ 𝑗
1
≥ ⋅ ⋅ ⋅ ≥ 𝑗

𝑡
= 1,

(ii) 𝑤
𝑙0

≤ 𝑤
𝑙1

≤ ⋅ ⋅ ⋅ ≤ 𝑤
𝑙𝑡−1

,

(iii) for each 0 ≤ 𝑘 ≤ 𝑡 − 1 and 𝑘 + 1 ≤ 𝑖 ≤ 𝑡, 𝐽
𝑙𝑘

∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑖,𝑗

and is a late order if the orders in 𝑅
𝑖,𝑗
are delivered at

time 𝑇
𝑗
.

Proof. Let (𝑅
0,𝑗0

, . . . , 𝑅
0,𝑧

), 𝐽
𝑙0
, and 𝑤

𝑙0
be the output data

obtained by the first iteration ofAlgorithmWF.Then,we have
that 𝑃 − ∑

𝐽𝑖∈⋃
𝑧

𝑗=𝑚
𝑅0,𝑗

𝑝
𝑖
≤ 𝑇
𝑚−1

, |𝑅
0,𝑚

| ≤ V
𝑚
𝐶 for 𝑚 = 𝑧, 𝑧 −

1, . . . , 𝑗
0
+ 1, and 𝑃 − ∑

𝐽𝑖∈⋃
𝑧

𝑗=𝑗0
𝑅0,𝑗

𝑝
𝑖
> 𝑇
𝑗0−1

, |𝑅
0,𝑗0

| ≤ V
𝑗0
𝐶.

We now run the second iteration on the data
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(𝑁
1,0

, 𝑁
1,1

, . . . , 𝑁
1,𝑧

). It follows from Steps (2.1) and (2.2) that
𝑅
1,𝑧

= 𝑅
0,𝑧

∪ {𝐽
𝑙0
} if |𝑅

0,𝑧
| < V
𝑧
𝐶 and 𝑅

1,𝑧
= 𝑅
0,𝑧

∪ {𝐽
𝑙0
} \ {𝐽
𝑙
}

otherwise, where 𝑤
𝑙

= max{𝑤
𝑖

| 𝐽
𝑖

∈ 𝑅
0,𝑧

∪ {𝐽
𝑙0
}}. Since

order processing times and order weights are oppositely
ordered, we have 𝑝

𝑙
= min{𝑝

𝑖
| 𝐽
𝑖

∈ 𝑅
0,𝑧

∪ {𝐽
𝑙0
}}. In

either case, ∑
𝐽𝑖∈𝑅1,𝑧

𝑝
𝑖

≥ ∑
𝐽𝑖∈𝑅0,𝑧

𝑝
𝑖
. This implies that 𝑃 −

∑
𝐽𝑖∈𝑅1,𝑧

𝑝
𝑖
≤ 𝑃 − ∑

𝐽𝑖∈𝑅0,𝑧
𝑝
𝑖
≤ 𝑇
𝑧−1

. Further, we have that for
𝑚 = 𝑧 − 1, . . . , 𝑗

0
,

𝑧

⋃

𝑗=𝑚

𝑅
1,𝑗

=

𝑧

⋃

𝑗=𝑚

𝑅
0,𝑗

∪ {𝐽
𝑙0
} if

𝑧

∑

𝑗=𝑚


𝑅
0,𝑗


<

𝑧

∑

𝑗=𝑚

V
𝑗
𝐶, (2)

𝑧

⋃

𝑗=𝑚

𝑅
1,𝑗

=

𝑧

⋃

𝑗=𝑚

𝑅
0,𝑗

∪ {𝐽
𝑙0
} \ {𝐽
𝑙
} if

𝑧

∑

𝑗=𝑚


𝑅
0,𝑗


=

𝑧

∑

𝑗=𝑚

V
𝑗
𝐶,

(3)

where 𝑝
𝑙

= min{𝑝
𝑖

| 𝐽
𝑖

∈ ⋃
𝑧

𝑗=𝑚
𝑅
0,𝑗

∪ {𝐽
𝑙0
}}. This implies

that for 𝑚 = 𝑧 − 1, . . . , 𝑗
0
+ 1, 𝑃 − ∑

𝐽𝑖∈⋃
𝑧

𝑗=𝑚
𝑅1,𝑗

𝑝
𝑖

≤ 𝑃 −

∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑚
𝑅0,𝑗

𝑝
𝑖

≤ 𝑇
𝑚−1

. Thus, 𝑗
0

≥ 𝑗
1
holds. The proof of

the following inequalities in (i) is similar to that of the first
inequality. We conclude that (i) holds.

By Algorithm WF, we have that 𝐽
𝑙0

∈ 𝐽 \ ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

and
𝐽
𝑙1

∈ 𝐽\⋃
𝑧

𝑗=𝑗1
𝑅
1,𝑗
, where𝑤

𝑙0
= min{𝑤

𝑖
| 𝐽
𝑖
∈ 𝐽\⋃

𝑧

𝑗=𝑗0
𝑅
0,𝑗

} and
𝑤
𝑙1

= min{𝑤
𝑖
| 𝐽
𝑖
∈ 𝐽 \ ⋃

𝑧

𝑗=𝑗1
𝑅
1,𝑗

}. Due to (i), 𝑗
0
≥ 𝑗
1
. By (2),

⋃
𝑧

𝑗=𝑗0
𝑅
1,𝑗

= ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪ {𝐽
𝑙0
} if∑𝑧
𝑗=𝑗0

|𝑅
0,𝑗

| < ∑
𝑧

𝑗=𝑗0
V
𝑗
𝐶. In the

case, since 𝐽\⋃𝑧
𝑗=𝑗0

𝑅
0,𝑗

⊇ 𝐽\⋃
𝑧

𝑗=𝑗1
𝑅
1,𝑗
, we have that𝑤

𝑙0
≤ 𝑤
𝑙1
.

By (3), ⋃𝑧
𝑗=𝑗0

𝑅
1,𝑗

= ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪ {𝐽
𝑙0
} \ {𝐽
𝑙
} if ∑

𝑧

𝑗=𝑗0
|𝑅
0,𝑗

| =

∑
𝑧

𝑗=𝑗0
V
𝑗
𝐶, where 𝑤

𝑙
= max{𝑤

𝑖
| 𝐽
𝑖
∈ ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪ {𝐽
𝑙0
}}. In the

case, since 𝐽 \⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

⊇ {𝐽
𝑙
}∪𝐽 \⋃

𝑧

𝑗=𝑗1
𝑅
1,𝑗
, along with𝑤

𝑙
≥

𝑤
𝑙0
, we have that 𝑤

𝑙0
≤ 𝑤
𝑙1
. Thus, the first inequality 𝑤

𝑙0
≤

𝑤
𝑙1
in (ii) holds. The proof of the following inequalities in (ii)

is similar to that of the first inequality. We conclude that (ii)
holds.

For any 𝑘 ∈ {0, 1, . . . , 𝑡 − 1}, suppose 𝐽
𝑙𝑘

∈ 𝑁
0,𝑘0

. Clearly,
𝐽
𝑙𝑘
is a late order if it is delivered at time 𝑇

𝑗
, where 𝑘

0
< 𝑗 ≤ 𝑧.

To show (iii), there are two cases to consider: (a) 𝑘
0
< 𝑗
𝑘
and

(b) 𝑘
0
≥ 𝑗
𝑘
.

(a) Consider 𝑘
0
< 𝑗
𝑘
. Assume that 𝐽

𝑙𝑘
∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

does
not hold. It follows from the argument of (i) that∑𝑧

𝑗=𝑗𝑘
|𝑅
𝑘,𝑗

| =

∑
𝑧

𝑗=𝑗𝑘
V
𝑗
𝐶, ⋃𝑧
𝑗=𝑗𝑘

𝑅
𝑘+1,𝑗

= ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
, and 𝑤

𝑙𝑘
= max{𝑤

𝑖
| 𝐽
𝑖
∈

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

∪{𝐽
𝑙𝑘
}}; that is, 𝑝

𝑙𝑘
= min{𝑝

𝑖
| 𝐽
𝑖
∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

∪{𝐽
𝑙𝑘
}}.

This, along with 𝑤
𝑙𝑘

= min{𝑤
𝑖

| 𝐽
𝑖

∈ 𝐽 \ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

}, that
is, 𝑝
𝑙𝑘

= max{𝑝
𝑖

| 𝐽
𝑖

∈ 𝐽 \ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

}, implies that, for
any 𝐽
𝑖1

∈ 𝐽 \ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

and 𝐽
𝑖2

∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
, 𝑝
𝑖1

≤ 𝑝
𝑖2
.

Thus, we have that there is a SPT schedule (𝑆
1
, 𝑆
2
) such that

|𝑆
2
| = ∑

𝑧

𝑗=𝑗𝑘
V
𝑗
𝐶 and ∑

𝐽𝑖∈𝑆1
𝑝
𝑖

> 𝑇
𝑗𝑘−1

, where 𝑆
1

= 𝐽 \

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

and 𝑆
2

= ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
. This implies that there is no

feasible schedule for the instance of the problem, which
contradicts the assumption that there is a feasible schedule for
the given instance.Thus, 𝐽

𝑙𝑘
∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

and is a late order if
the orders in𝑅

𝑘+1,𝑗
are delivered at time𝑇

𝑗
. Further, it follows

from the argument of (i) that ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+2,𝑗

= ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

∪

{𝐽
𝑙𝑘+1

} if ∑
𝑧

𝑗=𝑗𝑘
|𝑅
𝑘+1,𝑗

| < ∑
𝑧

𝑗=𝑗𝑘
V
𝑗
𝐶 and ⋃

𝑧

𝑗=𝑗𝑘
𝑅
𝑘+2,𝑗

=

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

∪ {𝐽
𝑙𝑘+1

} \ {𝐽
𝑙
} if ∑𝑧
𝑗=𝑗𝑘

|𝑅
𝑘+1,𝑗

| = ∑
𝑧

𝑗=𝑗𝑘
V
𝑗
𝐶, where

𝑤
𝑙
= max{𝑤

𝑖
| 𝐽
𝑖
∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

∪ {𝐽
𝑙𝑘+1

}}. This, along with
𝑤
𝑙𝑘

≤ 𝑤
𝑙𝑘+1

and 𝐽
𝑙𝑘
merged into ⋃

𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

before 𝐽
𝑙𝑘+1

,
implies that 𝐽

𝑙𝑘
∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+2,𝑗

and is a late order if the orders in
𝑅
𝑘+2,𝑗

are delivered at time 𝑇
𝑗
. Similarly, we can show 𝐽

𝑙𝑘
∈

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑖,𝑗
and is a late order if the orders in 𝑅

𝑖,𝑗
are delivered

at time 𝑇
𝑗
for 𝑖 = 𝑘 + 3, . . . , 𝑡.

(b) Consider 𝑘
0

≥ 𝑗
𝑘
. Note the fact that order 𝐽

𝑙𝑘
is

pushed by the iterations from𝑁
0,𝑘0

into 𝐽\⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
. By Steps

(2.1) and (2.2), we have that |𝑅
𝑘,𝑗

| = V
𝑗
𝐶 for 𝑗 = 𝑗

𝑘
, . . . , 𝑘

0

and 𝑤
𝑙𝑘

= max{𝑤
𝑖

| 𝐽
𝑖

∈ ⋃
𝑘0

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

}. This implies 𝐽
𝑙𝑘

∈

⋃
𝑧

𝑗=𝑘0+1
𝑅
𝑘+1,𝑗

(⊆ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘+1,𝑗

). Otherwise, it follows from
the argument of (i) that ∑

𝑧

𝑗=𝑘0+1
|𝑅
𝑘,𝑗

| = ∑
𝑧

𝑗=𝑘0+1
V
𝑗
𝐶,

⋃
𝑧

𝑗=𝑘0+1
𝑅
𝑘+1,𝑗

= ⋃
𝑧

𝑗=𝑘0+1
𝑅
𝑘,𝑗
, and 𝑤

𝑙𝑘
= max{𝑤

𝑖
| 𝐽
𝑖

∈

⋃
𝑧

𝑗=𝑘0+1
𝑅
𝑘,𝑗

∪ {𝐽
𝑙𝑘
}}, and then we have that ∑

𝑧

𝑗=𝑗𝑘
|𝑅
𝑘,𝑗

| =

∑
𝑧

𝑗=𝑗𝑘
V
𝑗
𝐶, ⋃𝑧
𝑗=𝑗𝑘

𝑅
𝑘+1,𝑗

= ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗
, and 𝑤

𝑙𝑘
= max{𝑤

𝑖
| 𝐽
𝑖
∈

⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

∪ {𝐽
𝑙𝑘
}}. Similar to the argument of case (a), we can

derive a contradiction. Similarly, we can show 𝐽
𝑙𝑘

∈ ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑖,𝑗

and is a late order if the orders in 𝑅
𝑖,𝑗
are delivered at time 𝑇

𝑗

for 𝑖 = 𝑘 + 2, . . . , 𝑡. This ends the proof for (iii).

Theorem 2. Algorithm WF correctly finds a feasible schedule
that minimizes the total weight of late orders in 𝑂(𝑧𝑛

2 log 𝑛)

time.

Proof. We first prove that ⋃
𝑧

𝑗=𝑗𝑘
𝑅
𝑘,𝑗

has not only exactly
𝑘 late orders {𝐽

𝑙0
, . . . , 𝐽

𝑙𝑘−1
} but also the maximum total

processing time and the minimum total weight ∑
𝑘−1

𝑖=0
𝑤
𝑙𝑖
of

late orders among all schedules for 𝑘 = 0, 1, . . . , 𝑡 − 1, where
{𝐽
𝑙0
, . . . , 𝐽

𝑙𝑘−1
} = 0 and ∑

𝑘−1

𝑖=0
𝑤
𝑙𝑖
= 0 if 𝑘 = 0. By the definition

of 𝑁
0,𝑧

and Steps (2.1) and (2.2) of Algorithm WF, we have
that 𝑅

0,𝑧
is a set of early orders delivered at time 𝑇

𝑧
with the

maximum total processing time among all schedules. Simi-
larly, we have that ⋃𝑧

𝑗=𝑚
𝑅
0,𝑗

is a set of early orders with the
maximum total processing time among all schedules for𝑚 =

𝑧 − 1, . . . , 𝑗
0
.

By (2) and (3), we have that⋃𝑧
𝑗=𝑗0

𝑅
1,𝑗

= ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪{𝐽
𝑙0
} if

∑
𝑧

𝑗=𝑗0
|𝑅
0,𝑗

| < ∑
𝑧

𝑗=𝑗0
V
𝑗
𝐶 and⋃

𝑧

𝑗=𝑗0
𝑅
1,𝑗

= ⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪{𝐽
𝑙0
}\{𝐽
𝑙
}

if ∑
𝑧

𝑗=𝑗0
|𝑅
0,𝑗

| = ∑
𝑧

𝑗=𝑗0
V
𝑗
𝐶 where 𝑤

𝑙
= max{𝑤

𝑖
| 𝐽
𝑖

∈

⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

∪ {𝐽
𝑙0
}}. This, along with (iii) of Lemma 1, 𝑤

𝑙0
=

min{𝑤
𝑖
| 𝐽
𝑖
∈ 𝐽 \⋃

𝑧

𝑗=𝑗0
𝑅
0,𝑗

} and⋃
𝑧

𝑗=𝑗0
𝑅
0,𝑗

being a set of early
orders with the maximum total processing time among all
schedules, implies that ⋃

𝑧

𝑗=𝑗0
𝑅
1,𝑗

has not only exactly a late
order 𝐽

𝑙0
but also the maximum total processing time and the

minimum weight 𝑤
𝑙0
among all schedules. Further, by Steps

(2.1) and (2.2) of Algorithm WF, we have that ⋃𝑧
𝑗=𝑚

𝑅
1,𝑗

has
not only exactly a late order 𝐽

𝑙0
but also the maximum total

processing time and the minimum weight 𝑤
𝑙0
among all

schedules for 𝑚 = 𝑗
0
− 1, . . . , 𝑗

1
. Similarly, we can show the

result for 𝑘 = 2, . . . , 𝑡 − 1.
We below prove that (𝑅

𝑡,1
, . . . , 𝑅

𝑡,𝑧
) is a feasible schedule

minimizing the total weight of late orders. By Algorithm
WF, the feasibility is obvious. For any feasible schedule 𝑆 =

(𝑅
1
, . . . , 𝑅

𝑧
), where the orders in 𝑅

𝑗
are delivered at time

𝑇
𝑗
for 𝑗 = 1, . . . , 𝑧, we have that ⋃

𝑧

𝑗=𝑗0
𝑅
𝑗
contains at least
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a late order. Otherwise, by ∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗0
𝑅𝑗

𝑝
𝑖

≤ ∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗0
𝑅0,𝑗

𝑝
𝑖
,

we have that ∑
𝐽𝑖∈𝑆\⋃

𝑧

𝑗=𝑗0
𝑅𝑗

𝑝
𝑖

≥ 𝑃 − ∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗0
𝑅0,𝑗

𝑝
𝑖

> 𝑇
𝑗0−1

.
This contradicts the feasibility of 𝑆. Given that ⋃

𝑧

𝑗=𝑗0
𝑅
𝑗

contains at least a late order, ⋃𝑧
𝑗=𝑗1

𝑅
𝑗
contains at least two

late orders. Otherwise, ⋃
𝑧

𝑗=𝑗1
𝑅
𝑗
contains a late order. By

∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗1
𝑅𝑗

𝑝
𝑖
≤ ∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗1
𝑅1,𝑗

𝑝
𝑖
, we have that ∑

𝐽𝑖∈𝑆\⋃
𝑧

𝑗=𝑗1
𝑅𝑗

𝑝
𝑖
≥

𝑃−∑
𝐽𝑖∈⋃
𝑧

𝑗=𝑗1
𝑅1,𝑗

𝑝
𝑖
> 𝑇
𝑗1−1

.This contradicts the feasibility of 𝑆.
Similarly, we can show that ⋃

𝑧

𝑗=𝑗𝑘
𝑅
𝑗
contains 𝑘 + 1 late

orders at least for 𝑘 = 2, . . . , 𝑡 − 1. Thus, (𝑅
𝑡,1

, . . . , 𝑅
𝑡,𝑧

) is a
feasible schedule minimizing the number of late orders.This,
along with ∑

𝑡−1

𝑖=0
𝑤
𝑙𝑖
being the minimum total weight, implies

that Algorithm WF correctly finds a feasible schedule that
minimizes the total weight of late orders.

We now show that the algorithm can be implemented to
run in𝑂(𝑧𝑛

2 log 𝑛) time.The algorithm consists of 𝑛+1 itera-
tions at most since there are 𝑛 late orders at most. To calculate
the complexity of the algorithm we first calculate in a pre-
processing step the sets (𝑑

1
, . . . , 𝑑

𝑛
) and (𝑁

0,1
, . . . , 𝑁

0,𝑧
). The

calculation of the set (𝑑
1
, . . . , 𝑑

𝑛
) takes 𝑂(𝑛 log 𝑧). The calcu-

lation of the set (𝑁
0,1

, . . . , 𝑁
0,𝑧

) takes𝑂(𝑛 log 𝑧) also. Step (1)

takes 𝑂(𝑛) time. Step (2) is iterated 𝑧 times. Within each
iteration, the most time-consuming step is Step (2.1), sorting
the orders in decreasing order of their weights, which takes
𝑂(𝑛 log 𝑛) time. Hence Step (2) takes 𝑂(𝑧𝑛 log 𝑛) time. Thus,
the overall running time of the algorithm is 𝑂(𝑧𝑛

2 log 𝑛)

time.

4. Number of Vehicles Used

In this section we show that the problem of minimizing
the number of vehicles used subject to the constraint that
the total weight of late orders is minimum can be solved
in polynomial time. We assume that we have found the
schedule that minimizes the total weight of late orders using
the algorithm given in the previous section. The schedule
(𝑅
𝑡,1

, . . . , 𝑅
𝑡,𝑧

)was obtained byAlgorithmWF. By the fact that
if |𝑅
𝑡,𝑗
| < V
𝑗
𝐶, then each order in ⋃

𝑗−1

𝑖=1
𝑅
𝑡,𝑖
is an early order

and will be a late order if we push the order to be delivered by
vehicles at 𝑇

𝑗
. Thus, either there is no feasible schedule or the

total weight of late orders will be increased if we push some
order in 𝑅

𝑡,𝑖
to be delivered by vehicles at 𝑇

𝑖+1
, . . . , 𝑇

𝑧
. By the

optimality of ∑
𝑡−1

𝑖=0
𝑤
𝑙𝑖
, we have that the total weight of late

orders will not be decreased if we push some order in𝑅
𝑡,𝑖
to be

delivered by vehicles at 𝑇
1
, . . . , 𝑇

𝑖−1
. The following algorithm

finds a solution with a minimum number of vehicles used
under the constraint that the total weight of late orders is
minimum by pushing some orders to an earlier departure
time for delivery.

Algorithm MV

Input. 𝑧 sets of orders 𝑅
𝑡,1

, . . . , 𝑅
𝑡,𝑧

given by AlgorithmWF.

Output. A vehicle assignment:𝑉
1
, . . . , 𝑉

𝑧
, where the orders in

𝑉
𝑗
will be delivered by the vehicles available at time𝑇

𝑗
, so that

the number of vehicles used is minimum.

Method

(1) 𝑇
0
:= 0. V

0
:= 0.

(2) For 𝑗 = 𝑧 down to 1 do the following.

(a) Let 𝑉


𝑗
be all the orders in 𝑅

𝑡,𝑗
, arranged in

nondecreasing order of their processing times,
and |𝑉



𝑗
| = 𝑘𝐶+𝑟, where 𝑘 and 𝑟 are nonnegative

integers, and 0 ≤ 𝑟 < 𝐶 and 𝐹 is the set of the
first 𝑟 orders from 𝑉



𝑗
.

(b) If ∑
𝐽𝑖∈∪
𝑗−1

𝑚=1
𝑅𝑡,𝑚∪𝐹

𝑝
𝑖
> 𝑇
𝑗−1

, then update 𝐴 := 0

and 𝑉
𝑗

:= 𝑉


𝑗
, and the orders in 𝑉

𝑗
will be

delivered by the vehicles at time 𝑇
𝑗
and proceed

to the next 𝑗.
(c) Let𝐴 be the first 𝑘

0
𝐶+𝑟 orders from𝑉



𝑗
, where

𝑘
0
is the maximal nonnegative integer such that

∑
𝐽𝑖∈∪
𝑗−1

𝑚=1
𝑅𝑡,𝑚∪𝐴

 𝑝𝑖 ≤ 𝑇
𝑗−1

.

(d) If ⌈|𝑅
𝑡,𝑗−1

∪ 𝐴

|/𝐶⌉ ≤ V

𝑗−1
𝐶, then update 𝐴 :=

𝐴
, 𝑅
𝑡,𝑗−1

:= 𝑅
𝑡,𝑗−1

∪ 𝐴, and 𝑉
𝑗

:= 𝑉


𝑗
\ 𝐴 and

the orders in 𝑉
𝑗
will be delivered by the vehicles

available at time 𝑇
𝑗
and proceed to the next 𝑗.

(e) Call Subalgorithm CA to computer 𝐴. Then
update 𝑅

𝑡,𝑗−1
:= 𝑅
𝑡,𝑗−1

∪𝐴 and𝑉
𝑗
:= 𝑉


𝑗
\ 𝐴, and

the orders in 𝑉
𝑗
will be delivered by the vehicles

at time 𝑇
𝑗
and proceed to the next 𝑗.

Subalgorithm CA

(1) 𝐴


:= the first 𝑘
0
𝐶 + 𝑟 orders from 𝑉

𝑗
, arranged in

nondecreasing order of their processing times.
(2) Sort the orders in 𝑅

𝑡,𝑗−1
∪ 𝐴
 in ascending order of

their processing times.
(3) If |𝑅

𝑡,𝑗−1
∪ 𝐴

| ≤ V
𝑗−1

𝐶, then stop and output 𝐴 = 𝐴
.

(4) For ℎ = 1 to 𝑗 − 2, let 𝑅
𝑡,ℎ

:= 𝑅
𝑡,ℎ
.

(5) 𝐵 := the first |𝑅
𝑡,𝑗−1

∪𝐴

|−V
𝑗−1

𝐶 orders from𝑅
𝑡,𝑗−1

∪𝐴
.

(6) For ℎ = 𝑗 − 2 down to 1 do the following.

(a) Sort the orders in 𝑅


𝑡,ℎ
∪ 𝐵 in ascending order of

their processing times.
(b) If ∑

𝐽𝑖∈∪
ℎ

𝑚=1
𝑅


𝑡,𝑚
∪𝐵

𝑝
𝑖
> 𝑇
ℎ
,

(b1) if |𝐴| < 𝐶, stop and output 𝐴 = 0;
(b2) update 𝐴


:= the first |𝐴| − 𝐶 orders from

𝐴
 and return (2).

(c) If |𝑅
𝑡,ℎ

∪𝐵| ≤ V
ℎ
𝐶, then stop and output𝐴 = 𝐴

.
(d) If ℎ = 1, stop and output 𝐴 = 0 if |𝐴| < 𝐶 and

update 𝐴


:= the first |𝐴

| − 𝐶 orders from 𝐴



and return (2) else.
(e) Update 𝐵 := the first |𝑅

𝑡,ℎ
∪𝐵|−V

ℎ
𝐶 orders from

𝑅


𝑡,ℎ
∪ 𝐵 and proceed to the next ℎ.

Theorem 3. AlgorithmMV finds an optimal solution with the
minimumnumber of vehicles used under the constraint that the
total weight of late orders is minimum in 𝑂(𝑧

2
𝑛
2 log 𝑛) time.
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Proof. We first point out that the solution by Algorithm MV
does not change the optimality of the total weight of late
orders, since the solution is found by pushing some orders
in 𝑅
𝑡,2

, . . . , 𝑅
𝑡,𝑧

to an earlier departure time for delivery.
Let 𝑉
𝑧
and 𝐴 be the output data obtained by the first

iteration of Algorithm MV, where 𝑉
𝑧

= 𝑉


𝑧
\ 𝐴 and 𝐴 is

the set of the first |𝐴| orders from 𝑉


𝑧
(the orders of 𝑉



𝑧
=

𝑅
𝑡,𝑧

have been arranged in nondecreasing order of their
processing times). Step (2)(b) corresponds to the case where
∑
𝐽𝑖∈∪
𝑧−1

𝑚=1
𝑅𝑡,𝑚∪𝐹

𝑝
𝑖
> 𝑇
𝑧−1

, where 𝐹 the set of the first |𝐹| orders
from 𝑉



𝑧
and 0 < |𝐹| < 𝐶. In the case, It is impossible to

deliver all orders in 𝐹 by the vehicles at 𝑇
1
, . . . , 𝑇

𝑧−1
. This,

along with 𝐹 consisting of the first |𝐹| orders from 𝑉


𝑧
, means

that the number of vehicles used at 𝑇
𝑧
cannot decrease by

one. Thus, ⌈|𝑉
𝑧
|/𝐶⌉ is the minimal number of vehicles used

at 𝑇
𝑧
. However, we cannot push part of orders in 𝐹 to be

delivered by vehicles at 𝑇
𝑧−1

, . . . , 𝑇
1
, since, if we do that, it

not only does not decrease the number of vehicles used at 𝑇
𝑧

but also increases the amount of orders delivered by vehicles
at 𝑇
𝑧−1

, . . . , 𝑇
1
. In the case, the data 𝑉

𝑧
= 𝑉


𝑧
and 𝐴 = 0 are

optimal. Under the case of∑
𝐽𝑖∈∪
𝑧−1

𝑚=1
𝑅𝑡,𝑚∪𝐹

𝑝
𝑖
≤ 𝑇
𝑧−1

, Step (2)(c)
computes the set of orders𝐴 whichmade ⌈|𝑉

𝑧
|/𝐶⌉−⌈|𝐴


|/𝐶⌉

theminimal number possibly of vehicles used at𝑇
𝑧
, where𝐴



are the first 𝑘
0
𝐶 + 𝑟 orders from 𝑉



𝑧
. This is because 𝑘

0
is the

maximal nonnegative integer such that ∑
𝐽𝑖∈∪
𝑧−1

𝑚=1
𝑅𝑡,𝑚∪𝐴

 𝑝𝑖 ≤

𝑇
𝑧−1

and 𝐴
 consists of some small orders in 𝑉



𝑧
. Step (2)(d)

corresponds to the case where ⌈|𝑅
𝑡,𝑧−1

∪𝐴

|/𝐶⌉ ≤ V

𝑧−1
𝐶. This

means that we can push all of orders in 𝐴
 to be delivered by

vehicles at 𝑇
𝑧−1

. Thus, in the case, the output data𝐴 = 𝐴
 and

𝑉
𝑧
= 𝑉


𝑧
\ 𝐴 make ⌈|𝑉

𝑧
|/𝐶⌉ the minimal number of vehicles

used at 𝑇
𝑧
. Under the case of ⌈|𝑅

𝑡,𝑧−1
∪ 𝐴

|/𝐶⌉ > V

𝑧−1
𝐶, Step

(2)(e) calls Subalgorithm CA to decide a set of orders 𝐴 such
that ⌈|𝑉

𝑧
|/𝐶⌉ is the minimal number of vehicles used at 𝑇

𝑧
,

where 𝑉
𝑧

= 𝑉


𝑧
\ 𝐴. We show below that Subalgorithm CA

can really do that.
SubalgorithmCA consists of 𝑘

0
+1main iterations for the

first 𝑘
0
𝐶 + 𝑟 orders, the first (𝑘

0
− 1)𝐶 + 𝑟 orders, . . ., and the

first 𝑟 orders from𝑉


𝑧
, respectively. We now run the first main

iteration for the first 𝑘
0
𝐶 + 𝑟 orders 𝐴

 from 𝑉


𝑧
. Due to the

corresponding case by Step (2)(e), we have that 𝐴 ̸= 0 and
|𝑅
𝑡,𝑧−1

∪ 𝐴

| > V
𝑧−1

𝐶. We need to proceed through Step (4).
Step (4) assigns the orders in 𝑅

𝑡,ℎ
to a temporary set 𝑅

𝑡,ℎ
for

each ℎ from 1 to 𝑗−2.This is necessary since SubalgorithmCA
operates on𝑅



𝑡,ℎ
without changing the content of𝑅

𝑡,ℎ
. Step (5)

assigns the first |𝑅
𝑡,𝑧−1

∪𝐴

| −V
𝑧−1

𝐶 orders from 𝑅
𝑡,𝑧−1

∪𝐴
 to

a set 𝐵. If we want to push the orders in 𝐴
 to be delivered

by vehicles at 𝑇
𝑧−1

, . . . , 𝑇
1
, all orders of 𝐵 are the minimal

increment undertaken by vehicles at 𝑇
𝑧−2

, . . . , 𝑇
1
to deliver.

Now we proceed through Step (6).
Step (6) consists of 𝑧 − 2 secondary iterations. We now

run the first secondary iteration. If ∑
𝐽𝑖∈∪
𝑧−2

𝑚=1
𝑅


𝑡,𝑚
∪𝐵

𝑝
𝑖
> 𝑇
𝑧−2

,
it is impossible to deliver all orders in 𝐵 by the vehicles at
𝑇
1
, . . . , 𝑇

𝑧−2
. This means that the number of vehicles used at

𝑇
𝑧
should to be at least ⌈|𝑉

𝑧
|/𝐶⌉−⌈|𝐴


|/𝐶⌉+1. Step (6)(b1) cor-

responds to the case where |𝐴

| < 𝐶 and outputs 𝐴 = 0. This,

along with 𝐴


̸= 0 and 𝑉
𝑧

= 𝑉


𝑧
, implies that ⌈|𝑉

𝑧
|/𝐶⌉ is the

minimal number of vehicles used at 𝑇
𝑧
. Step (6)(b2) corre-

sponds to the case where |𝐴

| ≥ 𝐶 and starts the secondmain

iteration for the first (𝑘
0

− 1)𝐶 + 𝑟 orders 𝐴
 from 𝑉



𝑧
to

check whether it is possible to push the orders in 𝐴
 to

be delivered by vehicles at 𝑇
𝑧−1

, . . . , 𝑇
1
. On the other hand,

∑
𝐽𝑖∈∪
𝑧−2

𝑚=1
𝑅


𝑡,𝑚
∪𝐵

𝑝
𝑖
≤ 𝑇
𝑧−2

. Step (6)(c) corresponds to the case
where |𝑅



𝑡,𝑧−2
∪ 𝐵| ≤ V

𝑧−2
𝐶. This means that we can push all

of orders in 𝐴
 to be delivered by vehicles at 𝑇

𝑧−1
and 𝑇

𝑧−2
.

Thus, the output data 𝐴 = 𝐴
 by Step (6)(c) and 𝑉

𝑧
= 𝑉


𝑧
\ 𝐴

make ⌈|𝑉
𝑧
|/𝐶⌉ the minimal number of vehicles used at 𝑇

𝑧
.

Otherwise, Step (6)(e) starts the second secondary iteration
to check whether it is possible to push the orders in a set
of the first |𝑅

𝑡,𝑧−2
∪ 𝐵| − V

𝑧−2
𝐶 orders from 𝑅



𝑡,𝑧−2
∪ 𝐵 to be

delivered by vehicles at 𝑇
𝑧−3

, . . . , 𝑇
1
. Similarly, we can show

the result for the following secondary iterations. If needed, we
proceed through the last secondary iteration. Suppose that 𝐵
is a set of orders output by the (𝑧 − 3)th secondary iteration.
In the case of ∑

𝐽𝑖∈𝑅


𝑡,1
∪𝐵

𝑝
𝑖
> 𝑇
1
, Step (6)(b1) outputs 𝐴 = 0 if

|𝐴

| < 𝐶 and Step (6)(b2) starts the second main iteration

for the first (𝑘
0

− 1)𝐶 + 𝑟 orders 𝐴
 from 𝑉



𝑧
else. In the

case of ∑
𝐽𝑖∈𝑅


𝑡,1
∪𝐵

𝑝
𝑖
≤ 𝑇
1
, Step (6)(c) outputs data 𝐴 = 𝐴



if |𝑅


𝑡,1
∪ 𝐵| ≤ V

1
𝐶. Otherwise, Step (6)(d) outputs 𝐴 = 0

if |𝐴| < 𝐶 and starts the second main iteration for the first
(𝑘
0
− 1)𝐶 + 𝑟 orders 𝐴

 from 𝑉


𝑧
else, since it is impossible

to deliver all orders in the set of the first |𝑅


𝑡,1
∪ 𝐵| − V

1
𝐶

orders from 𝑅


𝑡,1
∪ 𝐵 by the vehicles at 𝑇

0
= 0. Similarly,

we can show the result for the following main iterations in
SubalgorithmCA, which can really decide a set orders𝐴 such
that ⌈|𝑉

𝑧
|/𝐶⌉ is the minimal number of vehicles used at 𝑇

𝑧
,

where 𝑉
𝑧
= 𝑉


𝑧
\ 𝐴. For the following iterations in Algorithm

MV, we can show the results similarly. At last, the algorithm
must be able to find an optimal solution with the minimum
number of vehicles used.

We now look at the time complexity of AlgorithmMV. In
the algorithm, Step (1) takes constant time. Step (2) is iterated
𝑧 times. Inside the iteration loop, the most time-consuming
steps are (2)(a) and (2)(e). Step (2)(a) calls for sorting the
orders which takes 𝑂(𝑛 log 𝑛) time. Step (2)(e) calls Subal-
gorithm CA which takes 𝑂(𝑧𝑛

2 log 𝑛) time. Thus, the overall
time complexity of AlgorithmMV is 𝑂(𝑧

2
𝑛
2 log 𝑛).

5. Conclusion

In this paper, we have given polynomial-time algorithms for
minimizing: (1) the total weight of late orders and (2) the
number of vehicles used subject to the condition that the
total weight of late orders is minimum. An interesting open
question is whether the problem related to release dates isNP-
hard or not.
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