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Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of
algebraic geometry over groups. Algebraic geometry over groups became themainmethod of attack on the solution of the celebrated
Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application
we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

1. Introduction

The notion of a discriminating group (distinct from an older
notion due to Neumann [1]) was introduced by Baumslag
et al. in [2] as an outgrowth of the theory of algebraic
geometry over groups. A more general class of groups
termed squarelike groups was introduced in [3] by Fine et
al. This class was subsequently shown to be the axiomatic
closure of the class of discriminating groups [4]. A complete
overview of discriminating groups can be found in [3]. In [5]
Belegradek observed that these notions should be universal,
in the sense of universal algebra, and hence the analogues
of the definitions and the proofs of many of the theorems
go through in a general algebraic context. In this paper we
explicitly carry this out.

The paper has five sections. In an effort tomake this paper
relatively self contained, we develop in Section 2 universal
algebra and in Section 3 we present an overview of the logic
and model theory we must apply. Section 4 is the heart of
the paper and gives the development of discrimination in a
universal algebraic context. Finally in Section 5 we use some
results in Section 4 to provide a different proof of a classical
theorem of Malcev on axiomatic classes of Ω-algebras (see
[6]).

2. Universal Algebra

An operator domain Ω is an ordered triple (𝐹
Ω
, 𝐶
Ω
, 𝑑
Ω
)

where𝐹
Ω
and𝐶

Ω
are disjoint sets (possibly empty) and𝑑

Ω
is a

function from 𝐹
Ω
into the set of positive integers. 𝐹

Ω
is the set

of function symbols ofΩ,𝐶
Ω
is the set of constant symbols of

Ω, and 𝑑
Ω
is the degree function or arity function ofΩ. Given

an operator domainΩ, an Ω-algebraA is an ordered triple

(𝐴, (𝑓
𝐴
)
𝑓∈𝐹Ω

, (𝑐
𝐴
)
𝑐∈𝑐Ω

) , (1)

where
(1) 𝐴 is a nonempty set (the domain or carrier or universe

ofA);
(2) for each 𝑐 ∈ 𝐶

Ω
, 𝑐
𝐴
∈ 𝐴;

(3) for each 𝑓 ∈ 𝐹
Ω
with 𝑑

Ω
(𝑓) = 𝑛, 𝑓

𝐴
: 𝐴
𝑛
→ 𝐴 is an

𝑛-ary operation defined on 𝐴.

AnΩ-algebra whose carrier is a singleton is called trivial.
All other Ω-algebras are nontrivial. If A and B are Ω-
algebras, thenA is a subalgebra ofB provided that

(1) 𝐴 ⊆ 𝐵;
(2) for each 𝑐 ∈ 𝐶

Ω
, 𝑐
𝐴
= 𝑐
𝐵
;

(3) for each 𝑓 ∈ 𝐹
Ω
with 𝑑

Ω
(𝑓) = 𝑛, 𝑓

𝐴
= 𝑓
𝐵
|𝐴
𝑛
.
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Let A and B be Ω-algebras. A function 𝜙 : 𝐴 → 𝐵 is a
homomorphism provided that

(1) for each 𝑐 ∈ 𝐶
Ω
, 𝜙(𝑐
𝐴
) = 𝑐
𝐵
;

(2) for each 𝑓 ∈ 𝐹
Ω
with 𝑑

Ω
(𝑓) = 𝑛 and all (𝑎

1
, . . . , 𝑎

𝑛
) ∈

𝐴
𝑛, 𝜙(𝑓

𝐴
(𝑎
1
, . . . , 𝑎

𝑛
)) = 𝑓

𝐵
(𝜙(𝑎
1
), . . . , 𝜙(𝑎

𝑛
)).

Epimorphism,monomorphism, isomorphism, endomor-
phism, and automorphism are defined in the obvious way.
Let A be an Ω-algebra. An equivalence relation 𝑅 on 𝐴 is a
congruence on A provided for all 𝑓 ∈ 𝐹

Ω
with 𝑑

Ω
(𝑓) = 𝑛

and all

((𝑥
1
, . . . , 𝑥

𝑛
) , (𝑦
1
, . . . , 𝑦

𝑛
)) ∈ 𝐴

𝑛
× 𝐴
𝑛 (2)

with 𝑥
𝑖
𝑅𝑦
𝑖
for 𝑖 = 1, . . . , 𝑛, one has

𝑓
𝐴
(𝑥
1
, . . . , 𝑥

𝑛
) 𝑅𝑓
𝐴
(𝑦
1
, . . . , 𝑦

𝑛
) . (3)

If 𝑅 is a congruence on A, then the quotient set 𝐴/𝑅 =

{[𝑎]
𝑅
; 𝑎 ∈ 𝐴} can be made into a Ω-algebra B = A/𝑅 by

setting 𝑐
𝐵
= [𝑐
𝐴
]
𝑅
for all 𝑐 ∈ 𝐶

Ω
and defining

𝑓
𝐵
([𝑎
1
]
𝑅
, . . . , [𝑎

𝑛
]
𝑅
) = [𝑓

𝐴
(𝑎
1
, . . . , 𝑎

𝑛
)]
𝑅

(4)

for all 𝑓 ∈ 𝐹
Ω
with 𝑑

Ω
(𝑓) = 𝑛 and all (𝑎

1
, . . . , 𝑎

𝑛
) ∈ 𝐴

𝑛. The
function 𝐴 → 𝐴/𝑅 given by 𝑎 → [𝑎]

𝑅
is an epimorphism

A → A/𝑅.
If 𝜙 : A → B is a homomorphism, then the image of 𝜙

is a subalgebra ofB; moreover, the relation Ker(𝜙) is defined
by 𝑥Ker(𝜙)𝑦 if and only if 𝜙(𝑥) = 𝜙(𝑦) is a congruence onA
and 𝐴/Ker(𝜙) is isomorphic to the image of 𝜙. Let (𝐴

𝑖
)𝑖 ∈ 𝐼

be an indexed family ofΩ-algebras. Let

Ai = (𝐴 𝑖, (𝑓𝑖)𝑓∈𝐹Ω
, (𝑐
𝑖
)
𝑐∈𝐶Ω

) (5)

for all 𝑖 ∈ 𝐼. Let 𝑃 = ∏
𝑖∈𝐼
𝐴
𝑖
. We make 𝑃 into an Ω-algebra

P = ∏

𝑖∈𝐼

A
𝑖 (6)

by setting 𝑐
𝑃
(𝑖) = 𝑐

𝑖
for all 𝑖 ∈ 𝐼 and defining

𝑓
𝑃
(𝛼
1
, . . . , 𝛼

𝑛
) (𝑖) = 𝑓𝑖 (𝛼1 (𝑖) , . . . , 𝛼𝑛 (𝑖)) (7)

for all 𝑓 ∈ 𝐹
Ω
with 𝑑

Ω
(𝑓) = 𝑛, all (𝛼

1
, . . . , 𝛼

𝑛
) ∈ 𝑃

𝑛, and all
𝑖 ∈ 𝐼. P is the direct product of the family (A

𝑖
)
𝑖∈𝐼
. For each

fixed 𝑖
0
∈ 𝐼 the projection 𝜋

𝑖𝑜
: P → A

𝑖0
given by 𝛼 → 𝛼(𝑖

0
)

is an epimorphism. If all theA
𝑖
are the same algebraA, then

P = A𝐼 is a direct power of A. In that event the diagonal
map 𝛿 : A → A𝐼 given by 𝑎 → 𝛿(𝑎) defined by 𝛿(𝑎)(𝑖) = 𝑎

for all 𝑎 ∈ 𝐴 and all 𝑖 ∈ 𝐼 is a monomorphism.
A nonempty class of Ω-algebras closed under taking

subalgebras, homomorphic images, and direct products is a
variety of Ω-algebras. Note that since the trivial Ω-algebra
is a homomorphic image of anyΩ-algebra whatsoever, every
variety contains the trivial algebra.

Example 1. (1) If 𝐹
Ω
= {⋅,
−1
} with 𝑑

Ω
(⋅) = 2 and 𝑑

Ω
(
−1
) = 1

and 𝐶
Ω
= {1}, then the class of all groups is a variety of Ω-

algebras.
(2) Let𝑅 be an integral domain. If𝐹

Ω
= 𝑅∪{+, −, [ ]}with

𝑑
Ω
(−) = 𝑑

Ω
(𝛼) = 1 for all 𝛼 ∈ 𝑅 and 𝑑

Ω
(+) = 𝑑

Ω
([ ]) = 2

and 𝐶
Ω
= {0}, then the class of all Lie algebras over 𝑅 is a

variety of Ω-algebras.

Let 𝑃(𝐼) be the power set of a set 𝐼. A subset 𝑀
0
⊆

𝑃(𝐼) will be called an ideal in the ring 𝑃(𝐼) if 0 ∈ 𝑀
0
and

𝑀
0
is closed under finite unions and also closed under the

formation of subsets. 𝑀
0
will be a proper ideal in 𝑃(𝐼) if is

an ideal in 𝑃(𝐼) and 𝐼 ∉ 𝑀
0
. The dual of a proper ideal in

a Boolean algebra is a filter. Specifically, if 𝐼 is a nonempty
set and D is a family of subsets of 𝐼, then D is a filter on 𝐼
provided that

(1) 0 ∉ D;
(2) 𝐼 ∈ D;
(3) (𝐴, 𝐵) ∈ D2 implies 𝐴 ∩ 𝐵 ∈ D;
(4) 𝐴 ⊆ 𝐵 ⊆ 𝐼 and 𝐴 ∈ D implies 𝐵 ∈ D.

If P = ∏A
𝑖
is the direct product of the indexed family

(A
𝑖
)
𝑖∈𝐼

ofΩ-algebras andD is a filter on 𝐼, thenwemay define
a congruence 𝑅(D) onP by 𝛼≅

𝑅D
𝛽 provided {𝑖 ∈ 𝐼 : 𝛼(𝑖) =

𝛽(𝑖)} ∈ D.The quotient algebraP/𝑅D is the reduced product
of the family (A

𝑖
)
𝑖∈𝐼

modulo the filter D on 𝐼. If P = A𝐼 is
a direct power, thenP/𝑅D, writtenA𝐼/D, may be called the
reduced power of A modulo the filter D on 𝐼. In that event
one can prove that the mapping 𝑑 : A → A𝐼/D defined
by 𝑎 → [𝛿(𝑎)]

𝑅(D) where 𝛿 is the diagonal embedding 𝛿 :

A → A𝐼, 𝛿(𝑎)(𝑖) = 𝑎 for all 𝑎 ∈ 𝐴, 𝑖 ∈ 𝐼, is an algebra
monomorphism.

The map 𝑑 : A → A𝐼/𝐷 is called the canonical
embedding of A into the reduced power A𝐼/D. We give as
examples two extreme cases.

Example 2. (1) Let D = {𝐼} be the trivial filter on 𝐼. Then
P/𝑅(D) is isomorphic toP so that direct products (powers)
may be viewed as special cases of reduced products (powers).

(2) A maximal filter D on 𝐼 is called an ultrafilter on 𝐼.
If 𝐷 is an ultrafilter on 𝐼, then P/𝑅(D)(A𝐼/D) is called the
ultraproduct of the family (A

𝑖
)
𝑖∈𝐼

(of the algebraA) modulo
the ultrafilter D on 𝐼. If P = A𝐼 is a direct power then the
ultraproduct is called an ultrapower.

Now view the set 𝜔 of nonnegative integers with its
natural order as the first limit ordinal. Suppose A

0
is an Ω-

algebra and, for each 𝑛 < 𝜔, D
𝑛
is an ultrafilter on an index

set 𝐼
𝑛
. LetA

𝑛+1
= A𝐼𝑛
𝑛
/D
𝑛
ifA
𝑛
has already been defined and

let 𝑑
𝑛
: A
𝑛
→ A

𝑛+1
be the canonical embedding. Then the

direct limitA
𝜔
of the system

A
0

𝑑𝑜

→ A
1

𝑑1
→ ⋅ ⋅ ⋅A

𝑛
⋅ ⋅ ⋅ (8)

is called the ultralimit of A
𝑜
with respect to the sequence

(D
𝑛
)
𝑛<𝜔

of ultrafilters. Note that in this event the limit map
𝑑
𝜔
: A
0
→ 𝐴
𝜔
is a monomorphism.

3. Model Theory and Logic

To each operator domainΩ there corresponds the first order
language with equality 𝐿

Ω
. Besides Ω we need a countably

infinite set {𝑥
𝑛
: 𝑛 < 𝜔} of distinct variables. The terms or

polynomials orwords of𝐿
Ω
are defined recursively as follows.

(1) Constant symbols and variables are terms.
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(2) If 𝑓 ∈ 𝐹
Ω
and 𝑑

Ω
(𝑓) = 𝑛 and (𝑡

1
, . . . , 𝑡

𝑛
) is a tuple of

terms already defined, then 𝑓(𝑡
1
, . . . , 𝑡

𝑛
) is a term.

An expression of the form 𝑡
1
= 𝑡
2
where (𝑡

1
, 𝑡
2
) is an

ordered pair of terms of 𝐿
Ω
is an atomic formula of 𝐿

Ω
. The

negation ∼ (𝑡
1
= 𝑡
2
) of an atomic formula of 𝐿

Ω
is a negated

atomic formula of 𝐿
Ω
. If 𝛼 is either an atomic formula or

a negated atomic formula of 𝐿
Ω
, then 𝛼 is a literal of 𝐿

Ω
.

We omit the recursive definition of (general) formula of 𝐿
Ω

but appeal to the classical result that every formula of 𝐿
Ω
is

logically equivalent to one in prenex normal form. Such a
formula is of the form 𝑄

1
𝑦
1
. . . 𝑄
𝑛
𝑦
𝑛
𝜙 where each 𝑦

𝑖
= 𝑥
𝑛𝑖

is a variable, each 𝑄
𝑖
is a quantifier, ∀, ∃, and 𝜙, thematrix of

the formula, is a Boolean combination of atomic formulas.
We do not exclude the possibility 𝑛 = 0. Such formulas
are quantifier free. Each quantifier free formula of 𝐿

Ω
is

equivalent to a quantifier free formula of 𝐿
Ω
in disjunctive

normal form (i.e., a disjunction of conjunctions of literals)
as well as to a quantifier free formula of 𝐿

Ω
in conjunctive

normal form (i.e., a conjunction of disjunctions of literals).
A formula of 𝐿

Ω
containing no unquantified variables is a

sentence of 𝐿
Ω
. We omit the recursive definition of a formula

Ψ of 𝐿
Ω
holding in an Ω-algebra A under an interpretation

of the variables and trust the reader to understand intuitively
what it means for a sentence a of 𝐿

Ω
to hold in an Ω-

algebraA. If in 𝑄
1
𝑦
1
. . . 𝑄
𝑛
𝑦
𝑛
all the 𝑄

𝑖
are ∀, then the above

formula is a universal formula of 𝐿
Ω
. Similarly, if all the 𝑄

𝑖

are ∃, then the above formula is an existential formula of
𝐿
Ω
. A universal (existential) formula of 𝐿

Ω
containing no

unquantified variables is a universal (existential) sentence of
𝐿
Ω
. Clearly, the negation of a universal sentence is logically

equivalent to an existential sentence and vice versa. Vacuous
quantifications are permitted. Thus, a quantifier free formula
of 𝐿
Ω
is considered a universal formula of 𝐿

Ω
as well as an

existential formula of 𝐿
Ω
. For example, the formula 1⋅1−1 = 1

in the language of group theory is considered both a universal
sentence and an existential sentence.

An existential sentence of the form

∃𝑦 (∧
𝑖
𝜙
𝑖
(𝑦)) , (9)

where 𝑦 is a tuple of distinct variables and each 𝜙
𝑖
(𝑦) is

a literal of 𝐿
Ω
containing at most the variables in 𝑦, is a

primitive sentence of 𝐿
Ω
. Clearly a universal sentence of 𝐿

Ω

of the form

∀𝑦 (∧
𝑖
𝜙
𝑖
(𝑦)) , (10)

where 𝑦 is a tuple of distinct variables and each 𝜙
𝑖
(𝑦) is

a literal of 𝐿
Ω

containing at most the variables in 𝑦, is
equivalent to the negation of a primitive sentence of 𝐿

Ω
.

We will find it convenient to call such sentences negated
primitive. Given an Ω-algebra A, we let 𝑇ℎ

∀
(A) be the set

of all universal sentences of 𝐿
Ω
true in A, 𝑇ℎ

∃
(A) the set

of all existential sentences of 𝐿
Ω
true in A, and 𝑇ℎ(A) the

set of all sentences of 𝐿
Ω
true in A. We call 𝑇ℎ

∀
(A) the

universal theory of A, 𝑇ℎ
∃
(A) is the existential theory of

A and 𝑇ℎ(A) the theory of 𝐴. Clearly 𝑇ℎ
∀
(A) = 𝑇ℎ

∀
(B)

if and only if 𝑇ℎ
∃
(A) = 𝑇ℎ

∃
(B). In that event we say

that A and B are universally equivalent and write A≡
∀
B.

If 𝑇ℎ(A) = 𝑇ℎ(B) we say that A and B are elementarily
equivalent andwriteA ≡ B. Being elementarily equivalent is
a sufficient but not necessarily necessary condition for being
universally equivalent.

Suppose ∃𝑦(∨
𝑖
Ψ
𝑖
(𝑦)) is an existential sentence of 𝐿

Ω

whose matrix ∨
𝑖
Ψ
𝑖
(𝑦) is written in disjunctive normal form

(so that each Ψ
𝑖
(𝑦) is a conjunction of literals). Then the

above is logically equivalent to the disjunction ∨
𝑖
∃Ψ
𝑖
(𝑦))

of primitive sentences of 𝐿
Ω
. Similarly, if ∀𝑦(∧

𝑖
Ψ
𝑖
(𝑦)) is a

universal sentence of 𝐿
Ω
whose matrix ∧

𝑖
Ψ
𝑖
(𝑦) is written in

conjunctive normal form (so that each Ψ
𝑖
(𝑦) is a disjunction

of literals), then it is equivalent to the conjunction ∧
𝑖
∀𝑦Ψ
𝑖
(𝑦)

of negated primitive sentences of 𝐿
Ω
.

Suppose that the Ω-algebra A is a subalgebra of the Ω-
algebra B. Then every existential sentence of 𝐿

Ω
holding in

A holds also inB and every universal sentence of 𝐿
Ω
holding

in B holds also in A. The next result is rather obvious. We
omit a proof.

Proposition 3. Let theΩ-algebraA be a subalgebra of theΩ-
algebra B. Then the following three statements are equivalent
in pairs:

(1) A≡
∀
B;

(2) every primitive sentence of 𝐿
Ω
true inB is also true in

A;
(3) every negated primitive sentence of 𝐿

Ω
true inA is also

true inB.

Now let 𝑄
1
𝑦
1
. . . 𝑄
𝑛
𝑦
𝑛
(∧
𝑖
Ψ
𝑖
(𝑦)) be a sentence of 𝐿

Ω

whose matrix ∧
𝑖
Ψ
𝑖
(𝑦) is written in conjunctive normal form

(so each Ψ
𝑖
(𝑦) is a disjunction of literals). If in each conjunct

Ψ
𝑖
(𝑦) at most one disjunct is atomic, then the above sentence

is a Horn sentence of 𝐿
Ω
.

A universal Horn sentence of 𝐿
Ω
has the form ∀𝑦Ψ

𝑖
(𝑦)

where in each conjunct Ψ
𝑖
(𝑦) at most one disjunct is atomic.

This is equivalent to the conjunction of negated primitive
Horn sentences ∧

𝑖
∀𝑦Ψ
𝑖
(𝑦) so we focus on negated primitive

Horn sentences∀𝑦Ψ(𝑦)whereΨ(𝑦) is a disjunction of literals
and at most one disjunct is atomic. Assume first that exactly
one disjunct is atomic. Then (abbreviating ∼ (𝑠

𝑖
= 𝑡
𝑖
) as

(𝑠
𝑖
̸= 𝑡
𝑖
))Ψ(𝑦) has the form∨

𝑖
(𝑠
𝑖
̸= 𝑡
𝑖
)∧(𝑠 = 𝑡) so that ∀𝑦Ψ(𝑦)

is equivalent to the quasi-identity ∀𝑦(∧
𝑖
(𝑠
𝑖
= 𝑡
𝑖
) → (𝑠 =

𝑡)). The special case when Ψ(𝑦) contains exactly one atomic
formula but no negated atomic formulas is the identity or law
∀𝑦(𝑠 = 𝑡).

It follows from this discussion that if A is an Ω-algebra,
then we have the inclusions

𝐼 (A) ⊆ 𝑄 (A) ⊆ 𝐻 (A) ⊆ 𝑇ℎ∀ (A) , (11)

where 𝐼(A) is the set of identities of 𝐿
Ω
true in A, 𝑄(A) is

the set of quasi-identities of 𝐿
Ω
true in A, and 𝐻(A) is the

set of universal Horn sentences of 𝐿
Ω
true in A. (Here and

subsequently we commit the innocuous abuse of identifying
a quasi-identity with the universal Horn sentence to which it
is logically equivalent.) An Ω-algebra A is a model of a set
𝑆 of sentences of 𝐿

Ω
provided every sentence 𝑠 ∈ 𝑆 holds

inA. Appealing to the classical Godel-Henkin Completeness
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Theorem, we see that a set 𝑆 of sentences of 𝐿
Ω
is consistent if

and only if it has amodel. Let 𝑆 be a consistent set of sentences
of 𝐿
Ω
. Then𝑀(𝑆) will be the class of all models or the model

class of 𝑆.
A class of Ω-algebras is axiomatic provided that it is the

model class𝑀(𝑆) for at least one consistent set 𝑆 of sentences
of 𝐿
Ω
. Every axiomatic class of Ω-algebras is nonempty and

closed under isomorphism. Note that every set of quasi-
identities (so, in particular, every set of identities) of 𝐿

Ω
holds

in the trivial Ω-algebra, hence it is consistent. A celebrated
theorem of Garrett Birkhoff asserts that a class of Ω-algebras
is a variety if and only if it is the model class of a set of
identities of 𝐿

Ω
. If we define a quasivariety of Ω-algebras

to be an axiomatic class of Ω-algebras containing the trivial
Ω-algebra and closed under taking subalgebras and direct
products, then a well-known characterization, due toMal’cev,
along the lines of Birkhoff ’s Theorem asserts that a class of
Ω-algebras is a quasivariety if and only if it is the model class
of a set of quasi-identities of 𝐿

Ω
. Note that the model class

operator𝑀 applied to sets of sentences reverses inclusions.
Now letA be an Ω-algebra. Recall that

𝐼 (A) ⊆ 𝑄 (A) ⊆ 𝐻 (A) ⊆ 𝑇ℎ∀ (A) (12)

here 𝐼(A) is the set of identities of 𝐿
Ω
true inA, 𝑄(A) is the

set of quasi-identities of 𝐿
Ω
true inA and𝐻(A) is the set of

universal Horn sentences of 𝐿
Ω
true inA, and 𝑇ℎ

∀
(A) is the

set of universal sentences of𝐿
Ω
true inA. (All of these sets are

consistent since they have A as a model.) Applying the model
class operator, we get

𝑀(𝐼 (A)) ⊇ 𝑀 (𝑄 (A)) ⊇ 𝑀 (𝐻 (A)) ⊇ 𝑀 (𝑇ℎ
∀ (A)) .

(13)

The set𝑀(𝐼(A)) = var(A) is the least variety of Ω-algebras
containing A. The set 𝑀(𝑄(A)) = qvar(A) is the least
quasivariety ofΩ-algebras containingA.The set𝑀(𝐻(A)) =
uhc(A) is the least universally axiomatizable Horn class
containing A. Finally, 𝑀(𝑇ℎ

∀
(A)) (the universal closure of

A denoted by ucl(A)) is the least universally axiomatizable
class containingA. With the above notation, we have

ucl (A) ⊆ uhc (A) ⊆ qvar (A) ⊆ var (A) . (14)

A monomorphism 𝜖 : A → B is an elementary
embedding provided for each formulaΨ(𝑦

1
, . . . , 𝑦

𝑛
) and each

tuple (𝑎
1
, . . . , 𝑎

𝑛
) fromA it is the case thatΨ(𝜖(𝑎

1
), . . . , 𝜖(𝑎

𝑛
))

holds in B if and only if Ψ(𝑎
1
, . . . , 𝑎

𝑛
) holds in A. The

existence of an elementary embedding is a sufficient, but
in general unnecessary, condition for elementary equiva-
lence. If A is a subalgebra of B and the inclusion map
embeds A elementarily into B, then B is said to be an
elementary extension ofA. Obviously isomorphicΩ-algebras
are elementarily equivalent. Thus, necessary conditions for
a nonempty class X of Ω-algebras to be axiomatic are
that X be closed under elementary equivalence and taking
ultraproducts.These conditions are also sufficient.That is the
content of Theorem 3, Section 42 of [7] (see [8]).

Let 𝑆 be a consistent set of sentences of𝐿
Ω
. A consequence

of a theorem of Los is that if every member of the family

(A
𝑖
)
𝑖∈𝐼

of Ω-algebras lies in 𝑀(𝑆), then so does every
ultraproduct of the family. From that it is easy to deduce that
every ultrapower and every ultralimit of anΩ-algebraAmust
be elementarily equivalent to A. (If some sentence 𝛼 true in
U an ultrapower or ultralimit of A were false in A, then its
negation ∼𝛼 would be true in A. But then both 𝛼 and ∼𝛼
would hold in U, an explicit contradiction.) The canonical
embedding is in fact an elementary embedding (see, e.g., [8]).

Proposition 4. Let 𝜎 be a sentence of 𝐿
Ω
.

(1) 𝜎 is equivalent to a universal sentence of 𝐿
Ω
if and only

if 𝜎 is preserved under taking subalgebras.
(2) 𝜎 is equivalent to a Horn sentence of 𝐿

Ω
if and only if

𝜎 is preserved under taking reduced products.
(3) If 𝜎 is a universal sentence of 𝐿

Ω
, then 𝜎 is equivalent

to a universal Horn sentence of 𝐿
Ω
if and only if 𝜎 is

preserved under taking direct products.

For proofs see, for example, [7].
We will have need in the next section to consider special

varieties of Ω-algebras under a restriction on the operator
domainΩ. Specifically, we consider thoseΩ whose set 𝐶

Ω
of

constant symbols is a singleton 𝐶
Ω
= {𝜃}. We then consider

those varieties of Ω-algebras satisfying, at least, the laws
𝑓(𝜃, . . . , 𝜃) = 𝜃 as𝑓 varies over the set𝐹

Ω
of function symbols

of Ω. Recall that quantifier free sentences of 𝐿
Ω
are special

cases of universal sentences of 𝐿
Ω
. We say that such varieties

contain a zero. For example, the varieties of groups, monoids,
and Lie algebras contain a zero but the variety of semigroups
does not. We conclude this section with several observations.

Observation 1. Suppose the Ω-algebra A is a subalgebra of
the Ω-algebra B. Since A≡

∀
B if and only every primitive

sentence of 𝐿
Ω
true in B is also true in A it follows that

necessary and sufficient conditions forA≡
∀
B are that every

finite system (in finitely many variables) of equations and
inequations

𝑃
𝑖
= 𝑝
𝑖
, 𝑖 ∈ 𝐼,

𝑄
𝑗

̸= 𝑞
𝑗
, 𝑗 ∈ 𝐽,

(15)

where the 𝑃
𝑖
, 𝑝
𝑖
, 𝑄
𝑗
, and 𝑞

𝑗
are terms of 𝐿

Ω
, which has a

solution inBmust already have a solution inA.

Observation 2. A negated primitive Horn sentence
∀𝑦(∨
𝑖
(𝑠
𝑖

̸= 𝑡
𝑖
)) whose matrix ∨

𝑖
(𝑠
𝑖

̸= 𝑡
𝑖
) contains no

atomic formula is false in the trivial Ω-algebra. Hence, if
such a sentence is true in an Ω-algebra A, then uhc(A),
the universal Horn class of A, must be a proper subclass
of qvar(A), the quasivariety generated by A. On the other
hand, if A lies in a variety containing a zero 𝜃, then A
contains the trivial subalgebra {𝜃

𝐴
} so such a sentence could

not hold inA.

Observation 3. Suppose theΩ-algebraB is a direct power of
the Ω-algebra A. For some special A we will want to show
that A and B are universally equivalent. Since the diagonal
map 𝛿 : A → B embeds A isomorphically into B every
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universal sentence of 𝐿
Ω
true in B must also be true in A.

Thus, in the above situation it will suffice for our purposes to
show that every universal sentence of𝐿

Ω
true inA is also true

inB.

4. Discriminating and Squarelike Algebras

Let Ω be an operator domain and let V be a variety of Ω-
algebras. Throughout this section we will assume that all
algebras lie inV. We will sometimes (but not always) assume
that V contains a zero, which in that event implies, among
other things, a restriction onΩ.

Definition 5. LetA andB be elements ofV.

(1) A separates B provided to every pair 𝑥 ̸= 𝑦 of
unequal elements of B there is a homomorphism
𝜙 : B → A such that 𝜙(𝑥) ̸= 𝜙(𝑦).

(2) A discriminatesB provided given finitelymany pairs
𝑥
𝑖

̸= 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑛, of unequal elements of B there

is a homomorphism 𝜙 : B → A such that 𝜙(𝑥
𝑖
) ̸=

𝜙(𝑦
𝑖
) for all 𝑖 = 1, . . . , 𝑛.

(3) A is discriminating provided it discriminates every
element ofV which it separates.

Theorem 6. A is discriminating if and only if it discriminates
its direct squareA2.

The proof is identical to that for groups. See, for example,
[9].

Theorem 7. If A is discriminating, then A2 ≡
∀
A; that is, A

has the same universal theory as its direct squareA2.

Proof. We identifyAwith its image inA2 under the diagonal
embedding 𝛿 : 𝐴 → A2 given by 𝛿(𝑎) = (𝑎, 𝑎). Viewing A
as a subalgebra of A2, it will suffice to show that every finite
system

𝑃
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) = 𝑝
𝑖
(𝑥
1
, . . . , 𝑥

𝑛
) , 𝑖 ∈ 𝐼

𝑄
𝑗
(𝑥
1
, . . . , 𝑥

𝑛
) ̸= 𝑞
𝑗
(𝑥
1
, . . . , 𝑥

𝑛
) , 𝑗 ∈ 𝐽

(16)

of equations and inequations having a solution inA2 already
has a solution inA.

Suppose that (𝑥
1
, . . . , 𝑥

𝑛
) = (𝑏

1
, . . . , 𝑏

𝑛
) is a solution in

A2 to the above system. Since A discriminates A2 there is a
homomorphism 𝜙 : A2 → A such that

𝜙 (𝑄
𝑗
(𝑏
1
, . . . , 𝑏

𝑛
))

= 𝑄
𝑗
(𝜙 (𝑏
1
) , . . . , 𝜙 (𝑏

𝑛
))

̸= 𝜙 ((𝑞
𝑗
(𝑏
1
, . . . , 𝑏

𝑛
)) = 𝑞

𝑗
(𝜙 (𝑏
1
) , . . . , 𝜙 (𝑏

𝑛
))) , 𝑗 ∈ 𝐽.

(17)

But then (𝑥
1
, . . . , 𝑥

𝑛
) = (𝜙(𝑏

1
), . . . , 𝜙(𝑏

𝑛
)) is a solution to

the system inA. Hence,A2 ≡
∀
A.

Definition 8. An algebra A in V is squarelike provided
A2 ≡
∀
A; that is,A has the same universal theory as its direct

squareA2.

Thus, every discriminating algebra is squarelike.

Theorem 9. Let A be an algebra in V. The following three
conditions are equivalent in pairs:

(1) A is squarelike;
(2) 𝑢𝑐𝑙(A) = 𝑢ℎ𝑐(A);
(3) there is a discriminating algebra B in V such that

A≡
∀
B.

Momentarily assuming the theorem, we have the follow-
ing consequence.

Corollary 10. Suppose the variety V contains a zero and let
A be an algebra inV. Then the following three conditions are
equivalent in pairs:

(1) A is squarelike;
(2) 𝑢𝑐𝑙(A) = 𝑞V𝑎𝑟(A);
(3) there is a discriminating algebra B in V such that

A≡
∀
B.

Proof of Corollary. Assuming the theorem it will suffice to
show that uhc(A) = qvar(A). Since uhc(A) is axiomatizable
by universal Horn sentences it is closed under taking sub-
algebras and direct products. Since A ∈ uhc(A) and the
trivial algebra {𝜃

𝐴
} is a subalgebra of A, uhc(A) contains

the trivial algebra. Thus the axiomatic class uhc(A) is closed
under taking subalgebras and direct products and contains
the trivial algebra. Hence, it is a quasivariety. Therefore,
uhc(A) = qvar(A).

We begin the proof of Theorem 9 with a sequence of
lemmas.

Lemma 11. LetA andB beΩ-algebras. Then every universal
sentence of 𝐿

Ω
true in B is also true in A if and only if A

embeds monomorphically in an elementary extension ∗B of
B.

This is Theorem 3, Chapter 7, Section 43 of [7].

Lemma 12. Direct products and reduced products preserve
elementary equivalence.

This is Theorem 6.3.4. of [10].

Lemma 13. If A is squarelike, then, for every integer 𝑛 ≥ 2,
A𝑛 ≡
∀
A.

Proof. We use induction on 𝑛. The result holds for 𝑛 = 2.
Now suppose the result holds for 𝑛 = 𝑘. Thus, every universal
sentence of 𝐿

Ω
true inA is also true inA𝑘. By Lemma 11 there

is an elementary extension ⋆A of A such that A𝑘 embeds
in ⋆A. Then A𝑘+1embeds in ⋆A × A. Since ⋆A ≡ A and
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A ≡ A we have by Lemma 12 that ⋆A × A ≡ A2. In
particular, ⋆A ×A≡

∀
𝐴
2. But 𝐴 is squarelike so A2 ≡

∀
A. It

follows that ⋆A ×A≡
∀
A2. Hence, every universal sentence

of 𝐿
Ω
true in A is also true in ⋆A × A. Since A𝑘+1 embeds

in ⋆A × A, every universal sentence of 𝐿
Ω
true in A is also

true in A𝑘+1. Therefore, A𝑘+1 ≡
∀
A by Observation 3 of the

previous section.That completes the induction andproves the
lemma.

Proof of Theorem 9. (1) ⇒ (2) Assume A is squarelike. It
will suffice to show that ucl(A) is axiomatizable by universal
Horn sentences. Assume deducing a contradiction that 𝑢 is
a universal sentence of 𝐿

Ω
true in A but not a consequence

of any set of universal Horn sentences of 𝐿
Ω
. Of course then

𝑢 itself cannot be a Horn sentence. We may assume that the
matrix of 𝑢 is written in conjunctive normal form and hence
𝑢 has the form ∀𝑦(∧

𝑖
𝜙
𝑖
(𝑦)) where each 𝜙

𝑖
(𝑦) is a disjunction

of literals. Thus, 𝑢 is equivalent to the conjunction ∧
𝑖
∀𝑦𝜙
𝑖
(𝑦)

of negated primitive sentences ∀𝑦𝜙
𝑖
(𝑦). Furthermore, at least

one 𝜙
𝑖
(𝑦) must contain at least two atomic disjuncts or else

𝑢 would be a Horn sentence. We claim that at least one of
the negated primitive sentences ∀𝑦𝜙

𝑖
(𝑦) containing at least

two atomic disjuncts cannot be a consequence of any set of
universal Horn sentences of 𝐿

Ω
true in A. Suppose not. For

each 𝑖 such that 𝜙
𝑖
(𝑦) contains at least two atomic disjuncts

let 𝐻
𝑖
be a set of universal Horn sentences of 𝐿

Ω
true in

A such that ∀𝑦𝜙(𝑦) is a consequence of 𝐻
𝑖
. For each 𝑖 for

which 𝜙
𝑖
(𝑦) contains at most one atomic disjunct, ∀𝑦(𝜙

𝑖
(𝑦))

is already a universal Horn sentence. For such 𝑖 we take𝐻
𝑖
=

{∀𝑦𝜙
𝑖
(𝑦)} and let 𝐻 = ∪

𝑖
𝐻
𝑖
. It follows then that 𝑢 would

be a consequence of the set 𝐻 of universal Horn sentences
of 𝐿
Ω
true in A, contrary to hypothesis. The contradiction

shows that at least one negated primitive sentence ∀𝑦𝜙
𝑖
(𝑦)

for which 𝜙
𝑖
(𝑦) contains at least two atomic disjuncts cannot

be a consequence of any set of universal Horn sentences of
𝐿
Ω
true inA.
Fix such a conjunct ∀𝑦𝜙(𝑦) (we suppress 𝑖 notationally).

Let 𝜙(𝑦) be
𝑚

⋁

𝜇=1

(𝑄
𝜇
(𝑦) ̸= 𝑞

𝜇
(𝑦)) ∨

𝑛

⋁

]=1
(𝑃] (𝑦) = 𝑝] (𝑦)) , (18)

where 𝑛 ≥ 2. For each fixed ]
0
= 1, . . . , 𝑛 let Ψ]0 be the quasi-

identity

∀𝑦(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) → (𝑃]0 (𝑦) = 𝑝]0 (𝑦))) . (19)

Suppose deducing a contradiction that Ψ]0 is true in A.
Then for every tuple 𝑦 = 𝑎 fromA,

𝑚

⋀

𝜇=1

(𝑄
𝜇 (𝑎) = 𝑞𝜇 (𝑎)) → (𝑃]0 (𝑎) = 𝑝]0 (𝑎)) (20)

would be true inA. Equivalently, for every tuple 𝑦 = 𝑎 from
A,

𝑚

⋁

𝜇=1

(𝑄
𝜇 (𝑎) ̸= 𝑞

𝜇 (𝑎)) ∨ (𝑃]0 (𝑎) = 𝑝]0 (𝑎)) (21)

would hold inA. Since a disjunction is true if at least one of
its disjuncts is true we would have in the above event that

𝑚

⋁

𝜇=1

(𝑄
𝜇 (𝑎)) ̸= 𝑞

𝜇 (𝑎) ∨

𝑛

⋁

]=1
(𝑃] (𝑎) = 𝑝] (𝑎)) (22)

holds in A for every tuple 𝑦 = 𝑎 from A. This implies
that ∀𝑦𝜙(𝑦) would be a consequence of the quasi-identity
Ψ]0 . But quasi-identities are special cases of universal Horn
sentences and∀𝑦𝜙(𝑦)was postulated not to be a consequence
of any set of universal Horn sentences of 𝐿

Ω
true in A. The

contradiction shows that none of the quasi-identities Ψ] can
hold inA.Thus, for each ] = 1, . . . , 𝑛, the existential sentence

∃𝑦(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) ∨ (𝑃] (𝑦) ̸= 𝑝] (𝑦))) (23)

holds inA.
Now let 𝑦 = 𝑎 be a tuple of elements from A such that

simultaneously 𝑄
𝜇
(𝑎]) = 𝑞

𝜇
(𝑎]) for all 𝜇 = 1, . . . , 𝑚 and

𝑃](𝑎]) ̸= 𝑝](𝑎]). Let 𝑎 = (𝑎
1
, . . . , 𝑎

𝑛
) be the tuple from A𝑛

so that

𝑚

⋀

𝜇=1

(𝑄
𝜇 (𝑎) = 𝑞𝜇 (𝑎)) ∧

𝑛

⋀

]=1
(𝑃] (𝑎) ̸= 𝑝] (𝑎)) (24)

holds in A𝑛. By Lemma 13, A𝑛 ≡
∀
𝐴. It follows that the

existential sentence

∃𝑦(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) ∧

𝑛

⋀

]=1
(𝑃] (𝑦) ̸= 𝑝] (𝑦))) (25)

holds inA. But that contradicts the fact that its negation (up
to logical equivalence) ∀𝑦𝜙(𝑦) holds inA. The contradiction
shows that ucl(A)must have at least one set of universal Horn
axioms. Hence, ucl(A) = uhc(A) ifA is squarelike.

(2) ⇒ (3) Suppose ucl(A) = uhc(A). Now 𝐴 ∈ uhc(A)
and uhc(A) is closed under taking direct products. Let 𝐼 be
an infinite index set and let B = A𝐼. Then B ∈ ucl(A) so
B is a model of 𝑇ℎ

∀
(A) and every universal sentence of 𝐿

Ω

true in A is also true in B. Thus, A≡
∀
B by Observation 3

of the previous section. Now B2 is isomorphic to B so that
B is discriminating byTheorem 6.

(3)⇒ (1) Suppose that A≡
∀
B where B is discriminat-

ing. Then, in particular, every universal sentence of 𝐿
Ω
true

inBmust also be true inA.Thus, by Lemma 11,A embeds in
an elementary extension ⋆B ofB. NowA2 embeds in (⋆B)

2

which is elementarily equivalent to B2 by Lemma 12. In
particular, (⋆B)

2
≡
∀
B2. ButB is discriminating soB2 ≡

∀
B

byTheorem 7. NowA≡
∀
B so ultimately (⋆B)

2
≡
∀
A. Thus,

every universal sentence of 𝐿
Ω

true in A is also true in
(
⋆
B)
2. ButA2 embeds in (⋆B)

2 so every universal sentence
of 𝐿
Ω
true in A must also be true in A2. Then A2 ≡

∀
A

by Observation 3 of the previous section. That is, A is
squarelike.
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Exactly as for groups (see, e.g., [3]) we have the following.

Theorem 14. Let (A
𝑖
)
𝑖∈𝐼

be an indexed family of Ω-algebras
and letD be a filter on 𝐼. LetA be the reduced productP/𝑅(D)

where P = ∏
𝑖∈𝐼
A
𝑖
. Then A2 is isomorphic to the reduced

product of the family (A2
𝑖
)
𝑖∈𝐼

modulo the filterD on 𝐼.

Corollary 15. The class of squarelike algebras in V is axio-
matic.

Proof. Let X denote the class of squarelike algebras. It will
suffice to show thatX is closed under elementary equivalence
and ultraproducts. SupposeA lies inX and 𝐵 ≡ A. then, by
Lemma 12, B2 ≡ A2. In particular, B≡

∀
A and B2 ≡

∀
A2.

But A ∈ X so A2 ≡
∀
A. It follows that B2 ≡

∀
B so that X

is closed under elementary equivalence. Now let (A
𝑖
)
𝑖∈𝐼

be
a family of Ω-algebras and let D be an ultrafilter on 𝐼. Let
A be the ultraproduct constructed from this data. If 𝜙 is a
sentence of 𝐿

Ω
let the support of 𝜙 be the set Supp(𝜙) of all

𝑖 ∈ 𝐼 such that 𝜙 holds inA
𝑖
. A consequence of Los’Theorem

(see, e.g., [8]) is that 𝜙 holds inA if and only if Supp(𝜙) ∈ D.
Now consider A2. By Theorem 14, A2 is isomorphic to the
ultraproduct of the family (A2)

𝑖∈𝐼
modulo the filter D on 𝐼.

Suppose that each A
𝑖
lies in X so that (A2)

𝑖
≡
∀
A
𝑖
for all

𝑖 ∈ 𝐼. Let 𝜙 be a universal sentence of 𝐿
Ω
holding in A.

Then Supp(𝜙) ∈ D. Thus, for each 𝑖 ∈ Supp(𝜙), 𝜙 holds in
A
𝑖
. But 𝐴

𝑖
≡
∀
(A2)
𝑖
since 𝐴

𝑖
∈ X. But then 𝜙 holds in A2

since Supp(𝜙) ∈ D. It follows that every universal sentence of
𝐿
Ω
true in A must also be true in A2 and hence A2 ≡

∀
A

by Observation 3 of the previous section. So X is closed
under taking ultraproducts as well as elementary equivalence.
Hence,X is axiomatic.

Theorem 16. Let A be a squarelike algebra in V. Then A
is elementarily equivalent to a discriminating member of V.
Consequently, the class of squarelike algebras in V is the least
axiomatic class containing the discriminating members ofV.

A proof which uses the ultralimit construction is exactly
the same as that for groups and may be found, for example,
in [4]. See also [5] for a different proof.

Corollary 17. The class of squarelike algebras inV has a set of
Horn axioms.

A theoremof Los and Suszko asserts that amodel class has
a set of universal-existential axioms if and only if it is closed
under direct unions. For definitions of the relevant terms and
a proof of the Los-SuszkoTheorem see, for example, [7]. It is
easy to show that the class of squarelike algebras inV is closed
under taking direct unions. Thus, that class, in addition to
having a set of Horn axioms, has a set of universal-existential
axioms.

Proof of Corollary 17. Exactly as for groups (see, e.g., [3])
one proves that a reduced product of discriminating algebras
is discriminating. Now let (A

𝑖
)
𝑖∈𝐼

be a family of squarelike
algebras inV and letD be a filter on 𝐼. By the theorem there
is, for each 𝑖 ∈ 𝐼, a discriminating algebraB

𝑖
inV such that

A
𝑖
≡ B
𝑖
. By Lemma 12 the reduced product of the family

(A
𝑖
)
𝑖∈𝐼

modulo the filter D on 𝐼 is elementarily equivalent
to the reduced product of the family (B

𝑖
)
𝑖∈𝐼

modulo the
filterD on 𝐼. In particular, the reduced product of the family
(A
𝑖
)
𝑖∈𝐼

modulo the filter D on 𝐼 is universally equivalent to
the reduced product of the family (B

𝑖
)
𝑖∈𝐼

modulo the filter
D on 𝐼. Hence, the reduced product of the family (A

𝑖
)
𝑖∈𝐼

is
squarelike byTheorem 9. It follows that the class of squarelike
algebras in V is preserved under taking reduced products.
Now, as mentioned in page 225 of [11], an axiomatic class
closed under reduced products has a set of Horn axioms.That
completes the proof.

In the special case when V contains a zero 𝜃 we can
explicitly describe a set of axioms for the class of squarelike
algebras inV by mimicking the situation for groups. For the
remainder of this section we will restrict ourselves to those
varieties V which contain a zero 𝜃. The class of squarelike
algebras in the varietyV containing a zero is the model class
of the laws ofV together with the sentences

⋀

𝑗

(∃𝑦(⋀

𝑖

(𝑃
𝑖
(𝑦) = 𝑝

𝑖
(𝑦))) ∧ (𝑄

𝑗
(𝑦) ̸= 𝑞

𝑗
(𝑦)))

→ (∃𝑦(⋀

𝑖

(𝑃
𝑖
(𝑦) = 𝑝

𝑖
(𝑦))) ∧⋀

𝑗

(𝑄
𝑗
(𝑦) ̸= 𝑞

𝑗
(𝑦)))

(26)

as the 𝑃
𝑖
, 𝑝
𝑖
, 𝑄
𝑗
, and 𝑞

𝑗
vary over terms of 𝐿

Ω
containing at

most the variables in 𝑦. See, for example, [5].

Definition 18. Let V be a variety containing a zero. Let Q be
a subquasivariety ofV. An algebraA ∈ Q𝑞-discriminates Q
provided that given finitely many quasi-identities

∀𝑦(⋀

𝑖

(𝑄
𝑖
(𝑦) = 𝑞

𝑖
(𝑦)) → (𝑃

𝑗
(𝑦) = 𝑝

𝑗
(𝑦))) (27)

with the same antecedents and none of which hold inQ there
exists a tuple 𝑎 from A such that simultaneously Q

𝑖
(𝑎) =

𝑞
𝑖
(𝑎) and 𝑃

𝑗
(𝑎) ̸= 𝑝

𝑗
(𝑎) for all 𝑖, 𝑗. An algebra A in V is 𝑞-

discriminating provided it 𝑞-discriminates qvar(A).

Definition 19. LetV be a variety containing a zero. An algebra
A in V is 𝑞-algebraically closed if and only if whenever a
finite system

𝑃
𝑖
(𝑦) = 𝑝

𝑖
(𝑦) 𝑖 ∈ 𝐼,

𝑄
𝑗
(𝑦) ̸= 𝑞

𝑗
(𝑦) 𝑗 ∈ 𝐽

(28)

of equations and inequations has a solution in some algebra
B ∈ qvar(A) it also has a solution inA.

Exactly as for groups we have the following.

Theorem20. LetV be a variety containing a zero. LetA be an
algebra inV. The following conditions are equivalent in pairs.

(1) A is 𝑞-discriminating.
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(2) A is 𝑞-algebraically closed.
(3) A is squarelike.

See, for example, [12].

5. On a Theorem of Malcev

A classical theorem of Malcev asserts that an axiomatic class
ofΩ-algebras which contains the trivial algebra and is closed
under taking subalgebras and direct products must be the
model class of at least one set of quasi-identities of 𝐿

Ω
.

Granting us the result that an axiomatic class of Ω-algebra is
closed under taking subalgebras if and only if it is the model
class of at least one set of universal sentences of 𝐿

Ω
(Theorem

5.2.4 of [10]) we observe that the argument used in proving
that 𝐴2 ≡

∀
𝐴 implies ucl(𝐴) = uhc(𝐴) can be adapted to

provide a proof of Malcev’s Theorem.

Theorem 21 (Malcev). An axiomatic class of Ω-algebras
which contains the trivial algebra and is closed under taking
subalgebras and direct products must be the model class of at
least one set of quasi-identities of 𝐿

Ω
.

Proof. We assume that an axiomatic class of Ω-algebra is
closed under taking subalgebras if and only if it is the model
class of at least one set of universal sentences of 𝐿

Ω
(Theorem

5.2.4 of [10]).
Now let 𝜏 be an axiomatic class of Ω-algebras containing

the trivial algebra and closed under taking subalgebras and
direct products.Then 𝜏 is the model class of a set of universal
sentences of 𝐿

Ω
. Assume deducing a contradiction that 𝑢 is

a universal sentence of 𝐿
Ω
holding in every algebra A ∈ 𝜏

but that 𝑢 is not a consequence of any set of quasi-identities
of 𝐿
Ω
holding in every algebra A ∈ 𝜏. We may assume that

the matrix of 𝑢 is written in conjunctive normal form. Hence
𝑢 has the form

∀𝑦(⋀

𝑖

𝜙
𝑖
(𝑦)) , (29)

where each 𝜙
𝑖
(𝑦) is a disjunction of literals. Thus 𝑢 is

equivalent to the conjunction

⋀

𝑖

∀𝑦𝜙
𝑖
(𝑦) (30)

of negated primitive sentences

∀𝑦𝜙
𝑖
(𝑦) . (31)

Furthermore, it must be the case that at least one 𝜙
𝑖
(𝑦)must

not contain exactly one atomic disjunct or else 𝑢 would be
equivalent to a conjunction of quasi-identities true in every
algebraA ∈ 𝜏 contrary to hypothesis.

We claim that it is impossible to have a conjunct

∀𝑥(⋁

𝑗

(𝑄
𝑗 (𝑥) ̸= 𝑞

𝑗 (𝑥))) (32)

whose matrix contains no atomic disjuncts. This is so since

∀𝑥(⋁

𝑗

(𝑄
𝑗 (𝑥) ̸= 𝑞

𝑗 (𝑥))) (33)

is false in the trivial algebra {Θ} ∈ 𝜏. Therefore at least one
𝜙
𝑖
(𝑦)must contain at least two atomic disjuncts.
We now claim that at least one of the negated primitive

sentences ∀𝑦𝜙
𝑖
(𝑦) containing at least two atomic disjuncts

cannot be a consequence of any set of quasi-identities of 𝐿
Ω

true in every algebra A ∈ 𝜏. Suppose not. For each 𝑖 such
that 𝜙

𝑖
(𝑦) contains at least two atomic disjuncts let𝐻

𝑖
be the

set of quasi-identities of 𝐿
𝜔
true in every algebra A ∈ 𝜏

such that ∀𝑦𝜙
𝑖
(𝑦) is a consequence of 𝐻

𝑖
. For each 𝑖 for

which 𝜙
𝑖
(𝑦) contains exactly one atomic disjunct, ∀𝑦(𝜙

𝑖
(𝑦) is

already (up to logical equivalence) a quasi-identity. For such
𝑖 we take 𝐻

𝑖
= {∀𝑦𝜙

𝑖
(𝑦)}. Let 𝐻 = ∪

𝑖
𝐻
𝑖
. Then 𝑢 would be

a consequence of the set 𝐻 of quasi-identities (up to logical
equivalence) of 𝐿

Ω
true in every algebra A ∈ 𝜏, contrary to

hypothesis.The contradiction shows that at least one negated
primitive sentence ∀𝑦𝜙

𝑖
(𝑦) for which 𝜙

𝑖
(𝑦) contains at least

two atomic disjuncts cannot be a consequence of any set of
quasi-identities of 𝐿

Ω
true in every algebraA ∈ 𝜏. Fix such a

conjunct ∀𝑦𝜙(𝑦) (we suppress 𝑖 notationally). Let 𝜙(𝑦) be

𝑚

⋁

𝑚𝑢=1

(𝑄
𝜇
(𝑦) ̸= 𝑞

𝜇
(𝑦)) ∨

𝑛

⋁

]=1
(𝑃] (𝑦) = 𝑝] (𝑦)) , (34)

where 𝑛 ≥ 2. For each fixed ]
0
= 1, . . . , 𝑛 let 𝜓]0 be the quasi-

identity

∀𝑦(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) → (𝑃]0 (𝑦) = 𝑝]0 (𝑦))) . (35)

Suppose deducing a contradiction that𝜓]0 is true in every
algebraA ∈ 𝜏. Fix anA ∈ 𝜏. Then for every tuple 𝑦 = 𝑎 from
A

𝑚

⋀

𝜇=1

((𝑄
𝜇 (𝑎) = 𝑞𝜇 (𝑎)) → (𝑃]0 (𝑎) = 𝑝𝜇) (𝑎))) (36)

would hold inA.
Equivalently, for every tuple 𝑦 = 𝑎 fromA,

𝑚

⋁

]=1
(𝑄
𝜇 (𝑎) ̸= 𝑞

𝜇 (𝑎)) ∨ (𝑃]0 (𝑎) = 𝑝]0 (𝑎)) (37)

would hold inA. Since a disjunction is true if at least one of
its disjuncts is true we have in that event that

𝑚

⋁

𝜇=1

(𝑄
𝜇 (𝑎) ̸= 𝑞

𝜇 (𝑎)) ∨

𝑛

⋁

]=1
(𝑃] (𝑎) = 𝑝] (𝑎)) (38)

holds in A for every tuple 𝑦 = 𝑎 from A. Since A was
arbitrary, ∀𝑦𝜙(𝑦) would be a consequence of the quasi-
identity 𝜓]0 true in every algebra in 𝜏. But ∀𝑦(𝜙(𝑦) was
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postulated not to be a consequence of any such set of quasi-
identities. Thus, for each ] = 1, . . . , 𝑛, there is an algebra
A] ∈ 𝜏 such that the existential sentence

∃𝑦(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) ∧ (𝑃] (𝑦) ̸= 𝑝] (𝑦))) (39)

holds in A]. Now let 𝑦 = 𝑎] be a tuple of elements from A]
such that simultaneously 𝑄

𝜇
(𝑎]) = 𝑞𝜇(𝑎]) for all 𝜇 = 1, . . . , 𝑚

and 𝑃](𝑎]) = 𝑝](𝑎]).
Let 𝑎 = (𝑎

1
, . . . , 𝑎

𝑛
) be the tuple from∏

𝑛

]=1A]. It follows
that the existential sentence

∃(

𝑚

⋀

𝜇=1

(𝑄
𝜇
(𝑦) = 𝑞

𝜇
(𝑦)) ∧

𝑛

⋀

]=1
(𝑃] (𝑦) ̸= 𝑝] (𝑦))) (40)

holds in∏𝑛]=1A] ∈ 𝜏.
But that contradicts the fact that its negation (up to logical

equivalence) ∀𝑦𝜙(𝑦) holds in every algebra A ∈ 𝜏. The
contradiction shows that 𝜏 must be axiomatizable by at least
one set of quasi-identities of 𝐿

Ω
completing the proof.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] H. Neumann, Varieties of Groups, Springer, Berlin, Germany,
1967.

[2] G. Baumslag, A. G. Myasnikov, and V. N. Remeslennikov, “Dis-
criminating and co-discriminating groups,” Journal of Group
Theory, vol. 3, no. 4, pp. 467–479, 2000.

[3] B. Fine, A. M. Gaglione, A. Myasnikov, and D. Spellman,
“Groups whose universal theory is axiomatizable by quasi-
identities,” Journal of Group Theory, vol. 5, no. 3, pp. 365–381,
2002.

[4] B. Fine, A. M. Gaglione, and D. Spellman, “The axiomatic
closure of the class of discriminating groups,” Archiv der
Mathematik, vol. 83, no. 2, pp. 106–112, 2004.

[5] O. Belegradek, “Discriminating and square-like groups,” Jour-
nal of Group Theory, vol. 7, no. 4, pp. 521–532, 2004.

[6] A. I. Mal’cev, “Some remarks on quasi-varieties of algebraic
structures,” Algebra i Logika, vol. 5, no. 3, pp. 3–9, 1966.

[7] G. Gratzer, Universal Algebra, Van Nostrand, Princeton, NJ,
USA, 1968.

[8] J. L. Bell and A. B. Slomson, Models and Ultraproducts: An
Introduction, North-Holland, Amsterdam, The Netherlands,
1971.

[9] B. Fine, A. G. Myasnikov, A. M. Gaglione, and D. Spellman,
“Discriminating groups,” Journal of Group Theory, vol. 4, no. 4,
pp. 463–474, 2001.

[10] C. C. Chang and H. J. Keisler, Model Theory, North-Holland
Publishing, Amsterdam, The Netherlands, 2nd edition, 1977.

[11] E. A. Palyutin and S. S. Starchenko, “Horn theories with
nonmaximal spectrum,” in Model Theory and Applications,
vol. 195 of AMS Translations Series 2, pp. 225–284, American
Mathematical Society, 1999.

[12] B. Fine, A. Gaglione, and D. Spellman, “Notions of discrimina-
tion,” Communications in Algebra, vol. 34, no. 6, pp. 2175–2182,
2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


