
Research Article
CaLRS: A Critical-Aware Shared LLC Request Scheduling
Algorithm on GPGPU

Jianliang Ma,1 Jinglei Meng,1 Tianzhou Chen,1 and Minghui Wu2

1College of Computer Science, Zhejiang University, Zheda Road No. 38, Hangzhou 310013, China
2Zhejiang University City College, Huzhou Road No. 51, Hangzhou 310015, China

Correspondence should be addressed to Jianliang Ma; majl@zju.edu.cn

Received 4 November 2014; Accepted 14 January 2015

Academic Editor: Chin-Chia Wu

Copyright © 2015 Jianliang Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ultra high thread-level parallelism in modern GPUs usually introduces numerous memory requests simultaneously. So there are
always plenty ofmemory requests waiting at each bank of the shared LLC (L2 in this paper) and global memory. For global memory,
various schedulers have already been developed to adjust the request sequence. But we find fewwork has ever focused on the service
sequence on the shared LLC. We measured that a big number of GPU applications always queue at LLC bank for services, which
provide opportunity to optimize the service order on LLC. Through adjusting the GPU memory request service order, we can
improve the schedulability of SM. So we proposed a critical-aware shared LLC request scheduling algorithm (CaLRS) in this paper.
The priority representative of memory request is critical for CaLRS.We use the number of memory requests that originate from the
samewarp but have not been servicedwhen they arrive at the shared LLC bank to represent the criticality of eachwarp. Experiments
show that the proposed scheme can boost the SM schedulability effectively by promoting the scheduling priority of the memory
requests with high criticality and improves the performance of GPU indirectly.

1. Introduction

Modern Graphics Processing Units (GPUs) are expected to
play a more critical role in general purpose computing tasks
ranging from supercomputing machines to hand-held devi-
ces. Compared with CPUs, these GPUs have numerous pro-
grammable computational cores and they support thousands
of active threads running in warp granularity simultaneously.
When a warp executes a memory instruction, the threads in
the warp will generate data demand. After coalescing, the
generated memory requests are sent to the memory subsys-
tem. The warp will be blocked until all data have been met.
By switching to other ready warps, GPUs may execute other
memory instructions and generate more memory requests.
So the memory subsystem is usually flooded with numerous
GPU memory requests at any time.

We found that the GPU memory requests have huge
diversities in various aspects, including but not limited to the
following. (1)Diversity in valid data: some requests may only
provide valid data for one thread whereas other requests may
service for many threads in the warp. (2) Diversity in the

number of ready warps: since the state of GPU pipeline varies
from time to time, the number of ready warps when the
memory requests are generated will differ from each other.
The memory requests with higher ready warps have stronger
latency tolerance than others. So, lots of studies use this infor-
mation to design GPU’s memory scheduling algorithms. (3)
Diversity in address distribution: the addresses in the mem-
ory requests between different GPU cores may be shared or
complementary. (4) Diversity in the amount of memory
requests in each warp: based on the number of active threads
and address coalescing, different warps may produce differ-
ent amount of memory requests.

For any warp, it cannot resume to execute unless all of the
memory requests it generated have been served. In this paper,
we aim at exploiting this difference to improve GPU per-
formance. We observed that the SM schedulability can be
improved by adjusting the service sequence of memory
requests. So we defined a criticality to classify all the GPU
memory requests andproposed amemory request scheduling
algorithm based on it. We also showed why we design CaLRS
on the sharedLLCother than globalmemory or private cache.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 848416, 10 pages
http://dx.doi.org/10.1155/2015/848416

2 The Scientific World Journal

Table 1: Other configurations of baseline GPU.

of SMs 30 (15 clusters of 2)
SM configuration 1400Mhz, Reg #: 32K, SIMDWidth: 16, warp: 32 threads, and max threads per SM: 1536
Branching handling PDOM based method [3]
Warp scheduling Greedy-then-oldest (GTO) [4]
Private L1 caches 16 KB $L1D, 8KB $Const, 12 KB $Texture, and 2KB $L1I
Scratchpad memory 48KB
Interconnect Butterfly, 1400Mhz, 32 B width
of LLC banks 6 (= #of memory partitions)
LLC bank controller First-in-first-out (FIFO)
LLC unified cache 768KB, 128 B line, and 8-way
Min. LLC latency 120 cycles (compute core clock)
Memory controller Out-of-order (FR-FCFS), max request queue length: 32
GDDR5 timing (from Hynix H5GQ1H24AFR) 𝑡CCD = 12, 𝑡CL = 12, 𝑡RP = 12, 𝑡RC = 40, 𝑡RAS = 28, 𝑡RCD = 12, 𝑡RRD = 6, and 𝑡CDLR = 5, 𝑡WR = 12
Min. DRAM latency 460 cycles (compute core clock)

Overall, this paper makes the following contributions over
previous work.

(i) We discussed the memory scheduling problem on
the shared LLC structure in GPU architecture in this
paper. In our knowledge, there are only two papers
[1, 2] discussed this issue for CMP architectures. The
consideration between our work and them are differ-
ent.

(ii) We tested the memory request queuing situation for
the shared LLC banks with various GPU applications
and the result shows that there are plenty of memory
requests queuing on LLC banks. But current FIFO
scheduling policy fails to distinguish the different
degrees of importance for the memory requests.

(iii) We showed the relationship betweenmemory request
service sequence and SM schedulability. Specifically,
the SM schedulability can be improved by adjusting
the service sequence of memory requests properly.

(iv) We quantify the importance of a memory request
named as criticality by the number of memory
requests that originate from the same warp but have
not been served when it arrives at the shared LLC
bank. Then we proposed a memory request schedul-
ing algorithm based on this criticality information.

2. Background

In this section, we describe the baselineGPUarchitecture and
queue structure on shared LLC.

2.1. Baseline GPU Architecture. Our baseline GPU shown in
Figure 1 consists of multiple cores, named Stream Multipro-
cessors (SMs). Each SM includes multiple processing units
and private data cache. In addition, each SM has another
software managed scratchpad memory that is shared by all
threads in a thread block. All SMs are connected to a shared
LLC (L2 in this paper) via an on-chip interconnection
network. The LLC is banked and each bank connects to an

C C C C C C

Interconnection network

LLC bank

DRAM bank

LLC bank

DRAM bank

LLC bank

DRAM bank

· · ·

· · ·

· · ·

SIMT
cluster N

SIMT
cluster 0

Figure 1: Baseline GPU architecture.

off-chip memory channel (memory partition). Eachmemory
channel has a GDDR5 memory partition with a memory
controller. We use GPGPU-Sim (v3.2.2) [5] to simulate the
baseline GPU (Fermi-like) architecture as depicted in Table 1.

In each SM, the threads pipeline in warps (aka “wave-
fronts”). A warp consists of up to 32 threads but the active
thread number may vary from time to time. Since we study
the memory request scheduling algorithm in this paper, we
only concern the warps when they execute memory instruc-
tions. When a warp executes a memory instruction, we call
the warp asmemory warp.The active threads in the warp will
generate data requirements. If all the threads in the memory
warp access addresses within a single cache line range, the
data requirements can be coalesced into a single memory
request by the Coalescing Unit in each SM. Otherwise the
warp has to generate multiple memory requests to access dif-
ferent cache blocks, which is known as GPU memory diver-
gence. But for each cache block, each warp can produce at
most one memory request. The memory requests are firstly
issued to the private cache in FIFO order. If missed, they are
transmitted to the shared LLC. For description simplicity, the
followingmentionedmemory requests denote to thememory
requests after coalescing, except any otherwise stipulated.

The Scientific World Journal 3

0

0.2

0.4

0.6

0.8

1

1.2

W
R

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw av
g

bf
s

Figure 2: LLC queue waiting ratio.

2.2. Shared LLC Queue Structure. Thememory requests that
have not yet been served in the private cache will be sent
to the shared LLC. Port conflicts may happen when lots of
memory requests from different SMs arrived at shared LLC
simultaneously. Our baseline GPU architecture has 30 SMs in
total, but the shared LLC only has 6 banks. So each LLC bank
has to serve 5 SMs intuitively. Besides, the number of con-
current threads on each SM can be up to 1536. Even though
the memory access rate of each thread may low in some GPU
applications, many concurrent threads present in all SMs can
still produce numerous memory requests. The small capacity
of private cache can only service a small part of memory
requests, which leads the shared LLC to intensively compe-
tition. In light of the fact that each bank in the LLC serves
and schedules memory requests independently, we present
the design detail for just one bank.

3. Observation and Analysis

3.1. The Intensity of the LLC Queue. When more than one
memory request arrives at LLC at the same cycle, we say that
port competition happens in LLC bank. At these moments,
waiting is necessary for some memory requests. We use
waiting ratio (WR) to stand for the percentage of waiting,
aka, the percentage ofmomentswhenmore than onememory
request arrives at LLC at the same cycle. In this paper, we
use a queue to buffer these memory requests. So the length
of the queue will be added if the number of new incoming
memory requests is greater than the number of issued mem-
ory requests. We use average queue length (AQL) to stand
for the average value of the LLC queue length when the LLC
queue is not empty.

Figure 2 lists the LLC queue WR for Rodinia [6] bench-
marks, in which the last column is the average value. The
result shows that much of the benchmarks have high waiting
rate, especially for memory intensive benchmarks, such
as nn, heartwall, and b+tree. The average waiting ratio of all
applications is 0.596, more than a half. The minimum value
happened in gaussian as 0.267 and the maximum value hap-
pened as 0.959 in heartwall. Overall, the average possibility
for a memory request to wait in the LLC queue is as much as

0
10
20
30
40
50
60
70
80
90

AQ
L

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw av
g

bf
s

Figure 3: Memory request queue length on shared LLC.

59.6%. So we can say that the shared LLC is usually busy in
GPGPU architecture.

Figure 3 shows theAQL of LLC queue, inwhich the queue
size is set to 100. The average queue length means how many
memory requests ahead are waiting in the LLC queue in
average. The longer the AQL is, the longer the memory
request has towait according to FIFO sequence. Aswe can see
from the figure, the AQL of each application varies a lot, from
3.66 for gaussian to 85.6 for heartwall. Besides, the average
AQL is 40.57. Based on the test, we can conclude that most of
the benchmarks have a lot of request pressure on the shared
LLC. The bigger the AQL is, the more intensive the LLC
is and the greater the performance potential we can get by
optimizing the service sequence of the LLC queue is.

3.2. Memory Request Service Sequence Influences the SM
Schedulability. Figure 4 demonstrates the memory diver-
gence statistics of several GPU applications. We can see that
a memory warp in bfsmay produce 1 to 26 memory requests.
Although a major part of the memory warps generates only
a single memory request after coalescing, the other situations
are also ubiquitous. In the worst case, a memory warp has
to wait for data result of 26 memory requests in bfs. In these
situations, the memory subsystem is infeasible to serve so
many memory requests in a relative short time under the cir-
cumstance of thousands of warps.The situation is even worse
in cfd and gaussian where a warp may generate up to 31 and
32 memory requests, respectively.

We denote SM schedulability as the number of ready
warps that can be scheduled at next time. So the stronger the
SM schedulability is, the more likely the warp scheduler
selects a better warp. For amemorywarp, if it has fewermem-
ory requests, it is more likely to obtain all data in shorter time
and contribute to SM schedulability. Otherwise, the latency
will be high. By scheduling these memory requests in dif-
ferent sequence, the SM schedulability will be influenced.
According to this idea, a simple and effective method to
improve SM schedulability is to accelerate the data access
speed for memory warps that have fewer memory requests.
That is to say, the warp with fewer memory requests should
have higher priority than others. So, for bfs benchmark in
Figure 4, the warps with only 1 memory request have the

4 The Scientific World Journal

1
10

100
1000

10000
100000

1000000
10000000

100000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

W
ar

p
nu

m
be

r

Memory requests in a warp

bfs
cfd
gaussian

Figure 4: The memory divergence statistic of several benchmarks.

highest priority and the warps with 26memory requests have
the lowest priority.

We have to mention that half completed warp cannot
resume to execute. So the interference of the memory request
from different warps will worsen both warps. Pervious work
[7] proposed an idea that interwarp interference should be
avoided. The idea is also suitable for our LLC scheduling
algorithm. So we would better gather the memory requests as
much as possible by giving them the same scheduling priority.

3.3. Design Hierarchy Consideration. As described above, we
find that we can improve the SM schedulability by properly
adjusting the memory request service sequence. So it is
motivated to design an effective memory request scheduling
algorithm. In our GPU architecture, there are three places to
do this, namely, private cache in each SM, the on-chip shared
LLC cache, and off-chip global memory. The private cache is
connected with the coalescing logic that merges data require-
ments from all threads in a warp into minimal number of
cache-line-sized memory requests. So adjusting the memory
request service sequence in private cache hierarchy equates
to adjusting the sequence at the time it is generated. But it is
not reasonable. Firstly, the queue is short in this position. As
private cache can serve a memory request in every cycle, the
memory requests from last memory warp have usually been
issued to private cache when the next memory warp arrives.
So the contention ofmemory requests fromdifferentmemory
warp rarely happens. Secondly, the access latency of private
cache is similar to that of register file. Then adjusting the
memory request service sequence at private cache hierarchy
cannot gain much benefit to SM schedulability.

While in the global memory level, after the filtration
of LLC structure, the complicated interactions have been
diminished, the warp differences are weakened and the
physical characters are strengthened. In our GPU archi-
tecture, the relationship between LLC bank and memory
controller is 1-on-1, so there is no port confliction onmemory
controller. Besides, thememory queue is formed by the access
latency difference between the DRAM and LLC. So memory
scheduling algorithms in this level mainly focus on how to
maximum the memory throughput by fully utilizing the

physical constraints of the memory device, such as read-to-
precharge delay (𝑡RTP), the precharge-to-activate delay (𝑡RP),
and the activate-to-read delay (𝑡RCD). So it is also not the best
choice to design our criticality driven scheduling algorithm
in global memory level.

Oppositely, it is necessary and effective to design
criticality-aware scheduling algorithm on shared LLC. The
LLC scheduling algorithm is trivial in traditional CMP archi-
tecture as the memory intensity of CPU applications is mod-
erate. But in GPU architecture, there are numerous SMs to
send memory requests to the shard LLC. This leads to severe
port confliction on shared LLC. This is an important differ-
ence between GPU and traditional CMP architectures. The
memory requests from all SMs will aggregate and interact on
shared LLC, so adjusting the memory request service sequ-
ence in shared LLC level has congenital advantage (LLC port
confliction) and acquired advantage (all memory requests
aggregate here).

4. Critical-Aware LLC Request
Scheduling Algorithm (CaLRS)

In this section, we will introduce the proposed critical-
aware LLC request scheduling algorithm (CaLRS) in detail.
CaLRS improves the SM schedulability by accelerating the
critical memory requests. CaLRS exploits the characteristic
that different warps may produce different amount of mem-
ory requests when executing memory instructions and the
constraint that a warp cannot resume to run until all its
memory requests have been served to define the criticality
of a GPU memory request, that is, the number of memory
requests that belong to the same warp and have not been
served when it arrives at LLC. CaLRS uses the criticality of a
memory request to design the scheduling priority of it in the
shared LLC. Specifically, the smaller the criticality is, the
higher the priority it has. Therefore, the CaLRS is actually a
priority queue management on the shared LLC.

4.1. Designing CaLRS. In CaLRS, when a GPU memory
request is generated by the coalescing logic, a Critical Field
(CF) is appended tomark its criticality.The initial value of CF
is set to the number ofmemory requests that are generated by
the memory warp, so all the memory requests that originate
from the memory warp have the same original CF value.
Suppose that a warp generates𝑁memory requests; then each
of these 𝑁 memory requests has the same CF value of 𝑁.
Since each GPU memory warp may generate at least 1
memory request and atmost 32memory requests, the value of
𝑁 falls in 1 to 32 (𝑁 ∈ [1, 32]). So a 6-bit CF is needed to store
this information. The CF will decrease when some memory
requests are served by GPU’s private cache. When the
memory requests arrive at shared LLC, the CF will be used to
calculate the scheduling priority. As CaLRS is designed below
private cache, we have to update the CF value when memory
requests pass through the private cache.The update principle
is as follows.

The Scientific World Journal 5

0

(%
)

10
20
30
40
50
60
70
80
90

100

32
31
30
29
28
27
26
25

24
23
22
21
20
19
18
17

16
15
14
13
12
11
10
9

8
7
6
5
4
3
2
1

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

M
at
rix

M
ul

ho
tsp

ot

ga
us
sia

n nw bf
s

av
g

Figure 5: Memory request queue length on shared LLC.

Principle 1. Each time a memory request hits in the GPU
private cache, the CF value of each memory request that
originates from the same memory warp decreases by 1 to 0.

If the CF value of a memory request is 𝑁 when it hits in
private cache, then the other𝑁−1memory requests that orig-
inate from thewarp of the hit one will decrease from𝑁 to𝑁−
1. The reduction of CF will increase their scheduling priority
to accelerate their data fetch speed and reduce the memory
access latency of the memory warp. Under this update prin-
ciple, for memory requests generated from the same warp,
except the memory request that already hits in private cache,
all other memory requests change the CF value in lockstep,
so they will always keep the same value.

Formally, the memory request scheduling priorities of
CaLRS are designed as (1) requests with lower CF values over
requests with higher CF values, (2) among requests with the
same CF value, older requests over younger ones. So if a GPU
memory request hits in private cache, it will promote the
other memory requests’ priorities that come from the same
memory warp.

4.2. Hardware Implementation. For hardware simplicity,
CaLRS uses multiple independent priority subqueues with
different priority to buffer the memory requests. As a com-
parison, we implement a FIFO scheduler in each LLC bank as
baseline. According to the value range of CF, a memory
request may have at most 32 cases.The statistics of CF value is
made in Figure 5. The results show certain regularity of the
memory requests. Firstly, in most benchmarks, the memory
requests where their CF equals 1, 2, 4, 8, 16, and 32 are
overwhelming.On average, their percentages achieve 41.00%,
35.03%, 5.43%, 8.09%, 1.53%, and 0.77%, respectively. Sec-
ondly, most benchmarks have only a few types of memory

0
10
20
30
40
50
60
70
80
90

100

Pr
io

rit
y

di
str

ib
ut

io
n

(%
)

[3-4]

[2]
[1]

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

M
at
rix

M
ul

ho
tsp

ot

ga
us
sia

n nw bf
s

[9–32]
[5–8]

Figure 6: Priority distribution of GPU memory requests.

requests according to CF value. Specifically, the number of
types is 2 to 5 and their values are just mentioned above.
This illustrates the types ofmemory requests are very concen-
trated, and their criticality is the power of 2. But cfd and bfs
are two exceptions. On one hand, the sum percentage of the
type of memory requests mentioned above is only 29.31% and
67.41%, much less than other benchmarks’ 98%. This shows
that the other type of memory requests from them cannot be
ignored. On the other hand, at these situations, the number of
memory request types ismore than 5. Specifically, the number
of memory request types of cfd and bfs achieves 30 and 26,
respectively. For benchmark gaussian, although it has 32 types
of memory requests, the three types of memory requests
where their CF equal to 1, 4, and 8 occupy over than 98.6%,
so we classify it into the regular category.

If we assign an individual scheduling priority for each CF
value, then 32 priorities are needed. If an individual subqueue
is assigned to each priority, then 32 subqueues are needed
to buffer the memory requests of each priority. From the
results of Figure 5, we can see that the space utilization of 32
subqueues is very low since most benchmarks do not have so
many types of memory requests. Besides, it will be compli-
cated to implement and manage 32 subqueues in hardware.
For hardware simplicity, we must decrease the number of
subqueues. We achieve this target by decreasing the number
of priorities. In view of the fact that the CF values mentioned
above are exactly the power of 2, we total up the memory
requests with the power of 2.Then there are only 6 categories,
namely, [1], [2], [3-4], [5–8], [9–16], and [17–32]. Since
the number of memory requests from categories [9–16] and
[17–32] is too small to compare with other categories, we
combine them into [9–32]. The final result is shown in
Figure 6. At this moment, the percentage of each category is
45.2%, 14.2%, 10.5%, 18.6%, and 11.4%.

Therefore, we use 5 priorities to correspond to the 5 cate-
gories. As each priority is buffered in an individual subqueue,
we implement 5 subqueues (subqueue0∼subqueue4). Each
priority subqueue is implemented simply as a FIFO queue.

6 The Scientific World Journal

Table 2: Subqueues, CF, and priority correspondence.

Subqueue name Length CF value range Priority
Subqueue0 25 1 0
Subqueue1 25 2 1
Subqueue2 25 3∼4 2
Subqueue3 25 5∼8 3
Subqueue4 28 9∼32 4

These 5 subqueues have priorities from 0 to 4. And the
smaller the value is, the higher the priority is. In our baseline
architecture, the FIFO queue size is 128, so to keep the same
queue size, the sum of the 5 subqueues in CaLRS is also set to
128. In order to avoid starvation, we designed a rotation
method, which will be discussed in the next section. Since we
employ the rotation method, a skewed subqueue length
division method makes no sense and we divide the total size
equally among all subqueues. The subqueue lengths and
correspondent CF value range are shown in Table 2.

When a GPU memory request arrives at LLC bank, the
LLC controller will insert the memory request into the cor-
respondent subqueue according to the request’s CF value. If
there has no free entry in the correspondent subqueue, then
the controller will keep searching the subqueues of lower
priority until it finds a free entry and inserts the memory
request. If no free entry can be found after searching all lower
priority subqueues, then we say the LLC bank is full and we
will set a block signal, preventing subsequent memory
requests from sending to the bank. This insertion method
ensures that no memory request can be inserted beyond its
priority. In order to avoid the block signal from joggling, we
delay the block signal cancelation. Instead of canceling the
block signal once there are free entries (next cycle), we cancel
it after all the memory requests in the highest priority sub-
queue have been served. This cancelation method can coor-
dinate with the rotation method we used to avoid starvation.
After all memory requests of this cycle have been inserted,
the LLC bank will issue one memory request from the
nonempty subqueue of the highest priority in each cycle
according to the scheduling priority, keeping at most one-
request service at every cycle.

4.3. Prevention from Starvation. But starvation may occur
using the scheduling method described above. If the new
coming memory requests always have high priorities, then
the subqueues of high priorities will not be cleared in a
long time, which will prevent the memory requests in the
subqueues of low priorities from being issued in a long time
and finally lead to starvation. Starvation will lead GPU
threads to run askew andmake thread synchronization costly.
To prevent from starving, we designed a simple but effective
rotation method to promote the priority of each subqueue
circularly. Specifically, when the subqueue of the highest
priority, known as subqueue 𝑖 (𝑖 = 0 in origin), is emptied, we
promote the priority by 1 for all other subqueues. Then the
priority of subqueue (𝑖 + 1)%5 becomes 0, subqueue (𝑖 + 2)%5
becomes 1, and so on. Finally, the priority of subqueue (𝑖 +

0
20
40
60
80

100
120
140

IP
C

no
rm

al
iz

ed
to

 b
as

eli
ne

 (%
)

Baseline
CaLRS

Non Queue

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

ba
ck
pr
op

b+
tre

e

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw av
g

bf
s

Figure 7: CaLRS performance improvement.

4)%5 is promoted to 3 and the original subqueue 𝑖 is degraded
into the lowest priority (priority 4). After such a rotation, the
subsequent incoming memory requests with CF equal to 1
will be inserted into subqueue (𝑖 + 1)%5 and so on. Using
this rotation method, the subqueue 𝑖will be cleared unless all
the subsequent memory requests have CF equal to 1. In fact,
if all the subsequent incoming memory requests have CF
value equal to 1, then any scheduling methods based on CF
are meaningless. We did not find any such applications and
we are sure that this will not happen in modern GPUs. Oth-
erwise, subqueue of lower prioritymust become high priority
someday and gain prior order to be issued, preventing from
starvation. Algorithm 1 shows the final CaLRS scheduling
algorithm.

5. Experimental Results

In this section, we will test our CaLRS scheme and analyze
the experimental results. The default GPU warp scheduler
is GTO. Figure 7 demonstrates the performance comparison
of CaLRS, Non Queue, and baseline configuration. In the
Non Queue configuration, there is no queue in the shared
LLC controller. Instead, it has an 8-size queue in each SM
cluster, totaling 128-size buffer. So Non Queue’s buffer size is
equal to baseline and CaLRS. We can see that baseline and
CaLRS outperform Non Queue in every benchmark, show-
ing that keeping a request buffer in shared LLC is very benefi-
cial to LLC performance. CaLRS outperforms Non Queue by
101.4% and baseline by 9.0% in average. Besides, we find that
in every benchmark, CaLRS outperforms baseline in different
range, which verifies the validity of CaLRS scheme.

Figure 8 shows the average queue length comparison of
baseline andCaLRS.We can see that, comparedwith baseline,
the average queue length of all benchmarks is increased in
different degree. This is because in baseline, LLC will always
accept new memory request unless the queue is full. So the
baseline has 100% space utilization of the queue. But inCaLRS
scheme, in the situation where subqueues with lower prior-
ities are full but lower ones still have free entries, memory
requests with low priority will be rejected and block LLC. So

The Scientific World Journal 7

queue[5] contain 5 LLC priority queue
cur mreq is current memory request
prio stands for a memory request’s priority
prioMap[5] is the mapping table for queue priority rotation
CF-prio[33] =

[−1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
is the CF to priority mapping table

Procedure CaLRS(cur mreq, queue[5])
Insertion:
prio = CF-prio[cur mreq->CF]; //change CF to priority
while queue[prioMap[prio]].full()&& prio < 4

prio++;
end while
if prio = 4
Set LLC Queue(STALL);
else

queue[prioMap[prio]].push back(cur mreq);
Issue:
int 𝑖 = 0;
while queue[prioMap[i]].empty()
𝑖++;

if 𝑖 < 6
cur mreq = queue[prioMap[𝑖]].pop front();
ISSUE(cur mreq);

Rotation:
if queue[prioMap[𝑖]].empty()

for int 𝑗 = 0; 𝑗 < 5; 𝑗++
prioMap[𝑗] = (prioMap[𝑗] + 4)%5;

if Get LLC Queue() = STALL
Set LLC Queue(UNSTALL);

Algorithm 1: CaLRS scheduling algorithm.

0
20
40
60
80

100

AQ
L

(c
yc

le
s)

Baseline
CaLRS

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw av
g

bf
s

Figure 8: Average queue length comparison of baseline and CaLRS.

some entries in lower priority subqueues will not be utilized
efficiently. Overall, a memory request can enter LLC bank
queue a bit earlier and has shorter average queue latency (as
large as the queue length) in baseline. In average, CaLRS’s
average queue latency increases by 2.29 clock cycles (about
5.65% of baseline), which is the time overhead of CaLRS.

The idea behind CaLRS is to reduce the queue latency of
high priority memory requests at the expense of low priority
memory requests. Figure 9 illustrates the average queue

0

(%
)

20
40
60
80

100
120
140

Prio0
Prio1
Prio2

Prio3
Prio4

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

b+
tre

e

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw av
g

bf
s

Figure 9: The average queue latency changement for different
classes of memory requests that have the same priority.

latency changement for each class of memory requests that
have the same priority. Most benchmarks do not have all
classes of memory requests, which is dependent on the
intrinsic memory accessing character of benchmarks and our
classification method. In CaLRS, the queue latency for mem-
ory requests with lowest CF values becomes smaller as they
are prioritized. On the other hand, the memory requests with
the highest CF values will definitely be delayed and their

8 The Scientific World Journal

0
5

10
15
20
25
30

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

ho
tsp

ot

ga
us
sia

n nw

M
at
rix

M
ul bf
s

av
g

SM
 sc

he
du

la
bi

lit
y

2LEV-baseline

2LEV-CaLRS
LRR-baselineLRR-CaLRS
GTO-baseline

GTO-CaLRS

b+
tre

e

(a)

0

50

100

150

200

cfd
pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
d

ba
ck
pr
op

ho
tsp

ot
ga
us
sia

n nw
M
at
rix

M
ul bf
s

av
g

IP
C

no
rm

al
iz

ed
to

 G
TO

 (%
)

2LEV-baseline

2LEV-CaLRS
LRR-baselineLRR-CaLRS
GTO-baseline

GTO-CaLRS

b+
tre

e

(b)

Figure 10: CaLRS performance under various warp scheduling algorithms: (a) SM schedulability, (b) overall IPC.

queue latency becomes larger. For other memory requests,
the situation is uncertain, depending on the memory request
distribution of the 5 kinds. The results show that, in CaLRS,
the average queue latency of each class with priority from 0
to 4 becomes 80.83%, 105.07%, 104.18%, 95.60%, and 106.31%
compared with baseline, respectively. The results reflect the
idea of CaLRS visually.

Figure 10 shows how CaLRS improves the SM schedula-
bility and overall performance under different warp schedul-
ing algorithms, in which “2LEV” stands for two-level sched-
uler [8], “LRR” stands for loose round robin scheduler,
and “GTO” stands for greedy then oldest scheduler. The
results are normalized to “GTO-”baseline. From Figure 10(a),
we find that different warp scheduling algorithms provide
various SM schedulability, in which “2LEV” falls far behind
than the other two. Secondly, by comparing the results of
baseline and CaLRS, we can see that the SM schedulability is
obviously improved in all of the three warp scheduling
algorithms. Specifically, “2LEV,” “LRR,” and “GTO” improved
SM schedulability by 15.21%, 17.53%, and 17.69%, respectively.
From Figure 10(b), we can see that the “2LEV” scheduler has
the lowest performance than the other two, which is com-
patible with the result of SM schedulability. By comparing
the results of baseline and CaLRS, we can see that CaLRS out-
performs baseline in certain degrees in each warp scheduling
algorithm. Specifically, CaLRS improves by 5.88%, 9.79%,
and 10.63% for “2LEV,” “LRR,” and “GTO,” respectively. The
benchmark MatrixMul in “LRR” scheduler has the most
performance improvement, reaching 80.95%. By comparing
these three warp scheduling algorithms, we see that the GPU
performance is positive proportional to the SM schedulabil-
ity.

According to the rule, rotation can only happen when
the highest priority subqueue becomes empty. Figure 11 tests
the average rotation interval in CaLRS. We can see that the
rotation executes once in every 12.8 cycles in average. The
benchmarks heartwall and nn have the longest rotation
interval as they have intensive memory access rate and high
percentage of Prio0 memory requests from Figures 3 and 6,
respectively.Thepercentage of high prioritymemory requests

0
5

10
15
20
25
30

Ro
ta

tio
n

in
te

rv
al

 (c
yc

le
s)

Interval

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

str
ea
m
clu

ste
r

ho
tsp

ot

ga
us
sia

n nw bf
s

av
g

b+
tre

e
Figure 11: Average rotation interval in CaLRS.

contributes to long interval as more new incoming memory
requests have high priority and insert into the highest sub-
queue, which prevent the subqueue from clearing and thus
rotating. When the rotation finishes a round, any memory
requests buffered in the subqueues must have been served.
So themaximumqueue latencymust be smaller than rotation
intervals multiplied by five.

We have also compared the performance of hardware
implementedCaLRS and ideal CaLRS to test the performance
gap between them. The ideal CaLRS have 32 subqueues and
each subqueue has infinite large size. We call the CaLRS with
5 subqueues and 128-size as CaLRS-128 and the ideal one
as CaLRS-ideal. Figure 12 is the performance comparison
of CaLRS-128 and CaLRS-ideal. We can see from the figure
that CaLRS-128 achieves up to 90% of CaLRS-ideal except
benchmarks cfd, nn, heartwall, and bfs. And the average value
is 93.38%, which is pretty good already. The CaLRS-ideal
will outperform CaLRS-128 in the following aspects.The first
is that the infinite large subqueue can prevent LLC from
blocking because of buffer full. The second is that the larger
number of subqueues enables CaLRS to recognize the criti-
cality nuances of memory requests. The rotation scheme will
disturb the normal order as it will promote lower ones

The Scientific World Journal 9

0

20

40

60

80

100

120

cfd

pa
th
fin

de
r nn lu
d

he
ar
tw
al
l

la
va
M
D

ba
ck
pr
op

str
ea
m
clu

ste
r

H
ot
sp
ot

ga
us
sia

n nw bf
s

av
g

G
PU

 IP
C

no
rm

al
iz

ed
 to

Ca

LR
S-

id
ea

l (
%

)

CaLRS-128/CaLRS-ideal

b+
tre

e

Figure 12: Performance comparison of CaLRS-128 and CaLRS-
ideal.

regardless of CF value. We find that benchmarks nn and
heartwall go into the first case and cfd and bfs go into the
second case. Benchmarks nn and heartwall are memory very
intensive benchmark in which the subqueues may become
full occasionally, thus preventing following memory requests
from inserting to the queues. In benchmarks cfd and bfs, there
are more than 20 classes of memory requests according to the
CF value, so the rotationwill influence them severely. Overall,
although CaLRS-ideal is better than CaLRS-128, the gap is
not large. On the other hand, CaLRS-ideal is infeasible in
hardware, neither the infinite large buffer size nor managing
as many 11 as 32 subqueues in one single cycle.

6. Related Work

6.1. Memory Scheduling Techniques. In the traditional mul-
ticore areas, there is a lot of research work for memory
scheduling techniques. Kim et al. [9] and Ebrahimi et al.
[10] proposed a variety of memory request priority methods
to improve the fairness and throughput for multiple single-
thread programs and paralleled applications. But in the GPU
fields, there are only a few works since this is a new research
area. Yuan et al. [11] proposed amethod that provides an arbi-
tration mechanism at the interconnection network to store
these memory access requests losing the row buffer locality.
They showed that the mechanism enables in-order DRAM
memory scheduler’s performance to be approximate to
FR-FCFS [12, 13]. Lakshminarayana et al. [14] developed a
DRAM scheduling policy that chooses a method between
Shortest Job First (SJF) and FR-FCFS. Ausavarungnirun et al.
[15] proposed a phased memory scheduler for CPU-GPU
architecture. Their main objective is to enhance row-buffer
locality in heterogeneous architectures. Jog et al. [16] focused
onmultiple applications running simultaneously on the GPU
and proposed a method by adding round robin manner on
the basis of FR-FCFS to improve fairness and performance.

6.2. Warp Scheduling Techniques. Fung el al. [3] proposed
dynamic warp reformation scheme in which the threads that
have similar execution time in different warps are extracted

and formatted into a new warp, thus overcoming the threads
synchronization cost and latency between original warps.
Gebhart et al. [17] proposed a two-level warp scheduling
technique that focuses on reducing the energy consumption
in GPUs. Chen et al. [18] proposed a novel warp scheduling
algorithm that flexibly uses the time slice round-robin feature
to utilize GPU parallelism. Jog et al. [19] and Kayiran et al.
[20] proposed CTA-aware warp scheduling algorithms to
reduce cache and memory contention or improve thread-
level parallelism. Rogers et al. [4] analyzed how hardware
scheduler influences the management to GPU cache and
proposed a cache sensitive warp scheduling policy. A local
detector is used to collect the locality due to cache capacity
contention. Jog et al. [21] proposed a prefetching-aware warp
scheduling policy to separate in time the scheduling of con-
secutive warps such that they are not executed back-to-back.
Kuo et al. [22] proposed a thread scheduling algorithm
according to cache capacity contention.

6.3. GPU Cache Optimization Techniques. Memory access
coalescing of GPGPU also has a great impact on memory
access performance and cache data blocks’ reuse degree.
Wang [23] proposed a cachemanagement strategy that prior-
itizes the data block requests with either low access density or
low divergence. Mu et al. [24] proposed a cache management
strategy that prioritizes the cache block with more valid
addresses and amemory scheduling strategy that first responses
to thewarp request which has lessmemory accesses. Sankara-
narayanan et al. [25] introduce a smaller tinyCache for every
processing unit over L1 to reduce the energy consumption of
L1 and scratchpad memory. Since it does not need memory
access coalescing and many ports to connect to multiple
processing units, it does not needmultiport ormultibank and
its access cost is far less than that of L1.

7. Conclusion

In this paper, we observed that there are a large number of
GPUmemory requests queuing in the shared LLC banks.The
warp-agnostic LLC scheduling situation leads to suboptimal
performance. We find that the SM schedulability can be
improved by adjusting the memory request service sequence
properly. So we designed a memory request scheduling
algorithm on shared LLC based on the criticality of memory
request. The criticality of GPU memory request is defined as
the number of memory requests to be served that originate
from the same warp when arrival at LLC bank. The pro-
posed CaLRS promotes high critical memory requests at the
expense of delaying others. Experiments show that the pro-
posed CaLRS can improve the SM schedulability on several
present warp scheduling algorithms and then improve the
GPU performance. We believe that the memory request
control on shared LLC will become even important when the
core number increases in GPUs and more irregular applica-
tions are ported onto GPUs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

10 The Scientific World Journal

Acknowledgments

This paper is supported by the National Natural Science
Foundation of China under Grant no. 61379035, the National
Natural Science Foundation of Zhejiang Province under
Grant no. LY14F020005, Open Fund of Mobile Network
Application Technology Key Laboratory of Zhejiang Prov-
ince, Innovation Group of New Generation of Mobile Inter-
net Software, and Services of Zhejiang Province.

References

[1] S.-Y. Lee and C.-J. Wu, “CAWS: criticality-aware warp schedul-
ing for GPGPU workloads,” in Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation, pp.
175–186, ACM, Edmonton, Canada, August 2014.

[2] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely
Jr., and J. Emer, “SHiP: signature-based hit predictor for high
performance caching,” in Proceedings of the 44th Annual
IEEE/ACM Symposium on Microarchitecture (MICRO ’44), pp.
430–441, ACM, Porto Alegre, Brazil, December 2011.

[3] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient GPU control flow,”
in Proceedings of the 40th IEEE/ACM International Symposium
on Microarchitecture (MICRO ’07), pp. 407–420, December
2007.

[4] T.G. Rogers,M.Oconnor, andT.M.Aamodt, “Cache-conscious
wavefront scheduling,” in Proceedings of the IEEE/ACM 45th
International Symposium onMicroarchitecture (MICRO ’12), pp.
72–83, Vancouver, Canada, December 2012.

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS ’09), pp.
163–174, IEEE, Boston, Mass, USA, April 2009.

[6] S. Che, M. Boyer, J. Meng et al., “Rodinia: a benchmark
suite for heterogeneous computing,” in Proceedings of the IEEE
International Symposium onWorkload Characterization (IISWC
’09), pp. 44–54, Austin, Tex, USA, October 2009.

[7] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R.
Balasubramonian, “Managing DRAM latency divergence in
irregular GPGPU applications,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’14), pp. 128–139, 2014.

[8] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O.
Mutlu, and Y. N. Patt, “Improving GPU performance via large
warps and two-level warp scheduling,” inProceedings of the 44th
Annual IEEE/ACM Symposium on Microarchitecture, pp. 308–
317, ACM, December 2011.

[9] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread cluster memory scheduling: exploiting differences in
memory access behavior,” in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO ’10), pp. 65–76, Atlanta, Ga, USA, December 2010.

[10] E. Ebrahimi, R. Miftakhutdinov, C. Fallin et al., “Parallel appli-
cation memory scheduling,” in Proceedings of the 44th Annual
IEEE/ACM Symposium on Microarchitecture (MICRO ’44), pp.
362–373, ACM, December 2011.

[11] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity effec-
tivememory access scheduling formany-core accelerator archi-
tectures,” in Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pp. 34–44, ACM,
December 2009.

[12] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
Memory Access Scheduling, ACM, 2000.

[13] T. Robinson andW. K. Zuravleff, “Controller for a synchronous
DRAM that maximizes throughput by allowing memory
requests and commands to be issued out of order,” Google
Patents, 1997.

[14] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin, DRAM
Scheduling Policy for GPGPU Architectures Based on a Potential
Function, IEEE Computer Architecture Letters, 2012.

[15] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H.
Loh, and O. Mutlu, “Staged memory scheduling: achieving
high performance and scalability in heterogeneous systems,” in
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA ’12), pp. 416–427, IEEE Computer Society,
2012.

[16] A. Jog, E. Bolotin, Z. Guz et al., “Application-aware memory
system for fair and efficient execution of concurrent GPGPU
applications,” in Proceedings of the 7th Workshop on General
Purpose Processing Using Graphics Processing Units (GPGPU
’14), pp. 1–8, ACM, Salt Lake, Utah, USA, March 2014.

[17] M. Gebhart, D. R. Johnson, D. Tarjan et al., “Energy-efficient
mechanisms for managing thread context in throughput pro-
cessors,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 3, pp. 235–246, 2011.

[18] J. Chen, X. Tao, Z. Yang, J.-K. Peir, X. Li, and S.-L. Lu,
“Guided region-based GPU scheduling: utilizing multi-thread
parallelism to hide memory latency,” in Proceedings of the
27th IEEE International Symposium on Parallel & Distributed
Processing (IPDPS ’13), pp. 441–451, IEEE, Boston, Mass, USA,
May 2013.

[19] A. Jog, O. Kayiran, N. C. Nachiappan et al., “OWL: coopera-
tive thread array aware scheduling techniques for improving
GPGPU performance,” in Proceedings of the 18th International
Conference onArchitectural Support for Programming Languages
and Operating Systems (ASPLOS ’13), pp. 395–406, Houston,
Tex, USA, March 2013.

[20] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
more nor less: optimizing thread-level parallelism for GPG-
PUs,” in Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques (PACT ’13),
pp. 157–166, IEEE Press, September 2013.

[21] A. Jog, O. Kayiran, A. K.Mishra et al., “Orchestrated scheduling
and prefetching for GPGPUs,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA ’13),
pp. 332–343, ACM, Tel-Aviv, Israel, June 2013.

[22] H.-K. Kuo, T.-K. Yen, B.-C. C. Lai, and J.-Y. Jou, “Cache capacity
aware thread scheduling for irregular memory access on many-
core GPGPUs,” in Proceedings of the 18th Asia and South Pacific
Design Automation Conference (ASP-DAC ’13), pp. 338–343,
Yokohama, Japan, January 2013.

[23] W. Y. B. W. Z. L. Y. Wang, An Initial Study on Density-Aware
Cache Management for GPU, Auburn University, Auburn, Ala,
USA, 2013.

[24] S. Mu, Y. Deng, Y. Chen et al., “Orchestrating cache manage-
ment and memory scheduling for GPGPU applications,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
22, no. 8, pp. 1803–1814, 2014.

[25] A. Sankaranarayanan, E. K. Ardestani, J. L. Briz, and J. Renau,
“An energy efficient GPGPU memory hierarchy with tiny
incoherent caches,” in Proceedings of the IEEE International
Symposium on Low Power Electronics and Design (ISLPED ’13),
pp. 9–14, September 2013.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

