
Supplementary Material of

“The Lambert Way to Gaussianize heavy tailed data with the

inverse of Tukey’s h transformation as a special case”

Georg M. Goerg

A Auxiliary Results and Properties

A.1 Inverse Transformation Wδ(z)

The function Wδ(z) is the building block of Lambert W × FX distributions. This section lists useful

properties of Wδ(z) as a function of z as well as a function of δ.

Properties A.1. For δ = 0,

Wδ(zi) |δ=0= zi, W ′(δz2i) |δ=0= z2i , and W
(
δz2i
)
|δ=0= 0. (37)

By definition Wδ(z)
z = e−

δ
2Wδ(z)

2

and therefore

log
Wδ(z)

z
= −δ

2
Wδ(z)

2 = −W (δz2)

2
. (38)

Lemma A.2 (Derivative of Wδ(z) with respect to z). It holds

d

dz
Wδ (z) = − Wδ (z)

z
(

1 + δWδ (z)
2
) = e−

1
2W (δz2) 1

1 +W (δz2)
(39)

Proof. One of the many interesting properties of the Lambert W function relates to its derivative

which satisfies

W ′(z) =
W (z)

z(1 +W (z))
=

1

eW (z)(1 +W (z))
, z 6= 0,−1/e, (40)

with W ′(0) = 1 and limz→−1/eW
′(z) =∞. Hence,

d

dz

W
(
δz2
)

δ
= W ′

(
δz2
)
· 2z =

W
(
δz2
)

δz2 (1 +W (δz2))
· 2z =

2W
(
δz2
)

δz (1 +W (δz2))
(41)

Therefore,

d

dz
Wδ(z) =

1

2

(
1

δ
W
(
δz2
))−1/2

· d
dz

W
(
δz2
)

δ
(42)

=
1

2

(
1

δ
W
(
δz2
))−1/2

·
2W

(
δz2
)

δz (1 +W (δz2))
(43)

=
1

δ1/2
(
W
(
δz2
))−1/2 · W

(
δz2
)

z (1 +W (δz2))
(44)

1

As W
(
δz2
)

= δu2 the last line simplifies to

1

δ1/2
1

δ1/2u
· δu2

z (1 + δu2)
=

u

z (1 + δu2)
. (45)

Now use again u = Wδ(z).

Lemma A.3 (Derivative of Wδ(z)
2 with respect to δ). For all z ∈ R

∂

∂δ
[Wδ(z)]

2
= − 1

1 +W (δz2)
Wδ (z)

4 ≤ 0. (46)

Proof. By definition [Wδ(z)]
2

= W (δz2)
δ . Thus

∂

∂δ

W
(
δz2
)

δ
=
δ ∂∂δW

(
δz2
)
−W

(
δz2
)
· 1

δ2
(47)

=
δW ′

(
δz2
)
z2 −W

(
δz2
)

δ2
(48)

=
δ

W(δz2)
δz2(1+W (δz2))z

2 −W
(
δz2
)

δ2
(49)

=

W(δz2)
1+W (δz2) −W

(
δz2
)

δ2
(50)

=

−W(δz2)
2

1+W (δz2)

δ2
(51)

= − 1

1 +W (δz2)
[Wδ(z)]

4
. (52)

Since both terms are non-negative for all z ∈ R, the result follows.

This means that Wδ(z)
2 is a decreasing function in δ for every z ∈ R, i.e., the more we remove

heavy tails the more z gets shrinked (non-linearly) towards 0 = limδ→∞Wδ(z). In particular,

[Wδ(z)]
2
< z2 ⇔ Wδ(z)

z < 1 and Wδ+ε(z)
z < Wδ(z)

z for δ ≥ 0 and ε > 0.

Lemma A.4 (Derivative of Wδ(z) with respect to δ). It holds

∂

∂δ
Wδ (z) = −1

2

1

1 +W (δz2)
Wδ (z)

3
(53)

Proof.

∂

∂δ
Wδ (z) = sgn(z)

∂

∂δ

(
W
(
δz2
)

δ

)1/2

(54)

= sgn(z)
1

2

(
W
(
δz2
)

δ

)−1/2
∂

∂δ

W
(
δz2
)

δ
(55)

=
1

2

1

Wδ(z)

∂

∂δ
[Wδ(z)]

2
(56)

= −1

2

1

1 +W (δz2)
Wδ (z)

3
, (57)

2

where the last line follows by Lemma A.3.

A.2 Penalty logR (δ; zi) for Standard Gaussian Input

For µX = 0 and σX = 1 the penalty equals (yi = zi)

R (δ; zi) =
Wδ (zi)

zi

[
1 + δ (Wδ (zi))

2
] =

Wδ (zi)

zi [1 +W (δz2i)]
(58)

and thus

logR (δ; zi) = log
Wδ (zi)

zi
− log

[
1 +W

(
δz2i
)]

(59)

= −W (δz2i)

2
− log

[
1 +W

(
δz2i
)]

(60)

Lemma A.5 (Derivative of logR (δ; z) with respect to δ). For all δ ≥ 0 and all z ∈ R

∂ logR (δ; z)

∂δ
= −z2W ′(δz2)

(
1

2
+

1

1 +W (δz2)

)
≤ 0. (61)

Proof. We have

∂ logR (δ; z)

∂δ
=

1

Wδ (z)

∂Wδ (z)

∂δ
− 1

1 +W (δz2)
W ′(δz2)z2 (62)

Lemma A.4
=

1

Wδ (z)

(
−1

2

1

1 +W (δz2)
Wδ (z)

3

)
− 1

1 +W (δz2)
W ′(δz2)z2 (63)

= − 1

1 +W (δz2)

(
1

2
Wδ (z)

2
+W ′(δz2)z2

)
(64)

Using W ′(δz2) = W (δz2)
δz2(1+W (δz2)) and re-factorizing gives (61).

A.3 Gaussian Log-Likelihood at Wδ(z)

Lemma A.6. For all z ∈ R and for δ ≥ 0

∂

∂δ
`(µX = 0, σX = 1;Wδ(z)) =

1

2

1

1 +W (δz2)
[Wδ (z)]

4 ≥ 0. (65)

Proof. The log of the standard Gaussian pdf evaluated at Wδ(z) simplifies to

log
1√
2π
e−

1
2 [Wδ(z)]

2

= log
1√
2π
− 1

2
[Wδ(z)]

2
. (66)

The rest follows by Lemma A.3.

Lemma A.6 shows that increasing δ always increases the input log-likelihood `(δ; uδ = Wδ(z)) -

see also Fig. 6b. For δ → ∞ the Gaussianized uδ goes to 0, which trivially maximizes a Gaussian

likelihood with µX = 0.

3

B Proofs

B.1 Inverse Transformation

Proof of Lemma 2.5. Without loss of generality assume that µX = 0 and σX = 1. Squaring (2) and

multiplying by δ yields

δZ2 = δU2 exp
(
δU2

)
(67)

The inverse of (67) is by definition the Lambert W function [45]

W (z) expW (z) = z, z ∈ C. (68)

W (z) is bijective for z ≥ 0. Since δU2 ≥ 0 for all δ ≥ 0, applying W (·) to (67), dividing by δ, and

taking the square root gives

U = ±
√
W (δZ2)

δ
(69)

Since exp
(
δ
2U

2
)
> 0 for all δ ∈ R and all U , it follows that Z = U exp

(
δ
2U

2
)

and U must have the

same sign, which concludes the proof.

B.2 Cdf and Pdf

Proof of Theorem 2.7. By definition,

GY (y) = P(Y ≤ y) = P
({

U exp

(
δ

2
U2

)}
σX + µX ≤ y

)
= P

(
U exp

(
δ

2
U2

)
≤ z
)

= P (U ≤Wδ(z))

= FU (U ≤Wδ(z)) .

Taking the derivative with respect to y gives

d

dy
GY (y | β, δ) = fX(Wδ(z)σX + µX | β) · σX

d

dy
Wδ

(
y − µX
σX

)
= fU (Wδ(z) | β) · σX

1

σX

d

dz
Wδ

(
y − µX
σX

)
= fU (Wδ(z) | β) · d

dz
Wδ (z) .

Using Lemma A.2 yields (14).

4

B.3 MLE for δ

Lemma B.1 (Derivative of the Lambert W × Gaussian log-likelihood). We have

D(δ; z) :=
∂

∂δ
`(δ; z) =

N∑
i=1

z2iW
′(δz2i)

(
1

2
Wδ (zi)

2 −
(

1

2
+

1

1 +W (δz2i)

))
(70)

=
1

2

N∑
i=1

Wδ (zi)
4

1 + δWδ (zi)
2 −

N∑
i=1

Wδ (zi)
2

1 + δWδ (zi)
2

(
1

2
+

1

1 + δWδ (zi)
2

)
(71)

=
1

2

N∑
i=1

Wδ (zi)
4

1 +W (δz2i)
−

N∑
i=1

Wδ (zi)
2

1 +W (δz2i)

(
1

2
+

1

1 +W (δz2i)

)
. (72)

Proof. Apply Lemmas A.5 and A.6 to ∂
∂δ `(δ; z) = ∂

∂δ logR (δ; z) + ∂
∂δ `(µX = 0, σX = 1;Wδ(z)).

Proof sketch of Theorem 4.1. a) If condition (34) holds, thenD(δ; z) < 0 at δ = 0 and stays negative

for all δ > 0. Hence the maximizer occurs at the boundary δ = 0.

b) If (34) does not hold, then D(δ = 0; z) > 0, decreases in δ and crosses the zero line (one candidate

for δ̂MLE occurs here).

c) As δ gets larger, D(δ; z) reaches a minimum (negative value) and starts increasing. However,

for δ →∞ the derivative approaches zero from below and never equals zero again; thus δ̂MLE is

unique.

Proof of Theorem 4.1. a) The log-likelihood is increasing at δ = 0 if and only if (set δ = 0 in (72)

and use Property A.1)

N∑
i=1

z4i > 3

N∑
i=1

z2i . (73)

Eq. (73) means that transforming the data (choosing δ̂ > 0) increases the overall likelihood only

if the data is heavy-tailed enough. As the sum of squares is not squared again condition (73) is

not equivalent for the data having empirical kurtosis larger than 3.

b) If (73) does not hold, then δ̂MLE must satisfy D(δ; z) |δ=δ̂MLE= 0 from (70) in Lemma B.1. It

remains to be shown that this equation has (at least) one positive solution.

i) Since limδ→∞Wδ(z) = 0 for all z ∈ R, (72) is also true in the limit; however, we can ignore

this solution as we require δ̂MLE ∈ R.

ii) By continuity and limδ→∞Wδ(z) = 0, for sufficiently large δM , WδM (zi) < 1 for all zi ∈ R.

Hence WδM (zi)
4 < WδM (zi)

2 and therefore

1

2

N∑
i=1

Wδ (zi)
4

1 + δWδ (zi)
2 <

1

2

N∑
i=1

Wδ (zi)
2

1 + δWδ (zi)
2 (74)

<

N∑
i=1

Wδ (zi)
2

1 + δWδ (zi)
2

(
1

2
+

1

1 + δWδ (zi)
2

)
for δ ≥ δM , (75)

showing that D(δ; z) |δ≥δM< 0. That is, D(δ; z) approaches 0 from below for δ →∞.

5

iii) By continuity and D(δ; z) |δ=0> 0 (if (73) does not hold), it must cross the D(δ; z) = 0 line

at least once in the interval (0, δM), proving the existence of δ̂MLE .

c) The log-likelihood can be decomposed in

` (δ; z) ∝ −1

2

N∑
i=1

[Wδ(zi)]
2

︸ ︷︷ ︸
`(µX=0,σX=1;Wδ(z))

+

N∑
i=1

log
Wδ (zi)

zi
− log

[
1 +W

(
δz2i
)]

︸ ︷︷ ︸
R(δ;z)

. (76)

Lemmas A.5 and A.6 show thatR(δ; z) is monotonically decreasing and `(µX = 0, σX = 1;Wδ(z))

is monotonically increasing in δ.

Furthermore, limδ→∞ `(µX = 0, σX = 1;Wδ(z)) = 0, that is the input likelihood is monotonically

increasing but bounded from above (by 0 = log 1). On the other hand the penalty is decreasing

without bounds

lim
δ→∞

R(δ; z) =
N∑
i=1

lim
δ→∞

log
Wδ (zi)

zi
−

N∑
i=1

lim
δ→∞

log
[
1 +W

(
δz2i
)]

= −∞ (77)

Thus their sum attains a global maximum either at the unique mode of ` (δ; z) or at the boundary

δ = 0 - see also Fig. 6b.

C Details on IGMM

Here I present an iterative method to obtain τ̂ , which builds on the input/output aspect and theoret-

ical properties of the input X. For example, if a random variable should be exponentially distributed

but the observed data shows heavier tails, then it is natural to estimate σX = λ−1 and δ such that

the back-transformed data has skewness 2, as this is a general property of exponential random vari-

ables – independent of the rate parameter λ; to remove heavy tails from an otherwise symmetric y a

natural choice for τ is such that the back-transformed data xτ has sample kurtosis 3; or for uniform

input, τ should be such that xτ has a flat density estimate.

Here I describe the estimator for τ to remove heavy-tails in location-scale data, in the sense that

the kurtosis of the input should equal 3. It can be easily adapted to match other properties of the

input as outlined above.

For a moment assume that µX = µ
(0)
X and σX = σ

(0)
X are known and fixed; only δ has to

be estimated. A natural choice for δ is the one that results in back transformed data xτ (τ =

(µ
(0)
X , σ

(0)
X , δ)) with sample kurtosis γ̂2(xτ) equal to the theoretical kurtosis γ2(X). Formally,

δ̂GMM = arg min
δ
||γ2(X)− γ̂2(xτ)|| , (78)

where ||·|| is a proper norm in R.

While the concept of this estimator is identical to its skewed version [21], it has one important

advantage: the inverse transformation is bijective. Thus here we do not have to consider “lost”

data points from the non-principal branch of the Lambert W function when applying the inverse

transformation.

6

Algorithm 1 Find optimal δ : delta GMM() in the LambertW package.

Input: data vector z; theoretical kurtosis γ2(X)

Output: δ̂GMM as in (78)

1: δ̂GMM = arg minδ ||γ̂2(uδ)− γ2(X)||, where uδ = Wδ(z) subject to δ ≥ 0

2: return δ̂GMM

Algorithm 2 Iterative Generalized Method of Moments (IGMM) : IGMM() in the LambertW

package.

Input: data vector y; tolerance level tol; theoretical kurtosis γ2(X)

Output: IGMM parameter estimate τ̂IGMM = (µ̂X , σ̂X , δ̂)

1: Starting values: τ (0) = (µ
(0)
X , σ

(0)
X , δ(0)), where µ

(0)
X = ỹ and σ

(0)
X = σy ·

(
1√

(1−2δ(0))3/2

)−1
are

the sample median and standard deviation of y divided by the standard deviation factor (see

also (18)), respectively. δ(0) = 1
66

(√
66γ̂2(y)− 162− 6

)
→ see (21) for details.

2: k = 0
3: Set τ (−1) = τ0 + 2 · tol to start the while loop.
4: while

∣∣∣∣τ (k) − τ (k−1)∣∣∣∣ > tol do

5: z(k) = (y − µ(k)
X)/σ

(k)
X

6: Pass z(k) to Algorithm 1 −→ δ(k+1)

7: Back-transform z(k) to u(k+1) = Wδ(k+1)(z(k)); compute x(k+1) = u(k+1) σ
(k)
X + µ

(k)
X

8: Update parameters: µ
(k+1)
X = xk+1 and σ

(k+1)
X = σ̂xk+1

9: τ (k+1) = (µ
(k+1)
X , σ

(k+1)
X , δ(k+1))

10: k = k + 1
11: return τIGMM = τ (k)

Discussion of Algorithm 1: The kurtosis of Y as a function of δ is continuous and monotonically

increasing (see (19)). Also u = Wδ(z) has a smaller slope than the identity u = z, and the slope

is decreasing as δ is increasing. Thus if the kurtosis of the original data is larger than the target

kurtosis of the back-transformed data, γ̂2(y) > γ2(X), then there always exists a δ(∗) that achieves

γ̂2(xτ∗) ≡ γ2(X). By the re-parametrization δ̃ = log δ the bounded optimization problem can be

solved by standard (unconstrained) optimization algorithms.

In practice, µX and σX are rarely known but also have to be estimated. As y is shifted and scaled

ahead of the back-transformation Wδ(·), the initial choice of µX and σX affects the optimal choice

of δ. Therefore the optimal triple τ̂ = (µ̂X , σ̂X , δ̂) must be obtained iteratively.

Discussion of Algorithm 2: Algorithm 2 first computes z(k) = (y−µ(k)
X)/σ

(k)
X using µ

(k)
X and σ

(k)
X

from the previous step. This normalized output can then be passed to Algorithm 1 to obtain an up-

dated δ(k+1) = δ̂GMM . Using this new δ(k+1) one can back-transform z(k) to u(k+1) = Wδ(k+1)(z(k)),

and consequently obtain a better approximation to the “true” latent x by x(k+1) = u(k+1) σ
(k)
X +µ

(k)
X .

However, δ(k+1) - and therefore x(k+1) - has been obtained using µ
(k)
X and σ

(k)
X , which are not nec-

essarily the most accurate estimates in light of the updated approximation x̂
(µ

(k)
X ,σ

(k)
X ,δ(k+1))

. Thus

Algorithm 2 computes new estimates µ
(k+1)
X and σ

(k+1)
X by the sample mean and standard devi-

ation of x̂
(µ

(k)
X ,σ

(k)
X ,δ(k+1))

, and starts another iteration by passing the updated normalized output

7

Algorithm 3 Random sample generation : rLambertW() in the LambertW package.

Input: number of samples n; parameter vector θ; input distribution FX(x) with finite mean and
variance

Output: random sample (y1, . . . , yn) of a Lambert W × FX random variable.

1: Draw n random samples x = (x1, . . . , xn) ∼ FX(x).
2: Compute µX = µX(β) and σX = σX(β) (for scale family set µX = 0, for non-central, non-scaled

also set σX = 1)
3: Compute normalized u = (x− µX)/σX .
4: z = u exp

(
δ
2u2

)
5: return y = zσX + µX

z(k+1) =
y−µ(k+1)

X

σ
(k+1)
X

to Algorithm 1 to obtain a new δ(k+2). It returns the optimal τ̂IGMM once con-

vergence has been reached, i.e., if
∣∣∣∣τ (k) − τ (k+1)

∣∣∣∣ < tol.

D The Asymmetric Double-tail Case

Corollary D.1 (Inverse transformation for Tukey’s hh). The inverse of (3) is

Wδ`,δr (z) =

{
Wδ`(z), if z ≤ 0,

Wδr (z), if z > 0.
(79)

Figure 3b shows Wδ`,δr (z) for δl = 0 and δr = 1/10. The transformation in Fig. 3a generates

a right heavy tail version of U (x-axis) by stretching only the positive axis (y-axis). By definition

Wδ`,δr (z) removes the heavier right tail in Z (positive y-axis). Figure 3c shows how Wδ(z) operates

for various degrees of heavy tails and z ∈ [0, 3]. If δ is close to zero, then also Wδ(z) ≈ z; for larger

δ, the inverse maps z to (much) smaller u.

Corollary D.2. The cdf and pdf of Z in (3) equal

GZ (z | β, δ`, δr) =

{
GZ (z | β, δ`) , if z ≤ 0,

GZ (z | β, δr) , if z > 0,
(80)

and

gZ (z | β, δ) =

{
gZ (z | β, δ`) , if z ≤ 0,

gZ (z | β, δr) , if z > 0.
(81)

Remark D.3 (IGMM for double-tail Lambert W × FX). For a double-tail fit the one-dimensional

optimization in Algorithm 1 has to be replaced with a two-dimensional optimization(
δ̂`, δ̂r

)
GMM

= arg min
δ`,δr

∣∣∣∣∣∣γ2(X)− γ̂2(x(µ∗X ,σ
∗
X ,δ`,δr)

)
∣∣∣∣∣∣ . (82)

Algorithm 2 remains unchanged, except for replacing Wδ(k+1)(z(k)) with W
δ
(k+1)
` ,δ

)k+1)
r

(z(k)) and τ =

(µX , σX , δ`, δr).

8

