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Preemption threshold scheduling (PTS) enhances real-time schedulability by controlling preemptiveness of tasks. This benefit of
PTS highly depends on a proper algorithm that assigns each task feasible scheduling attributes, which are priority and preemption
threshold. Due to the existence of an efficient optimal preemption threshold assignment algorithm that works with fully assigned
priority orderings, we need an optimal priority assignment algorithm for PTS.This paper analyzes the inefficiency or nonoptimality
of the previously proposed optimal priority assignment algorithms for PTS.Wedevelop theorems for exhaustively but safely pruning
infeasible priority orderings while assigning priorities to tasks for PTS. Based on the developed theorems, we correct the previously
proposed optimal priority assignment algorithm for PTS. We also propose a performance improved optimal priority assignment
algorithm for PTS proving its optimality. The empirical evaluation results clearly show the effectiveness of the proposed algorithm.

1. Introduction

Preemption threshold scheduling (PTS) is an extension of
preemptive fixed priority scheduling where each task has an
extra scheduling attribute, called a preemption threshold, in
addition to a priority. The preemption threshold of a task is
its run-time priority, which is maintained after the task is
dispatched and until it terminates its execution, so it regulates
the degree of “preemptiveness” in fixed priority scheduling
[1]. If the threshold of each task is the same as its original
priority, then PTS is equivalent to fully preemptive fixed
priority scheduling (FPS), and if each task has the highest
threshold value in a system, it is equivalent to nonpreemptive
scheduling (NPS). The use of PTS is very effective in system
tuning processes since it enhances real-time schedulability,
eliminates unnecessary preemptions, reduces memory stack
usage [2] via the notion of nonpreemption groups [3], and
allows for scalable real-time system design [4–6]. Preemption
thresholds and nonpreemption groups are also parts of OSEK
[7] and AUTOSAR [8] standards of automotive operating
systems. As remarked in [9], PTS represents an example of
a great success of transferring academic research results to
industrial applications [10–12].

The benefit of enhanced real-time schedulability of PTS
highly depends on a proper algorithm that assigns each
task feasible scheduling attributes, which are priority and
preemption threshold.Thework of this paper has been highly
motivated by our previous work of SISAtime [13], which
adopts PTS to schedule active (concurrent) objects of real-
time object-oriented models [14–19]. While SISAtime con-
tains an optimal scheduling attributes assignment algorithm
for PTS, it is not so much efficient. A scheduling attributes
assignment algorithm is optimal if it is guaranteed to output a
feasible (schedulable) scheduling attributes assignment if one
exists [1, 20–22].

There are two previously proposed optimal scheduling
attributes assignment algorithms for PTS: TRAVERSE( ) of
SISAtime [13] and SEARCH( ) of [1], which is the first
academic article that presented PTS. Both algorithms work
in two stages. At the first stage, priorities are assigned to all
tasks. At the second stage, preemption thresholds are assigned
using the optimal preemption threshold assignment algo-
rithm, OPT-ASSIGN-THRESHOLD( ) of [1], which has the
complexity of 𝑂(𝑛2). Recently, [23] extends OPT-ASSIGN-
THRESHOLD( ) by considering the cache-related preemp-
tion delay (CRPD), and it also assigns optimal preemption
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thresholds for tasks with preassigned priorities. Since pre-
emption thresholds are wholly assigned at the second stage,
both algorithms focus on how to assign priorities to tasks.
With this, we call these optimal “scheduling attributes”
assignment algorithms for PTS as optimal “priority” assign-
ment algorithms for PTS.

In this paper, we analytically show that TRAVERSE( ) is
inefficient and SEARCH( ) is not optimal. We develop the-
orems for exhaustively pruning infeasible priority orderings
without harming the optimality of priority assignment algo-
rithms for PTS. Specifically, we develop following lemmas
and theorems under PTS:

(i) Under PTS, if the priority of a task is fixed, its
worst-case response time does not decrease when its
preemption threshold is lowered (Lemma 3).

(ii) Under PTS, if the preemption threshold of a task is
fixed, its worst-case response time does not decrease
when its priority is lowered (Theorem 6).

(iii) Under PTS, if a task with the highest preemption
threshold in a priority ordering is infeasible, the
task set with the priority ordering is also infeasible
(Theorem 4).

(iv) Under PTS, if a task with the highest preemption
threshold in a priority ordering is infeasible, the task
set with another priority ordering that assigns the task
the lowered priority is also infeasible (Theorem 7).

By applying these theorems, we correct SEARCH( )
and propose CORRECTED-SEARCH( ) which is
more efficient than TRAVERSE( ). We also propose
PRUNED-TRAVERSE( ) that improves the performance of
CORRECTED-SEARCH( ) and proves its optimality.

We also empirically evaluate the performances of the
discussed optimal priority assignment algorithms. We first
empirically show the usefulness of the proposed optimal
priority assignment algorithm by showing that they always
achieve the better schedulability than any other existing
nonoptimal priority assignment algorithms.We also compare
the actual runtimes for executing each optimal priority
assignment algorithm as well as PA-DMMPT( ) by [24],
which is the most effective heuristic priority assignment
algorithm for PTS if it is combinedwith the policy of deadline
monotonic priority ordering (DMPO). The empirical results
clearly show that the actual runtimes of TRAVERSE( ) are
reduced by CORRECTED-SEARCH( ), whose actual run-
times are also more reduced by PRUNED-TRAVERSE( )
while such performance improvements become drastically
large as the number of tasks increases. It is also shown that the
actual runtimes of PRUNED-TRAVERSE( ) are even smaller
than those of PA-DMMPT( ).

The remainder of the paper is composed as follows.
Section 2 gives the task model with notations and presents
a walk-through example that motivates our work. Section 3
analyzes previously proposed optimal priority assignment
algorithms for PTS. Section 4 corrects previously proposed
SEARCH( ) algorithm making it an optimal priority assign-
ment algorithm for PTS. Section 5 describes our proposed
optimal priority assignment algorithm for PTS and proves

its optimality. Section 6 considers the complexity of the
discussed optimal priority assignment algorithms. Section 7
shows our empirical evaluation results. Finally, Section 8
concludes the paper.

2. Task Model

We use the same task model as the one used in the traditional
preemption threshold scheduling [1, 3, 25, 26]. Specifically, a
system has a fixed set of tasks Γ = {𝜏

1
, 𝜏
2
, . . . , 𝜏

|Γ|
}. Each task 𝜏

𝑖

has a fixed period𝑇
𝑖
, a fixed relative deadline𝐷

𝑖
, and a known

worst-case execution time𝐶
𝑖
.There is no restriction such that

each task’s deadline should be shorter than its period. We
also adopt the “integer time model” of [9], where all timing
parameters are assumed to be nonnegative integer values.

Each task 𝜏
𝑖
also has a fixed priority 𝑝

𝑖
and a preemption

threshold pt
𝑖
where 𝑝

𝑖
is assigned by a specific priority

assignment algorithm and pt
𝑖
is assigned by OPT-ASSIGN-

THRESHOLD( ) of [1]. Each task has a distinct priority value:
every task has a different priority value. Each task set Γ has
|Γ|! distinct priority orderings for its tasks. Accordingly, the
set of distinct priority orderings has cardinality |Γ|!, which
we denote POΓ = {PO

1
,PO
2
, . . . ,PO

|Γ|!
}. We denote the

resultant priority ordering generated by a specific priority
assignment algorithm ALGORITHM( ) as PO

𝐴
. With this, a

specific priority ordering PO
𝑛
is a sequence of priorities for

tasks in Γ, which we denote as PO
𝑛
= ⟨𝑝𝑛
1
, 𝑝𝑛
2
, . . . , 𝑝𝑛

|Γ|
⟩. The

inverse mapping of each priority ordering PO
𝑛
is a task

ordering from the lowest priority to the highest priority,
which we denote as PO−1

𝑛
= TO

𝑛
= ⟨𝑖, 𝑗, . . . , 𝑘⟩ where each

number represents a task index. We also denote the inverse
mapping of task ordering TO

𝑛
as TO−1

𝑛
= PO
𝑛
.

We denote a higher priority with a larger value: 1 is the
lowest priority value and |Γ| is the highest priority value. Note
that it is meaningful to assign a task a preemption threshold
that is no less than its regular priority since a preemption
threshold is used as an effective run-time priority to control
unnecessary preemptions [1]: which means that ∀𝜏

𝑖
, pt
𝑖
≥ 𝑝
𝑖
.

Notation section summarizes the notations and associated
descriptions used in this paper.

2.1. Feasibility Analysis. As the feasibility test under PTS, we
adopt the worst-case response time analysis equations of [9].
The original equations were introduced by [1] and their errors
were fixed by [27]. These results were refined by [26], whose
results in turn were concisely arranged by [9]. We rewrite
the relevant equations of [9] for calculating the worst-case
response time 𝑅

𝑖
of task 𝜏

𝑖
as follows:

𝑅
𝑖
= max
𝑞∈[1,𝑄𝑖]

{𝐹
𝑖,𝑞
− (𝑞 − 1) ⋅ 𝑇

𝑖
} , (1)

𝑄
𝑖
= ⌈

𝐿
𝑖

𝑇
𝑖

⌉ , (2)

𝐿
𝑖
= 𝐵
𝑖
+ ∑
∀𝑗,𝑝𝑗≥𝑝𝑖

⌈
𝐿
𝑖

𝑇
𝑗

⌉ ⋅ 𝐶
𝑗
, (3)
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Table 1: A walk-through example task set. Bold and italic 𝑅
𝑖
’s represent infeasible response times.

Tasks 𝐶
𝑖

𝑇
𝑖

𝐷
𝑖

DMPO [9] GREEDY-SA( ) [3] PA-DMMPT( ) [24] SEARCH( ) [1] TRAVERSE( ) [13]
𝑝
𝑖

pt
𝑖

𝑅
𝑖

𝑝
𝑖

pt
𝑖

𝑅
𝑖

𝑝
𝑖

pt
𝑖

𝑅
𝑖

𝑝
𝑖

pt
𝑖

𝑅
𝑖

pi pt
𝑖

𝑅
𝑖

𝜏
1

8 43 36 1 4 31 4 4 14 1 4 31 2 4 30 3 3 26
𝜏
2

4 33 33 2 4 30 2 2 23 3 3 25 3 3 25 2 4 30
𝜏
3

5 48 31 3 3 26 3 3 19 2 4 30 1 4 31 1 4 31
𝜏
4

7 14 11 4 4 14 1 5 24 4 4 14 4 4 14 4 4 11
(i) DMPO: deadline monotonic priority ordering + OPT-ASSIGN-THRESHOLD( ) employed in [9].
(ii) GREEDY-SA( ): Greedy( ) + SimulatedAnnealing( ) proposed in [3].

𝐹
𝑖,𝑞
= 𝑆
𝑖,𝑞
+ 𝐶
𝑖

+ ∑
∀𝑗,𝑝𝑗>pt𝑖

(⌈
𝐹
𝑖,𝑞

𝑇
𝑗

⌉ − (1 + ⌊
𝑆
𝑖,𝑞

𝑇
𝑗

⌋)) ⋅ 𝐶
𝑗
,

(4)

𝑆
𝑖,𝑞
= 𝐵
𝑖
+ (𝑞 − 1) ⋅ 𝐶

𝑖
+ ∑
∀𝑗,𝑝𝑗≥𝑝𝑖

(1 + ⌊
𝑆
𝑖,𝑞

𝑇
𝑗

⌋) ⋅ 𝐶
𝑗
, (5)

𝐵
𝑖
= max {𝐶

𝑗
− 1 | ∀𝑗, pt

𝑗
≥ 𝑝
𝑖
> 𝑝
𝑗
} , (6)

where 𝐿
𝑖
is the longest level-𝑝

𝑖
busy period [28], 𝑞 is the

index of instances of task 𝜏
𝑖
within 𝐿

𝑖
, 𝑄
𝑖
is the last index

of instances of task 𝜏
𝑖
within 𝐿

𝑖
, 𝐹
𝑖,𝑞

is the finish time of
the 𝑞th instance of task 𝜏

𝑖
, 𝑆
𝑖,𝑞

is the start time of the 𝑞th
instance of task 𝜏

𝑖
, and 𝐵

𝑖
is the worst-case blocking time

of task 𝜏
𝑖
. Whenever a variable appears on both sides of an

equation (i.e., 𝐿
𝑖
in (3) and 𝐹

𝑖,𝑞
in (4)), its value can be found

by iterating until the value converges [27]. Refer to [9] for
the appropriate initial values for the iterations. With this, we
define formally the feasibility of a task or a task set as follows.

Definition 1 (task feasibility). Task 𝜏
𝑖
with the assignment of

𝑝
𝑖
and pt

𝑖
is feasible↔ 𝑅

𝑖
≤ 𝐷
𝑖
.

Definition 2 (task set feasibility). Task set Γ with priority
ordering PO

𝑛
= ⟨𝑝𝑛
1
, 𝑝𝑛
2
, . . . , 𝑝𝑛

|Γ|
⟩ or task ordering TO

𝑛
=

PO−1
𝑛

is feasible ↔ every 𝜏
𝑖
in Γ is feasible such that

𝜏
𝑖
with 𝑝𝑛

𝑖
in PO

𝑛
and pt

𝑖
determined by OPT-ASSIGN-

THRESHOLD( ) is feasible.

2.2. A Walk-Through Example Task Set. As a walk-through
example, we use the task set inTable 1 that is composed of four
tasks. The deadline monotonic priority ordering (DMPO)
is optimal in the fully preemptive fixed priority scheduling
[22] and is so even though there are blockings if there is
no jitter [21]. Therefore, the approach of assigning priorities
using DMPO and then assigning preemption thresholds
using OPT-ASSIGN-THRESHOLD( ) of [1] is widely used in
practice, which was also employed in [9] when comparing
PTS with other limited preemptive scheduling policies. Since
the task indexes of the example task set happen to be in the
deadline monotonic decreasing order, the resultant priority
ordering of DMPO is PO

𝐷
= ⟨1, 2, 3, 4⟩. However, as

shown in Table 1, this priority ordering makes task 𝜏
4
miss

its deadline since (𝑅
4
= 14) > (𝐷

4
= 11). Figure 1(a)

demonstrates such a deadline miss: the fifth instance of task

𝜏
4
completes at time point 69 while its absolute deadline is

(5 − 1) ⋅ 𝑇
4
+𝐷
4
= 67. Note that the worst-case response time

cannot be obtained at the critical instant [29] when there is a
nonpreemptiveness of tasks [9].

On the other hand, [3, 24] proposed heuristic priority
assignment algorithms for PTS. Reference [3] proposed an
algorithm that combines Greedy( ) and SimulatedAnneal-
ing( ), which we refer to GREEDY-SA( ) in this paper.
Reference [24] proposed PA-DMMPT( ), which means pri-
ority assignment algorithm assuming Deadline Monotonic
andMaximumPreemptionThreshold for the remaining tasks
in the unassigned task set. The resultant priority ordering of
GREEDY-SA( ) and PA-DMMPT( ) is, respectively, PO

𝐺
=

⟨4, 2, 3, 1⟩ and POPA = ⟨1, 3, 2, 4⟩ as shown in Table 1. These
priority orderings also make task 𝜏

4
miss its deadline as

shown in Table 1.
Figures 1(b) and 1(c) demonstrate such deadline misses

of task 𝜏
4
. In Figure 1(b), the first, the second, and the fifth

instances of task 𝜏
4
complete at time points 24, 31, and 69,

respectively, while their absolute deadlines are 𝐷
4
= 11,

(2 − 1) ⋅ 𝑇
4
+𝐷
4
= 25, and (5 − 1) ⋅ 𝑇

4
+𝐷
4
= 67, respectively.

In Figure 1(c), the fifth instance of task 𝜏
4
completes at time

point 69 while its absolute deadline is (5 − 1) ⋅ 𝑇
4
+ 𝐷
4
= 67.

As such, widely used DMPO or heuristic priority assignment
algorithms may not produce a feasible priority assignment
while there is actually one, as will be shown in Section 3.1.
This motivated our work.

3. Previously Proposed Optimal Priority
Assignment Algorithms for PTS

This section analyzes previously proposed optimal prior-
ity assignment algorithms for PTS: TRAVERSE( ) [13] and
SEARCH( ) [1].

3.1. TRAVERSE( ) Algorithm. Algorithm 1(a) shows the
pseudo code for TRAVERSE( ). As shown in Algorithm 1(a),
TRAVERSE( ) depends on its recursive subroutine,
TRAVERSE( ), which has three parameters: (1) prio,
the next priority to assign, (2) UnAssigned, the set of tasks
that are waiting for priority assignment, and (3) Γ, the set
of total tasks (line (3)). TRAVERSE( ) assigns preemption
thresholds by calling OPT-ASSIGN-THRESHOLD( ) of
[1] when a complete priority ordering is generated (line
(4)). When any preemption threshold assignment is not
feasible, OPT-ASSIGN-THRESHOLD( ) returns fail. With
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Deadline miss

Arrived
Deadline
Waiting

Executing
Deadline-missed execution
Completed

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

𝜏1

𝜏2

𝜏3

𝜏4

(a) DMPO employed in [9]

Deadline miss Deadline miss

Arrived
Deadline
Waiting

Executing
Deadline-missed execution
Completed

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

𝜏1

𝜏2

𝜏3

𝜏4

(b) GREEDY-SA( ) (Greedy( ) + SimulatedAnnealing( )) [3]

Deadline miss

𝜏1

𝜏2

𝜏3

𝜏4

𝜏

Arrived
Deadline
Waiting

Executing
Deadline-missed execution
Completed

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

(c) PA-DMMPT( ) [24]

Deadline miss

𝜏1

𝜏2

𝜏3

𝜏4

Arrived
Deadline
Waiting

Executing
Deadline-missed execution
Completed

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

(d) SEARCH( ) [1]

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

10 20 30 40 50 60 700

𝜏1

𝜏2

𝜏3

𝜏4

Arrived
Deadline
Waiting

Executing
Deadline-missed execution
Completed

(e) TRAVERSE( ) [13], CORRECTED-SEARCH( ), and
PRUNED-TRAVERSE( )

Figure 1: Schedule produced for the walk-through example task set of Table 1 by various priority assignment algorithms. Note that some
instances of task 𝜏

4
in (a)∼(d) miss their deadlines while every task in (e) does not miss its deadline.
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(1) TRAVERSE (Γ: set of tasks)
(2) return TRAVERSE(1, Γ, Γ);

(3) TRAVERSE (prio: priority, UnAssigned: set of tasks, Γ: set of tasks)
(4) if (UnAssigned = { }) return OPT-ASSIGN-THRESHOLD(Γ);
(5) foreach (𝜏

𝑖
∈ UnAssigned) {

(6) 𝑝
𝑖
← prio;

(7) if ( TRAVERSE(prio + 1, UnAssigned − {𝜏
𝑖
}, Γ) = success) return success;

(8) } // end-foreach
(9) return fail;
(a) TRAVERSE( ) [13]

(1) SEARCH (Γ: set of tasks)
(2) return SEARCH(1, Γ, Γ);

(3) SEARCH (prio: priority, UnAssigned: set of tasks, Γ: set of tasks)
(4) if (UnAssigned = { }) return OPT-ASSIGN-THRESHOLD(Γ);
(5) foreach (𝜏

𝑖
∈ UnAssigned) {

//WCRT(𝜏
𝑖
, prio): 𝑅

𝑖
with (𝑝

𝑖
← prio) under fully preemptive fixed priority scheduling

// assuming all tasks in UnAssigned have the highest priority.
(6) Delayi ←WCRT(𝜏

𝑖
, prio) − 𝐷

𝑖
;

(7) if (Delayi ≤ 0) {
(8) 𝑝

𝑖
← prio;

(9) return SEARCH(prio + 1, UnAssigned − {𝜏
𝑖
}, Γ);

(10) } // end-if
(11) } // end-foreach
(12) SortedList← ascendingSort(UnAssigned, Delayi);
(13) RefinedList← Refine(SortedList); // eliminating infeasible tasks even with the highest preemption threshold
(14) foreach (𝜏

𝑖
∈ RefinedList) {

(15) 𝑝
𝑖
← prio;

(16) if ( SEARCH(prio + 1, UnAssigned − {𝜏
𝑖
}, Γ) = success) return success;

(17) } // end-foreach
(18) return fail;
(b) SEARCH( ) [1]

Algorithm 1: Pseudo code for (a) TRAVERSE( ) [13] and (b) SEARCH( ) [1].

this, returning at the last lines (line (9)) happens when a
specific priority ordering is not feasible.

The remaining part is composed of a loop that recursively
invokes TRAVERSE( ): each task in UnAssigned at line
(5) is assigned the priority prio at line (6) and remaining
unassigned tasks (𝑈𝑛𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑−{𝜏

𝑖
}) are recursively assigned

𝑝𝑟𝑖𝑜 + 1 at line (7). Note that the recursive invocation
of TRAVERSE( ) returns only when the return value of
the recursive invocation is success (line (7)). We call this
priority assignment as the tentative priority assignment since
if the return value of the recursion is fail, the next task in
UnAssigned is tried for assigning priority prio.

With such tentative priority assignments, TRAVERSE( )
recursively generates a priority assignment tree for the set
of tasks with task orderings from the lowest priority to the
highest priority, which is similar to the priority permutation
tree of [21]. Figure 2(a) shows the priority assignment tree
of TRAVERSE( ) for the walk-through example task set of
Table 1. In Figure 2, each solid-lined circle node represents
a tentative priority assignment to a task and its depth

corresponds to its assigned priority. Each triangle node
represents an invocation of OPT-ASSIGN-THRESHOLD( ):
white one for infeasible (failed) assignment return and black
one for feasible (successful) assignment return. Each path
from the root to a leaf node corresponds to a possible
priority ordering. Each number with round braces “(𝑛)”
besides a node represents 𝑛th feasibility test performed for
the operation of the node.

In Figure 2(a), 15 complete task orderings TO
1

=

⟨1, 2, 3, 4⟩, TO
2

= ⟨1, 2, 4, 3⟩, . . ., TO
15

= ⟨3, 2, 1, 4⟩

were generated. The last task ordering TO
15

= TO
𝑇

=

⟨3, 2, 1, 4⟩ has a dangled black triangle node, which indicates
a feasible preemption threshold assignment. Task ordering
TO
𝑇
corresponds to the priority ordering PO

𝑇
= TO−1

𝑇
=

⟨3, 2, 1, 4⟩ for TRAVERSE( ) of Table 1. As shown in Table 1,
TRAVERSE( ) makes no tasks miss their deadlines, which is
also demonstrated in Figure 1(e). While [13] did not formally
prove the optimality of TRAVERSE( ), we can easily see that
TRAVERSE( ) is optimal since it traverses all possible priority
orderings in POΓ until it finds a feasible priority ordering.
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Figure 2: Priority assignment trees for the walk-through example task set of Table 1.

Besides, it is a simple application of traverse orderings( ) [21],
which is for fully preemptive fixed priority scheduling and its
optimality was proved.

However, TRAVERSE( ) is very inefficient since it gen-
erates |Γ|! tentative priority orderings in the worst-case,
each of which requires maximally |Γ|2 feasibility tests [3]
via OPT-ASSIGN-THRESHOLD( ). For example, the priority

assignment tree of Algorithm 3(a) requires 91 feasibility tests
as the numbers besides triangle nodes indicate. Such a large
number of feasibility tests can be significantly reduced in our
proposed algorithm in Section 5.

3.2. SEARCH( ) Algorithm. Algorithm 1(b) shows the pseudo
code for SEARCH( ), which becomes exactly the same as



The Scientific World Journal 7

TRAVERSE( ) if we remove lines (5)∼(13) and replacing
RefinedList with UnAssigned at line (14). The additional part
of SEARCH( ) is composed of one loop (lines (5)∼(11))
and refining UnAssigned to prepare RefinedList (lines (12)
and (13)). In contrast to the priority assignment loop of
TRAVERSE( ), this additional first loop in SEARCH( ) assigns
priority prio to task 𝜏

𝑖
only when 𝐷𝑒𝑙𝑎𝑦

𝑖
(calculated at line

(6)) is not larger than zero (line (7)) and unconditionally
returns from the recursion (line (9)). We call this priority
assignment in the first loop as the assertive priority assign-
ment since once priority prio is assigned to 𝜏

𝑖
, the other

unassigned tasks are not tested for assigning priority prio.
The second loop of SEARCH( ) (lines (14)∼(18)) performs

the tentative priority assignment as TRAVERSE( ) but it
works for RefinedList instead of UnAssigned. The RefinedList
is generated by sorting tasks in UnAssigned in the ascending
order of 𝐷𝑒𝑙𝑎𝑦

𝑖
(line (12)) and eliminating infeasible tasks

even with the highest preemption threshold assignment (line
(13)).

With the assertive and tentative priority assignments,
SEARCH( ) generates a priority assignment tree like
Figure 2(b), which is for the walk-through example task set
of Table 1. In the tree, each solid-lined square node represents
an assertive priority assignment to a task while each dashed-
lined node represents pruning a priority assignment to
a task. In Figure 2(b), two complete task orderings were
generated: ⟨1, 2, 3, 4⟩ and ⟨3, 1, 2, 4⟩. Both orderings failed
to assign feasible preemption thresholds to tasks as the
dangled white triangle nodes indicate. The last task ordering
TO
𝑆

= ⟨3, 1, 2, 4⟩ corresponds to the priority ordering
PO
𝑆
= TO−1

𝑆
= ⟨2, 3, 1, 4⟩ for SEARCH( ) of Table 1. As

shown in Table 1, SEARCH( )makes task 𝜏
4
miss its deadline

since (𝑅
4
= 14) > (𝐷

4
= 11). Figure 1(d) demonstrates such

a deadline miss of task 𝜏
4
where the second instance of task

𝜏
4
completes at time point 26 while its absolute deadline

is 𝑇
4
+ 𝐷
4
= 25. However, the walk-through example task

set has a feasible priority ordering PO
𝑇
= ⟨3, 2, 1, 4⟩ from

TRAVERSE( ) algorithm as we have shown in Section 3.1.
This clearly shows SEARCH( ) is not an optimal priority
assignment algorithm for PTS.

If we compare the priority assignment trees of
TRAVERSE( ) and SEARCH( ) in Figures 2(a) and 2(b),
we can see that TO

𝑆
= ⟨3, 1, 2, 4⟩ is the 13th task ordering

generated by TRAVERSE( ). The reason why SEARCH( )
failed is due to the assertive priority assignment of 𝑝𝑆

1
← 2

with the 21st feasibility test, which we marked with a red
dashed-line circle in Figure 2(b). We correct SEARCH( ) in
the next section.

4. Corrected SEARCH( ) Algorithm

In this section, we propose CORRECTED-SEARCH( ) algo-
rithm that corrects SEARCH( ) algorithm. We first develop a
theorem that is required in correcting SEARCH( ).

Lemma3. Under PTS, if priority𝑝
𝑖
of task 𝜏

𝑖
is fixed, its worst-

case response time 𝑅
𝑖
does not decrease when its preemption

threshold pt
𝑖
is lowered.

Proof. While𝑅
𝑖
is calculated from (1)∼(6), pt

𝑖
is only included

in (4) for calculating 𝐹
𝑖,𝑞
, specifically in the last term of the

right side of (4):∑
∀𝑗,𝑝𝑗>pt𝑖(⌈𝐹𝑖,𝑞/𝑇𝑗⌉ − (1 + ⌊𝑆𝑖,𝑞/𝑇𝑗⌋)) ⋅ 𝐶𝑗. We

refer to this term as 𝐼𝐹
𝑖,𝑞
for the convenience of proving. 𝐼𝐹

𝑖,𝑞
is

the summation of the interference time by task 𝜏
𝑗
such that

∀𝑗, 𝑝
𝑗
> pt
𝑖
after 𝑆

𝑖,𝑞
. Accordingly, the set of tasks that can

interfere task 𝜏
𝑖
with the lower pt

𝑖
is always the superset of the

set of such tasks with the higher pt
𝑖
value. Consequently, 𝐼𝐹

𝑖,𝑞

does not decrease with lower pt
𝑖
. From (1), 𝑅

𝑖
monotonically

increases with respect to to 𝐹
𝑖,𝑞
and 𝐹

𝑖,𝑞
is proportional to 𝐼𝐹

𝑖,𝑞

from (4). Therefore, 𝑅
𝑖
is also proportional to 𝐼𝐹

𝑖,𝑞
and thus 𝑅

𝑖

does not decrease with lower pt
𝑖
.

Theorem 4. Under PTS, if task 𝜏
𝑖
with priority 𝑝𝑛

𝑖
in priority

ordering PO
𝑛
and the highest preemption threshold pt

𝑖
(pt
𝑖
=

|Γ|) is infeasible, task set Γ with PO
𝑛
is also infeasible.

Proof. From Definition 1, task 𝜏
𝑖
is feasible if and only if 𝑅

𝑖
≤

𝐷
𝑖
. From Lemma 3, if 𝑝

𝑖
is fixed (as 𝑝𝑛

𝑖
), pt
𝑖
= |Γ| guarantees

the minimal 𝑅
𝑖
for 𝜏
𝑖
. Accordingly, if task 𝜏

𝑖
with fixed 𝑝

𝑖

and pt
𝑖
= |Γ| is infeasible, no other preemption threshold

assignment can make 𝑅
𝑖
reduced, that is, 𝜏

𝑖
feasible. From

Definition 2, Γwith PO
𝑛
is feasible if and only if all tasks with

PO
𝑛
in Γ are feasible. This proves the theorem.

Algorithm 2(a) shows the pseudo code of CORRECTED-
SEARCH( ), which corrects SEARCH( ) in Algorithm 1(b) as
follows:

(i) deletion of the first loop of the assertive prior-
ity assignment and sorting tasks (lines (5)∼(12) of
Algorithm 1(b)),

(ii) replacement of SortedList with UnAssigned (line (13)
of Algorithm 1(b)),

(iii) adding “pt
𝑖
← 𝑝𝑟𝑖𝑜;” after “𝑝

𝑖
← 𝑝𝑟𝑖𝑜;” (line (15) of

Algorithm 1(b)),
(iv) replacement of OPT-ASSIGN-THRESHOLD(Γ)

at line (4) with RESTORING-OPT-ASSIGN-
THRESHOLD(Γ) of Algorithm 2(b).

First, CORRECTED-SEARCH( ) does not employ the
first loop of SEARCH( ), the assertive priority assignment,
which is the main cause of the nonoptimality of SEARCH( )
as shown in the previous section. If we change the assertive
priority assignment to a tentative priority assignment by
replacing line (9) with line (16) in Algorithm 1(b), it just
induces additional feasibility tests (due to invocation of oper-
ation WCRT( )) when a given task set is indeed infeasible.
In other words, the first loop just becomes a performance
bottleneck even though it is corrected and thus we remove
it.

Second, without the first loop of SEARCH( ), 𝐷𝑒𝑙𝑎𝑦
𝑖

is not calculated and thus the task sorting of line (12) of
Algorithm 1(b) is not also employed. Note that the second
loop of SEARCH( ) is exactly the same as TRAVERSE( )
except that it works for RefinedList instead of UnAssigned.
From Theorem 4, pruning at line (5) that makes RefinedList



8 The Scientific World Journal

(1) CORRECTED-SEARCH (Γ: set of tasks)
(2) return CORRECTED-SEARCH(1, Γ, Γ);

(3) CORRECTED-SEARCH (prio: priority, UnAssigned: set of tasks, Γ: set of tasks)
(4) if (UnAssigned = { }) return RESTORING-OPT-ASSIGN-THRESHOLD(Γ);
(5) RefinedList← Refine(UnAssigned); // eliminating infeasible tasks even with the highest preemption threshold
(6) foreach (𝜏

𝑖
∈ RefinedList) {

(7) 𝑝
𝑖
← prio;

(8) pt
𝑖
← prio;

(9) if ( SEARCH(prio + 1, UnAssigned − {𝜏
𝑖
}, Γ) = success) return success;

(10) } // end-foreach
(11) return fail;
(a) CORRECTED-SEARCH( )

(1) RESTORING-OPT-ASSIGN-THRESHOLD (Γ: set of tasks)
(2) ret← OPT-ASSIGN-THRESHOLD(Γ);
(3) if (ret = fail) foreach (𝜏

𝑖
∈ Γ) pt

𝑖
← 𝑝
𝑖
; // restore preemption thresholds

(4) return ret;
(b) RESTORING-OPT-ASSIGN-THRESHOLD( )

Algorithm 2: Pseudo code for (a) CORRECTED-SEARCH( ) and (b) RESTORING-OPT-ASSIGN-THRESHOLD( ).

(1) PRUNED-TRAVERSE (Γ: set of tasks)
(2) Γ ← descendingSort(Γ,𝐷

𝑖
);

(3) foreach (𝜏
𝑖
∈ Γ) {

(4) infeasiblePrioMaxi ← 0;
(5) 𝑝

𝑖
← |Γ|;

(6) pt
𝑖
← |Γ|;

(7) } // end-foreach
(8) return PRUNED-TRAVERSE(1, Γ, Γ);

(9) PRUNED-TRAVERSE (prio: priority, UnAssigned: set of tasks, Γ: set of tasks)
(10) foreach (𝜏

𝑖
∈ UnAssigned) {

(11) if (prio < infeasiblePrioMaxi) continue; // pruning this path with condition C2
(12) 𝑝

𝑖
← prio;

(13) pt
𝑖
← |Γ|;

(14) if (prio = |Γ|) {
(15) ret = RESTORING-OPT-ASSIGN-THRESHOLD(Γ);
(16) if (ret = fail) infeasiblePrioMaxi ← |Γ|;
(17) return ret;
(18) } // end-if
(19) if (𝑅

𝑖
> 𝐷
𝑖
) {

(20) 𝑝
𝑖
← |Γ|; // restore to the highest priority

(21) if (prio > infeasiblePrioMaxi) infeasiblePrioMaxi ← prio;
(22) continue; // pruning this path with condition C1
(23) } // end-if
(24) pt

𝑖
← prio;

(25) if ( PRUNED-TRAVERSE(prio + 1, UnAssigned − {𝜏
𝑖
}, Γ) = success) return success;

// The following line is executed when the above PRUNED-TRAVERSE( ) returned fail.
(26) foreach (𝜏

𝑗
∈ UnAssigned) 𝑝

𝑗
← |Γ|; // restore to the highest priority

(27) } // end-foreach
(28) return fail;

Algorithm 3: Pseudo code for the proposed PRUNED-TRAVERSE( ) algorithm.

is valid. With this, we can easily see that CORRECTED-
SEARCH( ) is optimal since TRAVERSE( ) is optimal.

Third, we assign task 𝜏
𝑖
preemption threshold pt

𝑖
as the

same value of its priority at line (8) whenever its priority 𝑝
𝑖

is assigned (line (7)). This is to make sure that any priority
assigned task is preemptable by higher priority tasks. For
the feasibility test for refining UnAssigned by subroutine
Refine( ) at line (5) to work correctly, it should be guaranteed
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that any task in UnAssigned can preempt the preassigned
lower priority tasks in Γ − 𝑈𝑛𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑. SEARCH( ) does not
need this preemption threshold assignment due to WCRT( )
invocation at line (6) of Algorithm 1(b) where every task’s
preemption threshold is set as its priority.

Finally, RESTORING-OPT-ASSIGN-THRESHOLD( ) in
Algorithm 2(b) restores the preemption threshold of each
task to its priority in the case of the failed (infeasible)
preemption threshold assignment return. Without this cor-
rection, after OPT-ASSIGN-THRESHOLD( ) has assigned
preemption thresholds to tasks, preemption threshold values
of tasks are contaminated and thus subroutine Refine( ) at line
(5) cannot work correctly.

Figure 2(c) shows the priority assignment tree of
CORRECTED-SEARCH( ) for the walk-through example
task set of Table 1. In the figure, six complete task orderings
were generated. The last task ordering TO

𝐶
= ⟨3, 2, 1, 4⟩ is

the same as TO
𝑇
, and the resultant feasible task ordering

of TRAVERSE( ). CORRECTED-SEARCH( ) requires 74
feasibility tests while TRAVERSE( ) requires 91 feasibility
tests as the numbers besides triangle nodes indicate in
Figures 2(a) and 2(c). As such, it is obvious that the overall
performance of CORRECTED-SEARCH( ) is much better
than that of TRAVERSE( ) since CORRECTED-SEARCH( )
prunes infeasible paths while TRAVERSE( ) does not. We
develop the more performance enhanced algorithm in the
next section.

5. PRUNED-TRAVERSE( ) Algorithm

SEARCH( ) is not optimal since it prunes even feasible
priority orderings. As such, pruning exhaustively without
harming the optimality is important. In this section, we
propose our optimal priority assignment algorithm for PTS,
which we named PRUNED-TRAVERSE( ). We first develop
required theorems for our proposed algorithm.

Lemma 5. Under any priority assignment algorithm that
assigns distinctive priorities to tasks for PTS, if the priority 𝑝

𝑖

of a task 𝜏
𝑖
is lowered to 𝑝󸀠

𝑖
(𝑝󸀠
𝑖
< 𝑝
𝑖
), there exists at least one

lower priority task 𝜏
𝑗
(𝑝
𝑗
< 𝑝
𝑖
) that heightens its priority 𝑝

𝑗
to

𝑝󸀠
𝑗
with 𝑝󸀠

𝑗
> 𝑝󸀠
𝑖
.

Proof. The lemma can be easily proved by observing task
orderings in priority assignment trees like Figure 2(a). If task
𝜏
𝑖
is moved to a lower priority level (the higher place), at least

one of the lower priority tasks should be moved to a higher
priority level (the lower place) since the total priority levels
are fixed.

Theorem 6. Under PTS, if preemption threshold pt
𝑖
of task 𝜏

𝑖

is fixed, its worst-case response time 𝑅
𝑖
does not decrease when

its priority 𝑝
𝑖
is lowered.

Proof. For the convenience of proving, we refer to the last
terms of the right sides of (4) and (5) as 𝐼𝐹

𝑖,𝑞
and 𝐼𝑆

𝑖,𝑞
,

respectively.We prove the theoremby contradiction. Suppose
that 𝑅

𝑖
of task 𝜏

𝑖
decreases to 𝑅󸀠

𝑖
when its priority 𝑝

𝑖
is

lowered to 𝑝
󸀠

𝑖
: 𝑅󸀠
𝑖
< 𝑅
𝑖
and 𝑝󸀠

𝑖
< 𝑝
𝑖
. For 𝑅

𝑖
to decrease,

𝐹
𝑖,𝑞

should decrease from (1). For 𝐹
𝑖,𝑞

to decrease, 𝑆
𝑖,𝑞

or 𝐼𝐹
𝑖,𝑞

should decrease from (4). Since the condition for calculating
𝐼𝐹
𝑖,𝑞

is 𝑝
𝑗
> pt
𝑖
, the change of priority 𝑝

𝑖
does not affect 𝐼𝐹

𝑖,𝑞
.

Therefore, 𝑆
𝑖,𝑞
should decrease to 𝑆󸀠

𝑖,𝑞
such that 𝑆

𝑖,𝑞
− 𝑆󸀠
𝑖,𝑞
> 0.

Then, from (5), (𝐵
𝑖
+𝐼𝑆
𝑖,𝑞
)−(𝐵󸀠
𝑖
+𝐼𝑆
𝑖,𝑞

󸀠

) > 0 follows where𝐵󸀠
𝑖
and

𝐼𝑆
𝑖,𝑞

󸀠 are changed values of 𝐵
𝑖
and 𝐼𝑆
𝑖,𝑞
due to the lower priority.

Then, (𝐵
𝑖
− 𝐵󸀠
𝑖
) > (𝐼𝑆
𝑖,𝑞

󸀠

− 𝐼𝑆
𝑖,𝑞
) follows.

From Lemma 5, if 𝑝
𝑖
is lowered to 𝑝󸀠

𝑖
there exists at least

one lower priority task 𝜏
𝑗
(𝑝
𝑗
< 𝑝
𝑖
) that heightens its priority

𝑝
𝑗
to 𝑝󸀠
𝑗
such that 𝑝󸀠

𝑗
> 𝑝󸀠
𝑖
. Let the set of such additionally

introduced higher priority tasks after the priority of task 𝜏
𝑖

is lowered be 𝐴𝑑𝑑𝑒𝑑𝐻𝑃
𝑖
= {𝜏
𝑗
| 𝑝
𝑗
< 𝑝
𝑖
and 𝑝󸀠

𝑗
> 𝑝󸀠
𝑖
}. The

maximum possible value of (𝐵
𝑖
−𝐵󸀠
𝑖
) is achieved when 𝐵󸀠

𝑖
= 0,

which infers that at least one task in 𝐴𝑑𝑑𝑒𝑑𝐻𝑃
𝑖
contributes

in making 𝐵
𝑖
. Let such a task in 𝐴𝑑𝑑𝑒𝑑𝐻𝑃

𝑖
be task 𝜏

𝑘
; that

is 𝐵
𝑖
= 𝐶
𝑘
. Then, max(𝐵

𝑖
− 𝐵󸀠
𝑖
) = 𝐶

𝑘
follows. On the other

hand, from (5), it follows that 𝐼𝑆
𝑖,𝑞

󸀠

− 𝐼𝑆
𝑖,𝑞
= ∑
∀𝑗,𝑝𝑗∈𝐴𝑑𝑑𝑒𝑑𝐻𝑃𝑖

(1 +

⌊𝑆
󸀠

𝑖,𝑞
/𝑇
𝑗
⌋) ⋅ 𝐶
𝑗
≥ 𝐶
𝑘
. Then, (𝐵

𝑖
− 𝐵
󸀠

𝑖
) ≤ (𝐼

𝑆

𝑖,𝑞

󸀠

− 𝐼
𝑆

𝑖,𝑞
) follows.

This is a contradiction, which proves the theorem.

Theorem 7. Under PTS, if task 𝜏
𝑖
with priority 𝑝𝑛

𝑖
in priority

ordering PO
𝑛
and the highest preemption threshold pt

𝑖
= |Γ| is

infeasible, task set Γ with another priority ordering PO
𝑚
that

assigns task 𝜏
𝑖
the lower priority 𝑝𝑚

𝑖
(such that 𝑝𝑚

𝑖
< 𝑝𝑛
𝑖
) is also

infeasible.

Proof. Let the worst-case response time of task 𝜏
𝑖
with pt

𝑖
=

|Γ| and 𝑝𝑛
𝑖
be 𝑅
𝑖
. Let the worst-case response time of task 𝜏

𝑖

with pt
𝑖
= |Γ| and 𝑝𝑚

𝑖
be 𝑅󸀠
𝑖
. From Lemma 3, both 𝑅

𝑖
and

𝑅󸀠
𝑖
are the minimal possible worst-case response time with

each given priority. From Theorem 6, 𝑅󸀠
𝑖
≥ 𝑅
𝑖
follows. Since

task 𝜏
𝑖
with 𝑝𝑛

𝑖
and pt

𝑖
= |Γ| is infeasible, 𝑅

𝑖
> 𝐷
𝑖
follows

from Definition 1. Therefore, 𝑅󸀠
𝑖
> 𝐷
𝑖
follows. Accordingly,

task 𝜏
𝑖
with 𝑝𝑚

𝑖
and pt

𝑖
= |Γ| is infeasible. Consequently, from

Theorem 4, task set Γ with PO
𝑚
is also infeasible.

Now we propose PRUNED-TRAVERSE( ) that extends
TRAVERSE( ) by exhaustively pruning infeasible paths.
PRUNED-TRAVERSE( ) prunes such priority ordering PO

𝑛

that assigns task 𝜏
𝑖
priority 𝑝𝑛

𝑖
when the following condition

is true:

C1 ∨ C2, (7)

where C1 is pt
𝑖
= |Γ| ∧ 𝑅

𝑖
> 𝐷
𝑖
, and C2 is 𝑝𝑛

𝑖
< max{𝑝

𝑖
| C1}.

Apparently, Condition C1 is fromTheorem 4 and Condi-
tion C2 is fromTheorem 7.

Algorithm 3 shows the pseudo code for PRUNED-
TRAVERSE( ). Like TRAVERSE( ), PRUNED-TRAVERSE( )
depends on its subroutine, PRUNED-TRAVERSE( ), which
has the same parameters as TRAVERSE( ): prio, UnAs-
signed, and Γ (line (9)). Like TRAVERSE( ), PRUNED-
TRAVERSE( ) assigns priorities to tasks from the lowest
priority 1 to the highest priority |Γ|: it assigns each task 𝜏

𝑖

in UnAssigned (line (10)) priority prio (line (12)) and the
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remaining unassigned tasks (𝑈𝑛𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 − {𝜏
𝑖
}) are recur-

sively assigned priority 𝑝𝑟𝑖𝑜 + 1 at line (21).
Unlike TRAVERSE( ), PRUNED-TRAVERSE( ) first

sorts tasks in a deadline monotonic decreasing order
since DMPO also works well in many cases (line (2)).
PRUNED-TRAVERSE( ) introduces for task 𝜏

𝑖
new attribute

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑖𝑜𝑀𝑎𝑥
𝑖
= max{𝑝

𝑖
| C1}, which is the right side

of the Condition C2. It initializes 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑖𝑜𝑀𝑎𝑥
𝑖
as zero

at line (4).
Unlike TRAVERSE( ), PRUNED-TRAVERSE( ) needs

to perform a feasibility test for task 𝜏
𝑖
(getting 𝑅

𝑖
) while

assigning each priority in order to prune infeasible paths. For
this, we need to make sure that all tasks in UnAssigned have
higher priorities than the priorities of the previously priority
assigned tasks. For this, PRUNED-TRAVERSE( ) assigns the
highest priority |Γ| to all unassigned tasks initially at line
(5). PRUNED-TRAVERSE( ) also does so conditionally at
line (26) whenever the next priority (𝑝𝑟𝑖𝑜 + 1) assignment
fails at line (25). Preemption thresholds of all tasks are also
initialized as the same value of their priorities at line (6).

Before assigning task 𝜏
𝑖

priority prio (line (12)),
PRUNED-TRAVERSE( ) first prunes any infeasible
priority ordering at line (11) if prio is smaller than
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑖𝑜𝑀𝑎𝑥

𝑖
, which is Condition C2. Condition

C1 is applied at lines (13) and (19) and the priority ordering
with Condition C1 is pruned at line (22). Line (20) is for
restoring the priority of the pruned task. Line (21) is for
updating 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑖𝑜𝑀𝑎𝑥

𝑖
. If task 𝜏

𝑖
is assigned priority

prio without being pruned, its preemption threshold is
assigned the same as its priority at line (24), without which
PTS becomes the fully nonpreemptive scheduling (NPS) due
to the highest preemption threshold assignment at line (13).

Once prio of the maximum priority |Γ| is assigned
(line (14)), which means that a complete priority order-
ing is generated, PRUNED-TRAVERSE( ) assigns preemp-
tion thresholds by invoking RESTORING-OPT-ASSIGN-
THRESHOLD( ) in Algorithm 2(b). Note that there are
two differences with TRAVERSE( ) in assigning preemp-
tion thresholds: (1) invoking RESTORING-OPT-ASSIGN-
THRESHOLD( ) instead of OPT-ASSIGN-THRESHOLD( )
and (2) assigning preemption thresholds to tasks once the
maximum priority is assigned instead once UnAssinged is
{ }. (1) is for the proper pruning operation as we explained
in proposing CORRECTED-SEARCH( ) in Section 4. (2) is
for reducing one recursive function call for a performance
benefit: one recursive function call is reduced for each com-
plete priority ordering in PRUNED-TRAVERSE( ) compared
to TRAVERSE( ) or CORRECTED-SEARCH( ).

When any preemption threshold assignment is not fea-
sible, RESTORING-OPT-ASSIGN-THRESHOLD( ) returns
fail. In that case, 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑟𝑖𝑜𝑀𝑎𝑥

𝑖
is set to |Γ| at line (16).

This is because the fail return of RESTORING-OPT-ASSIGN-
THRESHOLD( ) infers that the highest priority assigned task
𝜏
𝑖
is not feasible due to some blocking task whose preemption

threshold should be raised for it to be feasible. The recursive
invocation of PRUNED-TRAVERSE( ) returns only when
the return value of the recursive invocation is success (line
(25)). With this, returning at the last lines (line (28)) happens
when a specific ordering is not feasible.

PRUNED-TRAVERSE( ) requires careful restorations of
priorities and preemption thresholds of tasks, which are
repetitively and tentatively assigned. Since SEARCH( ) and
CORRECTED-SEARCH( ) prune infeasible paths within
subroutine Refine( ), such restoration is easier and less error-
prone. However, PRUNED-TRAVERSE( ) prunes infeasible
paths as earlier as possible for the better efficiency and thus
requires careful restoring operations. Priorities are restored
before pruning at line (20) and after the failed priority
assignment at line (26). Preemption thresholds are restored
in RESTORING-OPT-ASSIGN-THRESHOLD( ) at line (15).
Assigning the preemption threshold as same as the priority of
the priority assigned task at line (24) is also important for the
proper pruning.

Nowwe prove the optimality of PRUNED-TRAVERSE( ).

Theorem 8. PRUNED-TRAVERSE( ) is optimal for PTS: it
finds a feasible scheduling attributes assignment if there exists
one.

Proof. PRUNED-TRAVERSE( ) extends TRAVERSE( ) by
pruning infeasible priority orderings with Condition C1 or
C2. Condition C1 is valid fromTheorem 4 and condition C2
is valid from Theorem 7. Consequently, since TRAVERSE( )
is optimal, PRUNED-TRAVERSE( ) is optimal.

Figure 2(d) shows the priority assignment tree of
PRUNED-TRAVERSE( ) for the walk-through example
task set of Table 1. In the figure, a gray dashed-lined circle
represents pruning a priority ordering without any feasibility
test, which is achieved by application of Condition C2
from Theorem 7. By comparing Figures 2(c) and 2(d),
we can easily see this additional pruning helps much in
reducing the number of feasibility tests: the feasibility tests
of (7), (21)∼(39), (55)∼(62) in Figure 2(c) do not happen in
Figure 2(d). We can also see that the earlier pruning with
condition C1 of PRUNED-TRAVERSE( ) instead of using
subroutine Refine( ) of CORRECTED-SEARCH( ) reduces
the number of feasibility tests: the feasibility tests of (4), (42),
(64) in Figure 2(c) do not happen in Figure 2(d).

The resultant last task ordering TO
𝑃
= ⟨3, 2, 1, 4⟩ is the

same as TO
𝐶
and TO

𝑇
, which are the resultant feasible task

ordering of CORRECTED-SEARCH( ) and TRAVERSE( ),
respectively. PRUNED-TRAVERSE( ) produces four com-
plete priority orderings and requires 47 feasibility tests while
CORRECTED-SEARCH( ) produces six complete priority
orderings and requires 74 feasibility tests. As such, it is obvi-
ous that the overall performance of PRUNED-TRAVERSE( )
is much better than that of CORRECTED-SEARCH( ) since
PRUNED-TRAVERSE( ) prunes more infeasible paths than
CORRECTED-SEARCH( ) exploiting Theorem 7 and the
earlier pruning.We show the empirical performance compar-
ison results in Section 7.

6. Complexity

Let 𝑛 = |Γ| and 𝐸 the nonpolynomial [20] complexity
of the feasibility test (calculating 𝑅

𝑖
from (1)∼(6)). Since

the pruning operation is conditional, all these algorithms
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in the worst-case produce 𝑛! priority orderings of POΓ,
each of which requires 𝑂(𝑛2) feasibility tests [3] via OPT-
ASSIGN-THRESHOLD( ). With this, TRAVERSE( ) has the
complexity of 𝑂(𝐸 ⋅ 𝑛! ⋅ 𝑛2).

On the other hand, each pruning operation of
CORRECTED-SEARCH( ) and PRUNED-TRAVERSE( )
requires one feasibility test for each tentative priority
assignment or pruning (circle) node. The number of
circle nodes in a priority assignment tree in the worst-
case is 𝑛 + 𝑛 ⋅ (𝑛 − 1) + 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) + ⋅ ⋅ ⋅ + 𝑛!,
which is 𝑂(𝑛!). Therefore, the worst-case complexity of
CORRECTED-SEARCH( ) and PRUNED-TRAVERSE( ) is
𝑂(𝐸⋅𝑛!⋅𝑛

2)+𝑂(𝐸⋅𝑛!) = 𝑂(𝐸⋅𝑛!⋅𝑛2), which is the same as that
of TRAVERSE( ). However, the pruning operation obviously
works as a branch and bound mechanism and derives much
better performances in most cases as the following empirical
comparison shows.

7. Empirical Performance Evaluations

We set the performance metrics of priority assignment
algorithms for PTS as (1) schedulability as the ratio of feasible
task sets and (2) actual runtimes for executing algorithms.
The experiments for getting the actual runtimes of the
algorithms were done on Intel Core i7-4770, 3.40GHz with
8GB RAM.We set the total utilization of each task set as𝑈 =

0.9. This utilization represents high-demanding workloads,
which makes the feasibility of a given task set be greatly
dependent on a proper priority assignment algorithm. Note
that the utilization bound 𝑈

𝐵
under the rate monotonic

scheduling (RMS) [29] when |Γ| = 𝑛 is 𝑈
𝐵
= 𝑛 ⋅ (

𝑛√2 − 1).

For example, if |Γ| = 10 and 𝑈 ≤ 0.72 (≅ 10 ⋅ (10√2 − 1) = 𝑈
𝐵
),

we even do not need PTS if task deadlines are the same as
periods since the fully preemptive fixed priority scheduling
with DMPO always makes the task set feasible.

We generated each task set in the same manner as [9].
Specifically, for a given total utilization𝑈 = 0.9, we generated
each task’s utilization 𝑢

𝑖
using UUniFast [30] algorithm. For

each task 𝜏
𝑖
, we generated 𝐶

𝑖
as a random integer uniformly

distributed in the interval [100, 500], 𝑇
𝑖
= 𝐶
𝑖
/𝑢
𝑖
, and 𝐷

𝑖

as a random integer uniformly distributed in the interval
[𝐶
𝑖
+ 0.5 ⋅ (𝑇

𝑖
− 𝐶
𝑖
), 𝑇
𝑖
]. For each experiment with a specific

parameter setting, we generated 2,000 task sets. To focus
on the effectiveness of pruning operations of PRUNED-
TRAVERSE( ), each task set was ordered in the deadline
monotonic decreasing order. Since TRAVERSE( ) took too
much time when the number of tasks is large, we applied
timeout for executing TRAVERSE( ) when |Γ| ≥ 10. The
actual runtimes of TRAVERSE( )with timeout were set as the
real actual runtime of TRAVERSE( ) when a task set was not
feasible.

7.1. Schedulability. Figure 3 shows the schedulability results
with 𝑈 = 0.9 and |Γ| = 10. Figure 3(a) shows the
percentage ratio of feasible task sets and Figure 3(b) shows
the Venn diagram for the number of feasible task sets.
The ratio of feasible task sets was calculated as the num-
ber of feasible task sets divided by the total number of

generated task sets. The resultant feasible task set ratios of
TRAVERSE( ), CORRECTED-SEARCH( ), and PRUNED-
TRAVERSE( ) were exactly the same and thus we omitted
the results of TRAVERSE( ) and CORRECTED-SEARCH( )
in Figure 3.

Figure 3(a) clearly shows that the schedulability
performance results of PA-DMMPT( ) [24], SEARCH( )
[1], GREEDY-SA( ) [3], DMPO [9], and PRUNED-
TRAVERSE( ) are uniformly improved in order. Specifically,
PA-DMMPT( ), SEARCH( ), GREEDY-SA( ), DMPO, and
PRUNED-TRAVERSE( ) could, respectively, schedule
50.6%, 53.45%, 59.9%, 64.65%, and 67.65%. Note that
PRUNED-TRAVERSE( ) outperforms than any other
priority assignment algorithms, which clearly shows that the
other algorithms are nonoptimal.

Figure 3(b) shows the Venn diagram for the number of
feasible task sets in 2,000 task sets. As shown, PRUNED-
TRAVERSE( ) could schedule 27 task sets that could not be
scheduled by any other existing heuristic priority assignment
algorithms. It is notable that each heuristic algorithm could
schedule some task sets that could not be scheduled by the
other heuristic algorithms. For example, SEARCH( ) could
schedule two task sets that could not be scheduled by the
other heuristic algorithms.

DMPO is a very efficient algorithm that requires almost
no implementation efforts as well as computation time
burden. Accordingly, it is practical to combine DMPO
with another heuristic algorithm. Figure 3(b) shows that
SEARCH( ), GREEDY-SA( ), and PA-DMMPT( ), respec-
tively, could schedule 5 (2 + 0 + 2 + 1), 19 (9 + 8 +
2 + 0), and 22 (11 + 1 + 2 + 8) task sets that could
not be schedule by DMPO. On the other hand, DMPO +
SEARCH( ), DMPO + GREEDY-SA( ), and DMPO + PA-
DMMPT( ), respectively, could schedule 64.9%, 65.6%, and
65.75%. With this, we conclude that PA-DMMPT( ) is the
most effective heuristic priority assignment algorithm as the
best candidate to be combined with DMPO. Therefore, we
compare its actual runtimes with our proposed algorithms in
the next subsection.Note that anyDMPOcombined heuristic
algorithm cannot become optimal due to the existence of task
sets that can be scheduled only by PRUNED-TRAVERSE( ) as
shown in Figure 3(b).

7.2. Actual Runtimes. We compare the actual runtimes for
executing optimal priority assignment algorithms and PA-
DMMPT( ), which is themost effective heuristic algorithm to
be combined with DMPO as shown in the previous section.
Figures 4(a) and 4(b) show the actual runtime results in
seconds as box plots when 𝑈 = 0.9 for |Γ| = 5 and
|Γ| = 10, respectively. 𝑌 axis is in a log scale to better show
the distributions of result values. Each box in a box plot
shows data results between 25% and 75% of performance
distribution. The middle line within each box shows the
median value of the results while the filled circle mark shows
the average value of the results.

Figures 4(a) and 4(b) clearly show that the actual
runtime performance distribution results of TRAVERSE( ),
CORRECTED-SEARCH( ), and PRUNED-TRAVERSE( ) are
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Figure 3: Schedulability with 𝑈 = 0.9 and |Γ| = 10.
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Figure 4: Actual runtimes in seconds when 𝑈 = 0.9.

uniformly improved in order. In Figure 4(a) with |Γ| =

5, the maximum and average runtimes were decreased by
72.6% and 87.0%, respectively, in CORRECTED-SEARCH( )
compared to the TRAVERSE( ) (from 0.84 sec to 0.23 sec and
from 0.23 sec to 0.03 sec). PRUNED-TRAVERSE( ) further
decreased themaximumand average actual runtime values of
CORRECTED-SEARCH( ) by 8.7% and 33.3%, respectively
(to 0.21 sec and to 0.02 sec).

Such performance differences become drastically large
as the number of tasks |Γ| increases. In Figure 4(b) with

|Γ| = 10, the maximum and average actual runtimes
of CORRECTED-SEARCH( ) compared to TRAVERSE( )
were decreased by 98.0% and 99.95%, respectively (from
67809 sec to 1331 sec and from 21947 sec to 10.73 sec). More-
over, PRUNED-TRAVERSE( ) decreased the maximum and
average values of CORRECTED-SEARCH( ) by 61.2% and
58.3%, respectively (to 517 sec and to 4.47 sec).

On the other hand, we can see themedian values of actual
runtimes of TRAVERSE( )were always smaller than any other
algorithms. This is because TRAVERSE( ) does not perform
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any feasibility test for priority assignments that are required
by the other algorithms. When a task set is feasible with
DMPO, the actual runtimes of TRAVERSE( ) are the same as
DMPO.

Figures 4(a) and 4(b) also show that the actual runtimes
of PA-DMMPT( ) are much larger than PRUNED-
TRAVERSE( ) and even larger than CORRECTED-
SEARCH( ). Specifically in Figure 4(b) with |Γ| = 10,
the maximum and average actual runtimes of PA-DMMPT( )
compared to PRUNED-TRAVERSE( ) were increased by
1167% and 150% (from 517 sec to 6551 sec and from 4.47 sec
to 11.18 sec). This is because PA-DMMPT( ) calculates
task blocking limits by generating candidate pairs of start
and finish times of tasks. As well investigated in [31], the
execution requirements of such an approach that generates
scheduling points grow exponentially with an increasing
range of task periods. Our experimental task sets were
generated in the same manner as [9], where the range of task
periods increases as the number of tasks increases.

However, PRUNED-TRAVERSE( ) still cannot be used as
an online feasibility test algorithm since its performance is
also degraded much as the number of tasks increases. For
example, for a task set Γwith𝑈 = 0.9 and |Γ| = 20, PRUNED-
TRAVERSE( ) took 7 hours to determine that the task set
was after all infeasible. Nevertheless, the above experimental
results clearly show that PRUNED-TRAVERSE( ) outper-
forms than any other optimal priority assignment algorithms
as well as the best effective heuristic priority assignment
algorithm for PTS.

8. Conclusion

Preemption threshold scheduling (PTS) has been widely
accepted in the industrial domain for its effectiveness of scal-
able real-time embedded system design with the increased
real-time schedulability (feasibility). However, without an
available optimal scheduling attributes assignment algorithm
(optimal in the sense that it is guaranteed to find a feasible
scheduling attributes assignment if one exists), we cannot
achieve the full benefits of PTS.

Since there exists an optimal and efficient 𝑂(𝑛2) pre-
emption threshold assignment algorithm [1] that operates
with fully assigned priority orderings, we need an optimal
priority assignment algorithm for PTS. In this paper, we
analyzed previously proposed optimal priority assignment
algorithms for PTS: TRAVERSE( ) [13] and SEARCH( ) [1].
Using priority assignment trees, we showed the inefficiency
of TRAVERSE( ) due to its lack of any pruning operation.
We also showed the nonoptimality of SEARCH( ) due to its
pruning of even feasible priority orderings.

We developed some theorems for safely and exhaustively
pruning infeasible priority ordering paths while assign-
ing priorities to tasks before assigning feasible preemp-
tion thresholds for PTS. Using these theorems, we cor-
rected SEARCH( ) and presented CORRECTED-SEARCH( )
algorithm. We also proposed PRUNED-TRAVERSE( ) that
enhances the performance of CORRECTED-SEARCH( )
while proving its optimality. Our empirical evaluation results
clearly showed the effectiveness of PRUNED-TRAVERSE( )

both in schedulability and actual runtimes compared to any
other existing priority assignment algorithms for PTS.

Notations

𝜏
𝑖
: A task

Γ: The set of tasks {𝜏
1
, 𝜏
2
, . . . , 𝜏

|Γ|
}

|Γ|: The number of tasks in task set Γ, the
highest priority value

𝐶
𝑖
: The worst-case execution time of task 𝜏

𝑖

𝑇
𝑖
: The period of task 𝜏

𝑖

𝐷
𝑖
: The relative deadline of task 𝜏

𝑖

𝑝
𝑖
: The priority of task 𝜏

𝑖

pt
𝑖
: The preemption threshold of task 𝜏

𝑖

POΓ: The set of all distinct priority orderings
{PO
1
,PO
2
, . . . ,PO

|Γ|!
} in task set Γ

PO
𝑛
: A priority ordering, a sequence of task

priorities ⟨𝑝𝑛
1
, 𝑝𝑛
2
, . . . , 𝑝𝑛

|Γ|
⟩

𝑝𝑛
𝑖
: The priority of task 𝜏

𝑖
in priority ordering

PO
𝑛

PO
𝐴
: The resultant priority ordering generated
by priority assignment algorithm
ALGORITHM( )

TO
𝑛
: A task ordering from the lowest priority to

the highest priority, a sequence of task
indexes ⟨𝑖, 𝑗, . . . , 𝑘⟩

PO−1
𝑛
: The inverse mapping of priority ordering
PO
𝑛
, the task ordering TO

𝑛

TO−1
𝑛
: The inverse mapping of task ordering
TO
𝑛
, the priority ordering PO

𝑛

𝑅
𝑖
: The worst-case response time of task 𝜏

𝑖

𝐿
𝑖
: The longest level-𝑝

𝑖
busy period

𝐵
𝑖
: The worst-case blocking time of task 𝜏

𝑖

𝑆
𝑖,𝑞
: The start time of the 𝑞th instance of task 𝜏

𝑖

in 𝐿
𝑖

𝐹
𝑖,𝑞
: The finish time of the 𝑞th instance of task

𝜏
𝑖
in 𝐿
𝑖
.
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