Supplementary Material of "The Lambert Way to Gaussianize heavy tailed data with the inverse of Tukey's h transformation as a special case"

Georg M. Goerg

A Auxiliary Results and Properties

A.1 Inverse Transformation $W_{\delta}(z)$

The function $W_{\delta}(z)$ is the building block of Lambert W $\times F_X$ distributions. This section lists useful properties of $W_{\delta}(z)$ as a function of z as well as a function of δ .

Properties A.1. For $\delta = 0$,

$$W_{\delta}(z_i)|_{\delta=0} = z_i, \quad W'(\delta z_i^2)|_{\delta=0} = z_i^2, \quad and \ W(\delta z_i^2)|_{\delta=0} = 0.$$
 (37)

By definition $\frac{W_{\delta}(z)}{z} = e^{-\frac{\delta}{2}W_{\delta}(z)^2}$ and therefore

$$\log \frac{W_{\delta}(z)}{z} = -\frac{\delta}{2} W_{\delta}(z)^2 = -\frac{W(\delta z^2)}{2}.$$
 (38)

Lemma A.2 (Derivative of $W_{\delta}(z)$ with respect to z). It holds

$$\frac{d}{dz}W_{\delta}\left(z\right) = -\frac{W_{\delta}\left(z\right)}{z\left(1+\delta W_{\delta}\left(z\right)^{2}\right)} = e^{-\frac{1}{2}W\left(\delta z^{2}\right)}\frac{1}{1+W\left(\delta z^{2}\right)}$$
(39)

Proof. One of the many interesting properties of the Lambert W function relates to its derivative which satisfies

$$W'(z) = \frac{W(z)}{z(1+W(z))} = \frac{1}{e^{W(z)}(1+W(z))}, \quad z \neq 0, -1/e,$$
(40)

with W'(0) = 1 and $\lim_{z \to -1/e} W'(z) = \infty$. Hence,

$$\frac{d}{dz}\frac{W\left(\delta z^{2}\right)}{\delta} = W'\left(\delta z^{2}\right) \cdot 2z = \frac{W\left(\delta z^{2}\right)}{\delta z^{2}\left(1+W\left(\delta z^{2}\right)\right)} \cdot 2z = \frac{2W\left(\delta z^{2}\right)}{\delta z\left(1+W\left(\delta z^{2}\right)\right)}$$
(41)

Therefore,

$$\frac{d}{dz}W_{\delta}(z) = \frac{1}{2}\left(\frac{1}{\delta}W\left(\delta z^{2}\right)\right)^{-1/2} \cdot \frac{d}{dz}\frac{W\left(\delta z^{2}\right)}{\delta}$$

$$\tag{42}$$

$$= \frac{1}{2} \left(\frac{1}{\delta} W\left(\delta z^2 \right) \right)^{-1/2} \cdot \frac{2W\left(\delta z^2 \right)}{\delta z \left(1 + W\left(\delta z^2 \right) \right)}$$
(43)

$$= \frac{1}{\delta^{1/2}} \left(W\left(\delta z^2\right) \right)^{-1/2} \cdot \frac{W\left(\delta z^2\right)}{z\left(1 + W\left(\delta z^2\right)\right)}$$
(44)

As $W(\delta z^2) = \delta u^2$ the last line simplifies to

$$\frac{1}{\delta^{1/2}} \frac{1}{\delta^{1/2} u} \cdot \frac{\delta u^2}{z \left(1 + \delta u^2\right)} = \frac{u}{z \left(1 + \delta u^2\right)}.$$
(45)

Now use again $u = W_{\delta}(z)$.

Lemma A.3 (Derivative of $W_{\delta}(z)^2$ with respect to δ). For all $z \in \mathbb{R}$

$$\frac{\partial}{\partial\delta} \left[W_{\delta}(z) \right]^2 = -\frac{1}{1 + W\left(\delta z^2\right)} W_{\delta}\left(z\right)^4 \le 0.$$
(46)

Proof. By definition $[W_{\delta}(z)]^2 = \frac{W(\delta z^2)}{\delta}$. Thus

$$\frac{\partial}{\partial \delta} \frac{W\left(\delta z^2\right)}{\delta} = \frac{\delta \frac{\partial}{\partial \delta} W\left(\delta z^2\right) - W\left(\delta z^2\right) \cdot 1}{\delta^2} \tag{47}$$

$$=\frac{\delta W'\left(\delta z^2\right)z^2 - W\left(\delta z^2\right)}{\delta^2}\tag{48}$$

$$=\frac{\delta \frac{W(\delta z^2)}{\delta z^2(1+W(\delta z^2))}z^2 - W(\delta z^2)}{\delta^2}$$
(49)

$$=\frac{\frac{W(\delta z^2)}{1+W(\delta z^2)}-W(\delta z^2)}{\delta^2}$$
(50)

$$=\frac{\frac{-W(\delta z^{2})^{2}}{1+W(\delta z^{2})}}{\delta^{2}}$$
(51)

$$= -\frac{1}{1 + W(\delta z^2)} [W_{\delta}(z)]^4.$$
(52)

Since both terms are non-negative for all $z \in \mathbb{R}$, the result follows.

This means that $W_{\delta}(z)^2$ is a decreasing function in δ for every $z \in \mathbb{R}$, i.e., the more we remove heavy tails the more z gets shrinked (non-linearly) towards $0 = \lim_{\delta \to \infty} W_{\delta}(z)$. In particular, $[W_{\delta}(z)]^2 < z^2 \Leftrightarrow \frac{W_{\delta}(z)}{z} < 1$ and $\frac{W_{\delta+\varepsilon}(z)}{z} < \frac{W_{\delta}(z)}{z}$ for $\delta \ge 0$ and $\varepsilon > 0$.

Lemma A.4 (Derivative of $W_{\delta}(z)$ with respect to δ). It holds

$$\frac{\partial}{\partial\delta}W_{\delta}\left(z\right) = -\frac{1}{2}\frac{1}{1+W\left(\delta z^{2}\right)}W_{\delta}\left(z\right)^{3}$$
(53)

Proof.

$$\frac{\partial}{\partial\delta}W_{\delta}(z) = \operatorname{sgn}(z)\frac{\partial}{\partial\delta}\left(\frac{W\left(\delta z^{2}\right)}{\delta}\right)^{1/2}$$
(54)

$$= \operatorname{sgn}(z) \frac{1}{2} \left(\frac{W\left(\delta z^2\right)}{\delta} \right)^{-1/2} \frac{\partial}{\partial \delta} \frac{W\left(\delta z^2\right)}{\delta}$$
(55)

$$=\frac{1}{2}\frac{1}{W_{\delta}(z)}\frac{\partial}{\partial\delta}\left[W_{\delta}(z)\right]^{2}$$
(56)

$$= -\frac{1}{2} \frac{1}{1 + W(\delta z^2)} W_{\delta}(z)^3, \qquad (57)$$

where the last line follows by Lemma A.3.

A.2 Penalty $\log R(\delta; z_i)$ for Standard Gaussian Input

For $\mu_X = 0$ and $\sigma_X = 1$ the penalty equals $(y_i = z_i)$

$$R\left(\delta;z_{i}\right) = \frac{W_{\delta}\left(z_{i}\right)}{z_{i}\left[1 + \delta\left(W_{\delta}\left(z_{i}\right)\right)^{2}\right]} = \frac{W_{\delta}\left(z_{i}\right)}{z_{i}\left[1 + W\left(\delta z_{i}^{2}\right)\right]}$$
(58)

and thus

$$\log R\left(\delta; z_i\right) = \log \frac{W_{\delta}\left(z_i\right)}{z_i} - \log\left[1 + W\left(\delta z_i^2\right)\right]$$
(59)

$$= -\frac{W(\delta z_i^2)}{2} - \log\left[1 + W\left(\delta z_i^2\right)\right] \tag{60}$$

Lemma A.5 (Derivative of log $R(\delta; z)$ with respect to δ). For all $\delta \ge 0$ and all $z \in \mathbb{R}$

$$\frac{\partial \log R\left(\delta;z\right)}{\partial \delta} = -z^2 W'(\delta z^2) \left(\frac{1}{2} + \frac{1}{1 + W\left(\delta z^2\right)}\right) \le 0.$$
(61)

Proof. We have

$$\frac{\partial \log R\left(\delta;z\right)}{\partial \delta} = \frac{1}{W_{\delta}\left(z\right)} \frac{\partial W_{\delta}\left(z\right)}{\partial \delta} - \frac{1}{1 + W(\delta z^{2})} W'(\delta z^{2}) z^{2}$$
(62)

$$\stackrel{\text{Lemma A.4}}{=} \frac{1}{W_{\delta}(z)} \left(-\frac{1}{2} \frac{1}{1 + W(\delta z^2)} W_{\delta}(z)^3 \right) - \frac{1}{1 + W(\delta z^2)} W'(\delta z^2) z^2$$
(63)

$$= -\frac{1}{1+W(\delta z^2)} \left(\frac{1}{2} W_{\delta}(z)^2 + W'(\delta z^2) z^2\right)$$
(64)

Using $W'(\delta z^2) = \frac{W(\delta z^2)}{\delta z^2(1+W(\delta z^2))}$ and re-factorizing gives (61).

A.3 Gaussian Log-Likelihood at $W_{\delta}(z)$

Lemma A.6. For all $z \in \mathbb{R}$ and for $\delta \geq 0$

$$\frac{\partial}{\partial\delta}\ell(\mu_X=0,\sigma_X=1;W_{\delta}(z)) = \frac{1}{2}\frac{1}{1+W\left(\delta z^2\right)}\left[W_{\delta}\left(z\right)\right]^4 \ge 0.$$
(65)

Proof. The log of the standard Gaussian pdf evaluated at $W_{\delta}(z)$ simplifies to

$$\log \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}[W_{\delta}(z)]^2} = \log \frac{1}{\sqrt{2\pi}} - \frac{1}{2} \left[W_{\delta}(z) \right]^2.$$
(66)

The rest follows by Lemma A.3.

Lemma A.6 shows that increasing δ always increases the input log-likelihood $\ell(\delta; \mathbf{u}_{\delta} = W_{\delta}(\mathbf{z}))$ - see also Fig. 6b. For $\delta \to \infty$ the Gaussianized \mathbf{u}_{δ} goes to $\mathbf{0}$, which trivially maximizes a Gaussian likelihood with $\mu_X = 0$.

B Proofs

B.1 Inverse Transformation

Proof of Lemma 2.5. Without loss of generality assume that $\mu_X = 0$ and $\sigma_X = 1$. Squaring (2) and multiplying by δ yields

$$\delta Z^2 = \delta U^2 \exp\left(\delta U^2\right) \tag{67}$$

The inverse of (67) is by definition the Lambert W function [45]

$$W(z)\exp W(z) = z, \quad z \in \mathbb{C}.$$
(68)

W(z) is bijective for $z \ge 0$. Since $\delta U^2 \ge 0$ for all $\delta \ge 0$, applying $W(\cdot)$ to (67), dividing by δ , and taking the square root gives

$$U = \pm \sqrt{\frac{W(\delta Z^2)}{\delta}} \tag{69}$$

Since $\exp\left(\frac{\delta}{2}U^2\right) > 0$ for all $\delta \in \mathbb{R}$ and all U, it follows that $Z = U \exp\left(\frac{\delta}{2}U^2\right)$ and U must have the same sign, which concludes the proof.

B.2 Cdf and Pdf

Proof of Theorem 2.7. By definition,

$$G_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}\left(\left\{U \exp\left(\frac{\delta}{2}U^2\right)\right\}\sigma_X + \mu_X \le y\right)$$
$$= \mathbb{P}\left(U \exp\left(\frac{\delta}{2}U^2\right) \le z\right) = \mathbb{P}\left(U \le W_{\delta}(z)\right)$$
$$= F_U\left(U \le W_{\delta}(z)\right).$$

Taking the derivative with respect to y gives

$$\begin{aligned} \frac{d}{dy}G_Y(y \mid \boldsymbol{\beta}, \delta) &= f_X(W_{\delta}(z)\sigma_X + \mu_X \mid \boldsymbol{\beta}) \cdot \sigma_X \frac{d}{dy}W_{\delta}\left(\frac{y - \mu_X}{\sigma_X}\right) \\ &= f_U(W_{\delta}(z) \mid \boldsymbol{\beta}) \cdot \sigma_X \frac{1}{\sigma_X} \frac{d}{dz}W_{\delta}\left(\frac{y - \mu_X}{\sigma_X}\right) \\ &= f_U(W_{\delta}(z) \mid \boldsymbol{\beta}) \cdot \frac{d}{dz}W_{\delta}\left(z\right). \end{aligned}$$

Using Lemma A.2 yields (14).

B.3 MLE for δ

Lemma B.1 (Derivative of the Lambert $W \times Gaussian \log-likelihood$). We have

$$D(\delta; \mathbf{z}) := \frac{\partial}{\partial \delta} \ell(\delta; \mathbf{z}) = \sum_{i=1}^{N} z_i^2 W'(\delta z_i^2) \left(\frac{1}{2} W_\delta(z_i)^2 - \left(\frac{1}{2} + \frac{1}{1 + W(\delta z_i^2)} \right) \right)$$
(70)

$$=\frac{1}{2}\sum_{i=1}^{N}\frac{W_{\delta}(z_{i})^{4}}{1+\delta W_{\delta}(z_{i})^{2}}-\sum_{i=1}^{N}\frac{W_{\delta}(z_{i})^{2}}{1+\delta W_{\delta}(z_{i})^{2}}\left(\frac{1}{2}+\frac{1}{1+\delta W_{\delta}(z_{i})^{2}}\right)$$
(71)

$$= \frac{1}{2} \sum_{i=1}^{N} \frac{W_{\delta}(z_i)^4}{1 + W(\delta z_i^2)} - \sum_{i=1}^{N} \frac{W_{\delta}(z_i)^2}{1 + W(\delta z_i^2)} \left(\frac{1}{2} + \frac{1}{1 + W(\delta z_i^2)}\right).$$
(72)

Proof. Apply Lemmas A.5 and A.6 to $\frac{\partial}{\partial \delta} \ell(\delta; \mathbf{z}) = \frac{\partial}{\partial \delta} \log R(\delta; z) + \frac{\partial}{\partial \delta} \ell(\mu_X = 0, \sigma_X = 1; W_{\delta}(z)).$

- Proof sketch of Theorem 4.1. a) If condition (34) holds, then $D(\delta; \mathbf{z}) < 0$ at $\delta = 0$ and stays negative for all $\delta > 0$. Hence the maximizer occurs at the boundary $\delta = 0$.
- b) If (34) does not hold, then $D(\delta = 0; \mathbf{z}) > 0$, decreases in δ and crosses the zero line (one candidate for $\hat{\delta}_{MLE}$ occurs here).
- c) As δ gets larger, $D(\delta; \mathbf{z})$ reaches a minimum (negative value) and starts increasing. However, for $\delta \to \infty$ the derivative approaches zero from below and never equals zero again; thus $\hat{\delta}_{MLE}$ is unique.

Proof of Theorem 4.1. a) The log-likelihood is increasing at $\delta = 0$ if and only if (set $\delta = 0$ in (72) and use Property A.1)

$$\sum_{i=1}^{N} z_i^4 > 3 \sum_{i=1}^{N} z_i^2.$$
(73)

Eq. (73) means that transforming the data (choosing $\hat{\delta} > 0$) increases the overall likelihood only if the data is heavy-tailed enough. As the sum of squares is not squared again condition (73) is not equivalent for the data having empirical kurtosis larger than 3.

- b) If (73) does not hold, then $\hat{\delta}_{MLE}$ must satisfy $D(\delta; \mathbf{z}) |_{\delta = \hat{\delta}_{MLE}} = 0$ from (70) in Lemma B.1. It remains to be shown that this equation has (at least) one positive solution.
 - i) Since $\lim_{\delta \to \infty} W_{\delta}(z) = 0$ for all $z \in \mathbb{R}$, (72) is also true in the limit; however, we can ignore this solution as we require $\widehat{\delta}_{MLE} \in \mathbb{R}$.
 - ii) By continuity and $\lim_{\delta\to\infty} W_{\delta}(z) = 0$, for sufficiently large δ_M , $W_{\delta_M}(z_i) < 1$ for all $z_i \in \mathbb{R}$. Hence $W_{\delta_M}(z_i)^4 < W_{\delta_M}(z_i)^2$ and therefore

$$\frac{1}{2}\sum_{i=1}^{N} \frac{W_{\delta}(z_{i})^{4}}{1+\delta W_{\delta}(z_{i})^{2}} < \frac{1}{2}\sum_{i=1}^{N} \frac{W_{\delta}(z_{i})^{2}}{1+\delta W_{\delta}(z_{i})^{2}}$$
(74)

$$<\sum_{i=1}^{N} \frac{W_{\delta}(z_{i})^{2}}{1+\delta W_{\delta}(z_{i})^{2}} \left(\frac{1}{2}+\frac{1}{1+\delta W_{\delta}(z_{i})^{2}}\right) \text{ for } \delta \ge \delta_{M}, \quad (75)$$

showing that $D(\delta; \mathbf{z}) \mid_{\delta \geq \delta_M} < 0$. That is, $D(\delta; \mathbf{z})$ approaches 0 from below for $\delta \to \infty$.

- iii) By continuity and $D(\delta; \mathbf{z}) |_{\delta=0} > 0$ (if (73) does not hold), it must cross the $D(\delta; \mathbf{z}) = 0$ line at least once in the interval $(0, \delta_M)$, proving the existence of $\hat{\delta}_{MLE}$.
- c) The log-likelihood can be decomposed in

$$\ell\left(\delta;\mathbf{z}\right) \propto \underbrace{-\frac{1}{2} \sum_{i=1}^{N} \left[W_{\delta}(z_{i})\right]^{2}}_{\ell\left(\mu_{X}=0,\sigma_{X}=1;W_{\delta}(\mathbf{z})\right)} + \underbrace{\sum_{i=1}^{N} \log \frac{W_{\delta}\left(z_{i}\right)}{z_{i}} - \log\left[1 + W\left(\delta z_{i}^{2}\right)\right]}_{\mathcal{R}\left(\delta;\mathbf{z}\right)}.$$
(76)

Lemmas A.5 and A.6 show that $\mathcal{R}(\delta; \mathbf{z})$ is monotonically decreasing and $\ell(\mu_X = 0, \sigma_X = 1; W_{\delta}(\mathbf{z}))$ is monotonically increasing in δ .

Furthermore, $\lim_{\delta\to\infty} \ell(\mu_X = 0, \sigma_X = 1; W_{\delta}(\mathbf{z})) = 0$, that is the input likelihood is monotonically increasing but bounded from above (by $0 = \log 1$). On the other hand the penalty is decreasing without bounds

$$\lim_{\delta \to \infty} \mathcal{R}(\delta; \mathbf{z}) = \sum_{i=1}^{N} \lim_{\delta \to \infty} \log \frac{W_{\delta}(z_i)}{z_i} - \sum_{i=1}^{N} \lim_{\delta \to \infty} \log \left[1 + W\left(\delta z_i^2\right)\right] = -\infty$$
(77)

Thus their sum attains a global maximum either at the unique mode of $\ell(\delta; \mathbf{z})$ or at the boundary $\delta = 0$ - see also Fig. 6b.

C Details on IGMM

Here I present an iterative method to obtain $\hat{\tau}$, which builds on the input/output aspect and theoretical properties of the input X. For example, if a random variable should be exponentially distributed but the observed data shows heavier tails, then it is natural to estimate $\sigma_X = \lambda^{-1}$ and δ such that the back-transformed data has skewness 2, as this is a general property of exponential random variables – independent of the rate parameter λ ; to remove heavy tails from an otherwise symmetric **y** a natural choice for τ is such that the back-transformed data \mathbf{x}_{τ} has sample kurtosis 3; or for uniform input, τ should be such that \mathbf{x}_{τ} has a flat density estimate.

Here I describe the estimator for τ to remove heavy-tails in location-scale data, in the sense that the kurtosis of the input should equal 3. It can be easily adapted to match other properties of the input as outlined above.

For a moment assume that $\mu_X = \mu_X^{(0)}$ and $\sigma_X = \sigma_X^{(0)}$ are known and fixed; only δ has to be estimated. A natural choice for δ is the one that results in back transformed data \mathbf{x}_{τ} ($\tau = (\mu_X^{(0)}, \sigma_X^{(0)}, \delta)$) with sample kurtosis $\hat{\gamma}_2(\mathbf{x}_{\tau})$ equal to the theoretical kurtosis $\gamma_2(X)$. Formally,

$$\widehat{\delta}_{\text{GMM}} = \arg\min_{\delta} \left\| \gamma_2(X) - \widehat{\gamma}_2(\mathbf{x}_{\tau}) \right\|,\tag{78}$$

where $||\cdot||$ is a proper norm in \mathbb{R} .

While the concept of this estimator is identical to its skewed version [21], it has one important advantage: the inverse transformation is bijective. Thus here we do not have to consider "lost" data points from the non-principal branch of the Lambert W function when applying the inverse transformation.

Algorithm 1 Find optimal δ : delta_GMM() in the LambertW package.

Input: data vector \mathbf{z} ; theoretical kurtosis $\gamma_2(X)$ Output: $\hat{\delta}_{GMM}$ as in (78) 1: $\hat{\delta}_{GMM} = \arg\min_{\delta} ||\hat{\gamma}_2(\mathbf{u}_{\delta}) - \gamma_2(X)||$, where $\mathbf{u}_{\delta} = W_{\delta}(\mathbf{z})$ subject to $\delta \ge 0$

2: return δ_{GMM}

Algorithm 2 Iterative Generalized Method of Moments (IGMM) : IGMM() in the LambertW package.

Input: data vector **y**; tolerance level *tol*; theoretical kurtosis $\gamma_2(X)$ **Output:** IGMM parameter estimate $\hat{\tau}_{\text{IGMM}} = (\hat{\mu}_X, \hat{\sigma}_X, \hat{\delta})$

1: Starting values: $\tau^{(0)} = (\mu_X^{(0)}, \sigma_X^{(0)}, \delta^{(0)})$, where $\mu_X^{(0)} = \tilde{\mathbf{y}}$ and $\sigma_X^{(0)} = \overline{\sigma}_y \cdot \left(\frac{1}{\sqrt{(1-2\delta^{(0)})^{3/2}}}\right)^{-1}$ the sample median and standard deviation of \mathbf{y} divided by the standard deviation factor (see also (18)), respectively. $\delta^{(0)} = \frac{1}{66} \left(\sqrt{66 \widehat{\gamma}_2(\mathbf{y}) - 162} - 6 \right) \rightarrow \text{see}$ (21) for details. 2: k = 03: Set $\tau^{(-1)} = \tau^0 + 2 \cdot tol$ to start the while loop. 4: while $||\tau^{(k)} - \tau^{(k-1)}|| > tol \mathbf{do}$ $\begin{aligned} \mathbf{z}^{(k)} &= (\mathbf{y} - \mu_X^{(k)}) / \sigma_X^{(k)} \\ \text{Pass } \mathbf{z}^{(k)} \text{ to Algorithm } \mathbf{1} \longrightarrow \delta^{(k+1)} \end{aligned}$ 5: 6: Back-transform $\mathbf{z}^{(k)}$ to $\mathbf{u}^{(k+1)} = W_{\delta^{(k+1)}}(\mathbf{z}^{(k)})$; compute $\mathbf{x}^{(k+1)} = \mathbf{u}^{(k+1)} \sigma_X^{(k)} + \mu_X^{(k)}$ 7:Update parameters: $\mu_X^{(k+1)} = \overline{\mathbf{x}}_{k+1}$ and $\sigma_X^{(k+1)} = \widehat{\sigma}_{x_{k+1}}$ $\tau^{(k+1)} = (\mu_X^{(k+1)}, \sigma_X^{(k+1)}, \delta^{(k+1)})$ 8: 9: 10: k = k + 111: return $\tau_{IGMM} = \tau^{(k)}$

Discussion of Algorithm 1: The kurtosis of Y as a function of δ is continuous and monotonically increasing (see (19)). Also $u = W_{\delta}(z)$ has a smaller slope than the identity u = z, and the slope is decreasing as δ is increasing. Thus if the kurtosis of the original data is larger than the target kurtosis of the back-transformed data, $\hat{\gamma}_2(\mathbf{y}) > \gamma_2(X)$, then there always exists a $\delta^{(*)}$ that achieves $\hat{\gamma}_2(\mathbf{x}_{\tau^*}) \equiv \gamma_2(X)$. By the re-parametrization $\tilde{\delta} = \log \delta$ the bounded optimization problem can be solved by standard (unconstrained) optimization algorithms.

In practice, μ_X and σ_X are rarely known but also have to be estimated. As **y** is shifted and scaled *ahead of* the back-transformation $W_{\delta}(\cdot)$, the initial choice of μ_X and σ_X affects the optimal choice of δ . Therefore the optimal triple $\hat{\tau} = (\hat{\mu}_X, \hat{\sigma}_X, \hat{\delta})$ must be obtained iteratively.

Discussion of Algorithm 2: Algorithm 2 first computes $\mathbf{z}^{(k)} = (\mathbf{y} - \mu_X^{(k)})/\sigma_X^{(k)}$ using $\mu_X^{(k)}$ and $\sigma_X^{(k)}$ from the previous step. This normalized output can then be passed to Algorithm 1 to obtain an updated $\delta^{(k+1)} = \hat{\delta}_{GMM}$. Using this new $\delta^{(k+1)}$ one can back-transform $\mathbf{z}^{(k)}$ to $\mathbf{u}^{(k+1)} = W_{\delta^{(k+1)}}(\mathbf{z}^{(k)})$, and consequently obtain a better approximation to the "true" latent \mathbf{x} by $\mathbf{x}^{(k+1)} = \mathbf{u}^{(k+1)} \sigma_X^{(k)} + \mu_X^{(k)}$. However, $\delta^{(k+1)}$ - and therefore $\mathbf{x}^{(k+1)}$ - has been obtained using $\mu_X^{(k)}$ and $\sigma_X^{(k)}$, which are not necessarily the most accurate estimates in light of the updated approximation $\hat{\mathbf{x}}_{(\mu_X^{(k)}, \sigma_X^{(k)}, \delta^{(k+1)})}$. Thus Algorithm 2 computes new estimates $\mu_X^{(k+1)}$ and $\sigma_X^{(k+1)}$ by the sample mean and standard deviation of $\hat{\mathbf{x}}_{(\mu_X^{(k)}, \sigma_X^{(k)}, \delta^{(k+1)})}$, and starts another iteration by passing the updated normalized output

Algorithm 3 Random sample generation : rLambertW() in the LambertW package.

Input: number of samples n; parameter vector θ ; input distribution $F_X(x)$ with finite mean and variance

Output: random sample (y_1, \ldots, y_n) of a Lambert W $\times F_X$ random variable.

- 1: Draw *n* random samples $\mathbf{x} = (x_1, \dots, x_n) \sim F_X(x)$.
- 2: Compute $\mu_X = \mu_X(\beta)$ and $\sigma_X = \sigma_X(\beta)$ (for scale family set $\mu_X = 0$, for non-central, non-scaled also set $\sigma_X = 1$)
- 3: Compute normalized $\mathbf{u} = (\mathbf{x} \mu_X) / \sigma_X$.
- 4: $\mathbf{z} = \mathbf{u} \exp\left(\frac{\delta}{2}\mathbf{u}^2\right)$
- 5: return $\mathbf{y} = \mathbf{z}\sigma_X + \mu_X$

 $\mathbf{z}^{(k+1)} = \frac{\mathbf{y} - \mu_X^{(k+1)}}{\sigma_X^{(k+1)}} \text{ to Algorithm 1 to obtain a new } \delta^{(k+2)}. \text{ It returns the optimal } \widehat{\tau}_{\text{IGMM}} \text{ once convergence has been reached, i.e., if } \left| \left| \tau^{(k)} - \tau^{(k+1)} \right| \right| < tol.$

D The Asymmetric Double-tail Case

Corollary D.1 (Inverse transformation for Tukey's hh). The inverse of (3) is

$$W_{\delta_{\ell},\delta_{r}}(z) = \begin{cases} W_{\delta_{\ell}}(z), & \text{if } z \le 0, \\ W_{\delta_{r}}(z), & \text{if } z > 0. \end{cases}$$
(79)

Figure 3b shows $W_{\delta_{\ell},\delta_r}(z)$ for $\delta_l = 0$ and $\delta_r = 1/10$. The transformation in Fig. 3a generates a right heavy tail version of U (x-axis) by stretching only the positive axis (y-axis). By definition $W_{\delta_{\ell},\delta_r}(z)$ removes the heavier right tail in Z (positive y-axis). Figure 3c shows how $W_{\delta}(z)$ operates for various degrees of heavy tails and $z \in [0,3]$. If δ is close to zero, then also $W_{\delta}(z) \approx z$; for larger δ , the inverse maps z to (much) smaller u.

Corollary D.2. The cdf and pdf of Z in (3) equal

$$G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{\ell}, \delta_{r}\right) = \begin{cases} G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{\ell}\right), & \text{if } z \leq 0, \\ G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{r}\right), & \text{if } z > 0, \end{cases}$$
(80)

and

$$g_Z(z \mid \boldsymbol{\beta}, \delta) = \begin{cases} g_Z(z \mid \boldsymbol{\beta}, \delta_\ell), & \text{if } z \le 0, \\ g_Z(z \mid \boldsymbol{\beta}, \delta_r), & \text{if } z > 0. \end{cases}$$
(81)

Remark D.3 (IGMM for double-tail Lambert $W \times F_X$). For a double-tail fit the one-dimensional optimization in Algorithm 1 has to be replaced with a two-dimensional optimization

$$\left(\widehat{\delta}_{\ell}, \widehat{\delta}_{r}\right)_{\text{GMM}} = \arg\min_{\delta_{\ell}, \delta_{r}} \left\| \gamma_{2}(X) - \widehat{\gamma}_{2}(\mathbf{x}_{(\mu_{X}^{*}, \sigma_{X}^{*}, \delta_{\ell}, \delta_{r})}) \right\|.$$
(82)

Algorithm 2 remains unchanged, except for replacing $W_{\delta^{(k+1)}}(\mathbf{z}^{(k)})$ with $W_{\delta^{(k+1)}_{\ell},\delta^{(k+1)}_{r}}(\mathbf{z}^{(k)})$ and $\tau = (\mu_X, \sigma_X, \delta_{\ell}, \delta_r)$.