Supplementary Material of
 "The Lambert Way to Gaussianize heavy tailed data with the inverse of Tukey's h transformation as a special case"

Georg M. Goerg

A Auxiliary Results and Properties

A. 1 Inverse Transformation $W_{\delta}(z)$

The function $W_{\delta}(z)$ is the building block of Lambert $\mathrm{W} \times F_{X}$ distributions. This section lists useful properties of $W_{\delta}(z)$ as a function of z as well as a function of δ.

Properties A.1. For $\delta=0$,

$$
\begin{equation*}
\left.W_{\delta}\left(z_{i}\right)\right|_{\delta=0}=z_{i},\left.\quad W^{\prime}\left(\delta z_{i}^{2}\right)\right|_{\delta=0}=z_{i}^{2}, \quad \text { and }\left.W\left(\delta z_{i}^{2}\right)\right|_{\delta=0}=0 \tag{37}
\end{equation*}
$$

By definition $\frac{W_{\delta}(z)}{z}=e^{-\frac{\delta}{2} W_{\delta}(z)^{2}}$ and therefore

$$
\begin{equation*}
\log \frac{W_{\delta}(z)}{z}=-\frac{\delta}{2} W_{\delta}(z)^{2}=-\frac{W\left(\delta z^{2}\right)}{2} \tag{38}
\end{equation*}
$$

Lemma A. 2 (Derivative of $W_{\delta}(z)$ with respect to z). It holds

$$
\begin{equation*}
\frac{d}{d z} W_{\delta}(z)=-\frac{W_{\delta}(z)}{z\left(1+\delta W_{\delta}(z)^{2}\right)}=e^{-\frac{1}{2} W\left(\delta z^{2}\right)} \frac{1}{1+W\left(\delta z^{2}\right)} \tag{39}
\end{equation*}
$$

Proof. One of the many interesting properties of the Lambert W function relates to its derivative which satisfies

$$
\begin{equation*}
W^{\prime}(z)=\frac{W(z)}{z(1+W(z))}=\frac{1}{e^{W(z)}(1+W(z))}, \quad z \neq 0,-1 / e \tag{40}
\end{equation*}
$$

with $W^{\prime}(0)=1$ and $\lim _{z \rightarrow-1 / e} W^{\prime}(z)=\infty$. Hence,

$$
\begin{equation*}
\frac{d}{d z} \frac{W\left(\delta z^{2}\right)}{\delta}=W^{\prime}\left(\delta z^{2}\right) \cdot 2 z=\frac{W\left(\delta z^{2}\right)}{\delta z^{2}\left(1+W\left(\delta z^{2}\right)\right)} \cdot 2 z=\frac{2 W\left(\delta z^{2}\right)}{\delta z\left(1+W\left(\delta z^{2}\right)\right)} \tag{41}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\frac{d}{d z} W_{\delta}(z) & =\frac{1}{2}\left(\frac{1}{\delta} W\left(\delta z^{2}\right)\right)^{-1 / 2} \cdot \frac{d}{d z} \frac{W\left(\delta z^{2}\right)}{\delta} \tag{42}\\
& =\frac{1}{2}\left(\frac{1}{\delta} W\left(\delta z^{2}\right)\right)^{-1 / 2} \cdot \frac{2 W\left(\delta z^{2}\right)}{\delta z\left(1+W\left(\delta z^{2}\right)\right)} \tag{43}\\
& =\frac{1}{\delta^{1 / 2}}\left(W\left(\delta z^{2}\right)\right)^{-1 / 2} \cdot \frac{W\left(\delta z^{2}\right)}{z\left(1+W\left(\delta z^{2}\right)\right)} \tag{44}
\end{align*}
$$

As $W\left(\delta z^{2}\right)=\delta u^{2}$ the last line simplifies to

$$
\begin{equation*}
\frac{1}{\delta^{1 / 2}} \frac{1}{\delta^{1 / 2} u} \cdot \frac{\delta u^{2}}{z\left(1+\delta u^{2}\right)}=\frac{u}{z\left(1+\delta u^{2}\right)} \tag{45}
\end{equation*}
$$

Now use again $u=W_{\delta}(z)$.
Lemma A. 3 (Derivative of $W_{\delta}(z)^{2}$ with respect to δ). For all $z \in \mathbb{R}$

$$
\begin{equation*}
\frac{\partial}{\partial \delta}\left[W_{\delta}(z)\right]^{2}=-\frac{1}{1+W\left(\delta z^{2}\right)} W_{\delta}(z)^{4} \leq 0 \tag{46}
\end{equation*}
$$

Proof. By definition $\left[W_{\delta}(z)\right]^{2}=\frac{W\left(\delta z^{2}\right)}{\delta}$. Thus

$$
\begin{align*}
\frac{\partial}{\partial \delta} \frac{W\left(\delta z^{2}\right)}{\delta} & =\frac{\delta \frac{\partial}{\partial \delta} W\left(\delta z^{2}\right)-W\left(\delta z^{2}\right) \cdot 1}{\delta^{2}} \tag{47}\\
& =\frac{\delta W^{\prime}\left(\delta z^{2}\right) z^{2}-W\left(\delta z^{2}\right)}{\delta^{2}} \tag{48}\\
& =\frac{\delta \frac{W\left(\delta z^{2}\right)}{\delta z^{2}\left(1+W\left(\delta z^{2}\right)\right.} z^{2}-W\left(\delta z^{2}\right)}{\delta^{2}} \tag{49}\\
& =\frac{\frac{W\left(\delta z^{2}\right)}{1+W\left(\delta z^{2}\right)}-W\left(\delta z^{2}\right)}{\delta^{2}} \tag{50}\\
& =\frac{\frac{-W\left(\delta z^{2}\right)^{2}}{1+W\left(\delta z^{2}\right)}}{\delta^{2}} \tag{51}\\
& =-\frac{1}{1+W\left(\delta z^{2}\right)}\left[W_{\delta}(z)\right]^{4} \tag{52}
\end{align*}
$$

Since both terms are non-negative for all $z \in \mathbb{R}$, the result follows.
This means that $W_{\delta}(z)^{2}$ is a decreasing function in δ for every $z \in \mathbb{R}$, i.e., the more we remove heavy tails the more z gets shrinked (non-linearly) towards $0=\lim _{\delta \rightarrow \infty} W_{\delta}(z)$. In particular, $\left[W_{\delta}(z)\right]^{2}<z^{2} \Leftrightarrow \frac{W_{\delta}(z)}{z}<1$ and $\frac{W_{\delta+\varepsilon}(z)}{z}<\frac{W_{\delta}(z)}{z}$ for $\delta \geq 0$ and $\varepsilon>0$.
Lemma A. 4 (Derivative of $W_{\delta}(z)$ with respect to δ). It holds

$$
\begin{equation*}
\frac{\partial}{\partial \delta} W_{\delta}(z)=-\frac{1}{2} \frac{1}{1+W\left(\delta z^{2}\right)} W_{\delta}(z)^{3} \tag{53}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\frac{\partial}{\partial \delta} W_{\delta}(z) & =\operatorname{sgn}(z) \frac{\partial}{\partial \delta}\left(\frac{W\left(\delta z^{2}\right)}{\delta}\right)^{1 / 2} \tag{54}\\
& =\operatorname{sgn}(z) \frac{1}{2}\left(\frac{W\left(\delta z^{2}\right)}{\delta}\right)^{-1 / 2} \frac{\partial}{\partial \delta} \frac{W\left(\delta z^{2}\right)}{\delta} \tag{55}\\
& =\frac{1}{2} \frac{1}{W_{\delta}(z)} \frac{\partial}{\partial \delta}\left[W_{\delta}(z)\right]^{2} \tag{56}\\
& =-\frac{1}{2} \frac{1}{1+W\left(\delta z^{2}\right)} W_{\delta}(z)^{3} \tag{57}
\end{align*}
$$

where the last line follows by Lemma A.3.

A. 2 Penalty $\log R\left(\delta ; z_{i}\right)$ for Standard Gaussian Input

For $\mu_{X}=0$ and $\sigma_{X}=1$ the penalty equals $\left(y_{i}=z_{i}\right)$

$$
\begin{equation*}
R\left(\delta ; z_{i}\right)=\frac{W_{\delta}\left(z_{i}\right)}{z_{i}\left[1+\delta\left(W_{\delta}\left(z_{i}\right)\right)^{2}\right]}=\frac{W_{\delta}\left(z_{i}\right)}{z_{i}\left[1+W\left(\delta z_{i}^{2}\right)\right]} \tag{58}
\end{equation*}
$$

and thus

$$
\begin{align*}
\log R\left(\delta ; z_{i}\right) & =\log \frac{W_{\delta}\left(z_{i}\right)}{z_{i}}-\log \left[1+W\left(\delta z_{i}^{2}\right)\right] \tag{59}\\
& =-\frac{W\left(\delta z_{i}^{2}\right)}{2}-\log \left[1+W\left(\delta z_{i}^{2}\right)\right] \tag{60}
\end{align*}
$$

Lemma A. 5 (Derivative of $\log R(\delta ; z)$ with respect to δ). For all $\delta \geq 0$ and all $z \in \mathbb{R}$

$$
\begin{equation*}
\frac{\partial \log R(\delta ; z)}{\partial \delta}=-z^{2} W^{\prime}\left(\delta z^{2}\right)\left(\frac{1}{2}+\frac{1}{1+W\left(\delta z^{2}\right)}\right) \leq 0 \tag{61}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\frac{\partial \log R(\delta ; z)}{\partial \delta} & =\frac{1}{W_{\delta}(z)} \frac{\partial W_{\delta}(z)}{\partial \delta}-\frac{1}{1+W\left(\delta z^{2}\right)} W^{\prime}\left(\delta z^{2}\right) z^{2} \tag{62}\\
& \text { Lemma A.4 } \frac{1}{W_{\delta}(z)}\left(-\frac{1}{2} \frac{1}{1+W\left(\delta z^{2}\right)} W_{\delta}(z)^{3}\right)-\frac{1}{1+W\left(\delta z^{2}\right)} W^{\prime}\left(\delta z^{2}\right) z^{2} \tag{63}\\
& =-\frac{1}{1+W\left(\delta z^{2}\right)}\left(\frac{1}{2} W_{\delta}(z)^{2}+W^{\prime}\left(\delta z^{2}\right) z^{2}\right) \tag{64}
\end{align*}
$$

Using $W^{\prime}\left(\delta z^{2}\right)=\frac{W\left(\delta z^{2}\right)}{\delta z^{2}\left(1+W\left(\delta z^{2}\right)\right)}$ and re-factorizing gives (61).

A. 3 Gaussian Log-Likelihood at $W_{\delta}(z)$

Lemma A.6. For all $z \in \mathbb{R}$ and for $\delta \geq 0$

$$
\begin{equation*}
\frac{\partial}{\partial \delta} \ell\left(\mu_{X}=0, \sigma_{X}=1 ; W_{\delta}(z)\right)=\frac{1}{2} \frac{1}{1+W\left(\delta z^{2}\right)}\left[W_{\delta}(z)\right]^{4} \geq 0 \tag{65}
\end{equation*}
$$

Proof. The log of the standard Gaussian pdf evaluated at $W_{\delta}(z)$ simplifies to

$$
\begin{equation*}
\log \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left[W_{\delta}(z)\right]^{2}}=\log \frac{1}{\sqrt{2 \pi}}-\frac{1}{2}\left[W_{\delta}(z)\right]^{2} \tag{66}
\end{equation*}
$$

The rest follows by Lemma A.3.
Lemma A. 6 shows that increasing δ always increases the input \log-likelihood $\ell\left(\delta ; \mathbf{u}_{\delta}=W_{\delta}(\mathbf{z})\right)$ see also Fig. 6b. For $\delta \rightarrow \infty$ the Gaussianized \mathbf{u}_{δ} goes to $\mathbf{0}$, which trivially maximizes a Gaussian likelihood with $\mu_{X}=0$.

B Proofs

B. 1 Inverse Transformation

Proof of Lemma 2.5. Without loss of generality assume that $\mu_{X}=0$ and $\sigma_{X}=1$. Squaring (2) and multiplying by δ yields

$$
\begin{equation*}
\delta Z^{2}=\delta U^{2} \exp \left(\delta U^{2}\right) \tag{67}
\end{equation*}
$$

The inverse of (67) is by definition the Lambert W function [45]

$$
\begin{equation*}
W(z) \exp W(z)=z, \quad z \in \mathbb{C} \tag{68}
\end{equation*}
$$

$W(z)$ is bijective for $z \geq 0$. Since $\delta U^{2} \geq 0$ for all $\delta \geq 0$, applying $W(\cdot)$ to (67), dividing by δ, and taking the square root gives

$$
\begin{equation*}
U= \pm \sqrt{\frac{W\left(\delta Z^{2}\right)}{\delta}} \tag{69}
\end{equation*}
$$

Since $\exp \left(\frac{\delta}{2} U^{2}\right)>0$ for all $\delta \in \mathbb{R}$ and all U, it follows that $Z=U \exp \left(\frac{\delta}{2} U^{2}\right)$ and U must have the same sign, which concludes the proof.

B. 2 Cdf and Pdf

Proof of Theorem 2.7. By definition,

$$
\begin{aligned}
G_{Y}(y) & =\mathbb{P}(Y \leq y)=\mathbb{P}\left(\left\{U \exp \left(\frac{\delta}{2} U^{2}\right)\right\} \sigma_{X}+\mu_{X} \leq y\right) \\
& =\mathbb{P}\left(U \exp \left(\frac{\delta}{2} U^{2}\right) \leq z\right)=\mathbb{P}\left(U \leq W_{\delta}(z)\right) \\
& =F_{U}\left(U \leq W_{\delta}(z)\right)
\end{aligned}
$$

Taking the derivative with respect to y gives

$$
\begin{aligned}
\frac{d}{d y} G_{Y}(y \mid \boldsymbol{\beta}, \delta) & =f_{X}\left(W_{\delta}(z) \sigma_{X}+\mu_{X} \mid \boldsymbol{\beta}\right) \cdot \sigma_{X} \frac{d}{d y} W_{\delta}\left(\frac{y-\mu_{X}}{\sigma_{X}}\right) \\
& =f_{U}\left(W_{\delta}(z) \mid \boldsymbol{\beta}\right) \cdot \sigma_{X} \frac{1}{\sigma_{X}} \frac{d}{d z} W_{\delta}\left(\frac{y-\mu_{X}}{\sigma_{X}}\right) \\
& =f_{U}\left(W_{\delta}(z) \mid \boldsymbol{\beta}\right) \cdot \frac{d}{d z} W_{\delta}(z)
\end{aligned}
$$

Using Lemma A. 2 yields (14).

B. 3 MLE for δ

Lemma B. 1 (Derivative of the Lambert $\mathrm{W} \times$ Gaussian log-likelihood). We have

$$
\begin{align*}
D(\delta ; \mathbf{z}):=\frac{\partial}{\partial \delta} \ell(\delta ; \mathbf{z}) & =\sum_{i=1}^{N} z_{i}^{2} W^{\prime}\left(\delta z_{i}^{2}\right)\left(\frac{1}{2} W_{\delta}\left(z_{i}\right)^{2}-\left(\frac{1}{2}+\frac{1}{1+W\left(\delta z_{i}^{2}\right)}\right)\right) \tag{70}\\
& =\frac{1}{2} \sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{4}}{1+\delta W_{\delta}\left(z_{i}\right)^{2}}-\sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{2}}{1+\delta W_{\delta}\left(z_{i}\right)^{2}}\left(\frac{1}{2}+\frac{1}{1+\delta W_{\delta}\left(z_{i}\right)^{2}}\right) \tag{71}\\
& =\frac{1}{2} \sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{4}}{1+W\left(\delta z_{i}^{2}\right)}-\sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{2}}{1+W\left(\delta z_{i}^{2}\right)}\left(\frac{1}{2}+\frac{1}{1+W\left(\delta z_{i}^{2}\right)}\right) . \tag{72}
\end{align*}
$$

Proof. Apply Lemmas A. 5 and A. 6 to $\frac{\partial}{\partial \delta} \ell(\delta ; \mathbf{z})=\frac{\partial}{\partial \delta} \log R(\delta ; z)+\frac{\partial}{\partial \delta} \ell\left(\mu_{X}=0, \sigma_{X}=1 ; W_{\delta}(z)\right)$.
Proof sketch of Theorem 4.1. a) If condition (34) holds, then $D(\delta ; \mathbf{z})<0$ at $\delta=0$ and stays negative for all $\delta>0$. Hence the maximizer occurs at the boundary $\delta=0$.
b) If (34) does not hold, then $D(\delta=0 ; \mathbf{z})>0$, decreases in δ and crosses the zero line (one candidate for $\widehat{\delta}_{M L E}$ occurs here).
c) As δ gets larger, $D(\delta ; \mathbf{z})$ reaches a minimum (negative value) and starts increasing. However, for $\delta \rightarrow \infty$ the derivative approaches zero from below and never equals zero again; thus $\widehat{\delta}_{M L E}$ is unique.

Proof of Theorem 4.1. a) The log-likelihood is increasing at $\delta=0$ if and only if (set $\delta=0$ in (72) and use Property A.1)

$$
\begin{equation*}
\sum_{i=1}^{N} z_{i}^{4}>3 \sum_{i=1}^{N} z_{i}^{2} \tag{73}
\end{equation*}
$$

Eq. (73) means that transforming the data (choosing $\widehat{\delta}>0$) increases the overall likelihood only if the data is heavy-tailed enough. As the sum of squares is not squared again condition (73) is not equivalent for the data having empirical kurtosis larger than 3 .
b) If (73) does not hold, then $\widehat{\delta}_{M L E}$ must satisfy $\left.D(\delta ; \mathbf{z})\right|_{\delta=\widehat{\delta}_{M L E}}=0$ from (70) in Lemma B.1. It remains to be shown that this equation has (at least) one positive solution.
i) Since $\lim _{\delta \rightarrow \infty} W_{\delta}(z)=0$ for all $z \in \mathbb{R}$, (72) is also true in the limit; however, we can ignore this solution as we require $\widehat{\delta}_{M L E} \in \mathbb{R}$.
ii) By continuity and $\lim _{\delta \rightarrow \infty} W_{\delta}(z)=0$, for sufficiently large $\delta_{M}, W_{\delta_{M}}\left(z_{i}\right)<1$ for all $z_{i} \in \mathbb{R}$. Hence $W_{\delta_{M}}\left(z_{i}\right)^{4}<W_{\delta_{M}}\left(z_{i}\right)^{2}$ and therefore

$$
\begin{align*}
\frac{1}{2} \sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{4}}{1+\delta W_{\delta}\left(z_{i}\right)^{2}} & <\frac{1}{2} \sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{2}}{1+\delta W_{\delta}\left(z_{i}\right)^{2}} \tag{74}\\
& <\sum_{i=1}^{N} \frac{W_{\delta}\left(z_{i}\right)^{2}}{1+\delta W_{\delta}\left(z_{i}\right)^{2}}\left(\frac{1}{2}+\frac{1}{1+\delta W_{\delta}\left(z_{i}\right)^{2}}\right) \text { for } \delta \geq \delta_{M} \tag{75}
\end{align*}
$$

showing that $\left.D(\delta ; \mathbf{z})\right|_{\delta \geq \delta_{M}}<0$. That is, $D(\delta ; \mathbf{z})$ approaches 0 from below for $\delta \rightarrow \infty$.
iii) By continuity and $\left.D(\delta ; \mathbf{z})\right|_{\delta=0}>0$ (if (73) does not hold), it must cross the $D(\delta ; \mathbf{z})=0$ line at least once in the interval $\left(0, \delta_{M}\right)$, proving the existence of $\widehat{\delta}_{M L E}$.
c) The log-likelihood can be decomposed in

$$
\begin{equation*}
\ell(\delta ; \mathbf{z}) \propto \underbrace{-\frac{1}{2} \sum_{i=1}^{N}\left[W_{\delta}\left(z_{i}\right)\right]^{2}}_{\ell\left(\mu_{X}=0, \sigma_{X}=1 ; W_{\delta}(\mathbf{z})\right)}+\underbrace{\sum_{i=1}^{N} \log \frac{W_{\delta}\left(z_{i}\right)}{z_{i}}-\log \left[1+W\left(\delta z_{i}^{2}\right)\right]}_{\mathcal{R}(\delta ; \mathbf{z})} \tag{76}
\end{equation*}
$$

Lemmas A. 5 and A. 6 show that $\mathcal{R}(\delta ; \mathbf{z})$ is monotonically decreasing and $\ell\left(\mu_{X}=0, \sigma_{X}=1 ; W_{\delta}(\mathbf{z})\right)$ is monotonically increasing in δ.

Furthermore, $\lim _{\delta \rightarrow \infty} \ell\left(\mu_{X}=0, \sigma_{X}=1 ; W_{\delta}(\mathbf{z})\right)=0$, that is the input likelihood is monotonically increasing but bounded from above (by $0=\log 1$). On the other hand the penalty is decreasing without bounds

$$
\begin{equation*}
\lim _{\delta \rightarrow \infty} \mathcal{R}(\delta ; \mathbf{z})=\sum_{i=1}^{N} \lim _{\delta \rightarrow \infty} \log \frac{W_{\delta}\left(z_{i}\right)}{z_{i}}-\sum_{i=1}^{N} \lim _{\delta \rightarrow \infty} \log \left[1+W\left(\delta z_{i}^{2}\right)\right]=-\infty \tag{77}
\end{equation*}
$$

Thus their sum attains a global maximum either at the unique mode of $\ell(\delta ; \mathbf{z})$ or at the boundary $\delta=0$ - see also Fig. 6b.

C Details on IGMM

Here I present an iterative method to obtain $\widehat{\tau}$, which builds on the input/output aspect and theoretical properties of the input X. For example, if a random variable should be exponentially distributed but the observed data shows heavier tails, then it is natural to estimate $\sigma_{X}=\lambda^{-1}$ and δ such that the back-transformed data has skewness 2 , as this is a general property of exponential random variables - independent of the rate parameter λ; to remove heavy tails from an otherwise symmetric \mathbf{y} a natural choice for τ is such that the back-transformed data \mathbf{x}_{τ} has sample kurtosis 3 ; or for uniform input, τ should be such that \mathbf{x}_{τ} has a flat density estimate.

Here I describe the estimator for τ to remove heavy-tails in location-scale data, in the sense that the kurtosis of the input should equal 3. It can be easily adapted to match other properties of the input as outlined above.

For a moment assume that $\mu_{X}=\mu_{X}^{(0)}$ and $\sigma_{X}=\sigma_{X}^{(0)}$ are known and fixed; only δ has to be estimated. A natural choice for δ is the one that results in back transformed data $\mathbf{x}_{\tau}(\tau=$ $\left.\left(\mu_{X}^{(0)}, \sigma_{X}^{(0)}, \delta\right)\right)$ with sample kurtosis $\widehat{\gamma}_{2}\left(\mathbf{x}_{\tau}\right)$ equal to the theoretical kurtosis $\gamma_{2}(X)$. Formally,

$$
\begin{equation*}
\widehat{\delta}_{\mathrm{GMM}}=\arg \min _{\delta}\left\|\gamma_{2}(X)-\widehat{\gamma}_{2}\left(\mathbf{x}_{\tau}\right)\right\| \tag{78}
\end{equation*}
$$

where $\|\cdot\|$ is a proper norm in \mathbb{R}.
While the concept of this estimator is identical to its skewed version [21], it has one important advantage: the inverse transformation is bijective. Thus here we do not have to consider "lost" data points from the non-principal branch of the Lambert W function when applying the inverse transformation.

```
Algorithm 1 Find optimal \(\delta:\) delta_GMM() in the LambertW package.
Input: data vector \(\mathbf{z}\); theoretical kurtosis \(\gamma_{2}(X)\)
Output: \(\widehat{\delta}_{G M M}\) as in (78)
    \(\widehat{\delta}_{G M M}=\arg \min _{\delta}\left\|\widehat{\gamma}_{2}\left(\mathbf{u}_{\delta}\right)-\gamma_{2}(X)\right\|\), where \(\mathbf{u}_{\delta}=W_{\delta}(\mathbf{z})\) subject to \(\delta \geq 0\)
    return \(\widehat{\delta}_{G M M}\)
```

```
Algorithm 2 Iterative Generalized Method of Moments (IGMM) : IGMM() in the LambertW
package.
Input: data vector \(\mathbf{y}\); tolerance level tol; theoretical kurtosis \(\gamma_{2}(X)\)
Output: IGMM parameter estimate \(\widehat{\tau}_{\text {IGMM }}=\left(\widehat{\mu}_{X}, \widehat{\sigma}_{X}, \widehat{\delta}\right)\)
    Starting values: \(\tau^{(0)}=\left(\mu_{X}^{(0)}, \sigma_{X}^{(0)}, \delta^{(0)}\right)\), where \(\mu_{X}^{(0)}=\tilde{\mathbf{y}}\) and \(\sigma_{X}^{(0)}=\bar{\sigma}_{y} \cdot\left(\frac{1}{\sqrt{\left(1-2 \delta^{(0)}\right)^{3 / 2}}}\right)^{-1}\) are
    the sample median and standard deviation of \(\mathbf{y}\) divided by the standard deviation factor (see
    also (18)), respectively. \(\delta^{(0)}=\frac{1}{66}\left(\sqrt{66 \widehat{\gamma}_{2}(\mathbf{y})-162}-6\right) \rightarrow\) see (21) for details.
    \(k=0\)
    Set \(\tau^{(-1)}=\tau^{0}+2 \cdot\) tol to start the while loop.
    while \(\left\|\tau^{(k)}-\tau^{(k-1)}\right\|>\) tol do
        \(\mathbf{z}^{(k)}=\left(\mathbf{y}-\mu_{X}^{(k)}\right) / \sigma_{X}^{(k)}\)
        Pass \(\mathbf{z}^{(k)}\) to Algorithm \(1 \longrightarrow \delta^{(k+1)}\)
        Back-transform \(\mathbf{z}^{(k)}\) to \(\mathbf{u}^{(k+1)}=W_{\delta^{(k+1)}}\left(\mathbf{z}^{(k)}\right)\); compute \(\mathbf{x}^{(k+1)}=\mathbf{u}^{(k+1)} \sigma_{X}^{(k)}+\mu_{X}^{(k)}\)
        Update parameters: \(\mu_{X}^{(k+1)}=\overline{\mathbf{x}}_{k+1}\) and \(\sigma_{X}^{(k+1)}=\widehat{\sigma}_{x_{k+1}}\)
        \(\tau^{(k+1)}=\left(\mu_{X}^{(k+1)}, \sigma_{X}^{(k+1)}, \delta^{(k+1)}\right)\)
        \(k=k+1\)
    return \(\tau_{I G M M}=\tau^{(k)}\)
```

Discussion of Algorithm 1: The kurtosis of Y as a function of δ is continuous and monotonically increasing (see (19)). Also $u=W_{\delta}(z)$ has a smaller slope than the identity $u=z$, and the slope is decreasing as δ is increasing. Thus if the kurtosis of the original data is larger than the target kurtosis of the back-transformed data, $\widehat{\gamma}_{2}(\mathbf{y})>\gamma_{2}(X)$, then there always exists a $\delta^{(*)}$ that achieves $\widehat{\gamma}_{2}\left(\mathbf{x}_{\tau^{*}}\right) \equiv \gamma_{2}(X)$. By the re-parametrization $\tilde{\delta}=\log \delta$ the bounded optimization problem can be solved by standard (unconstrained) optimization algorithms.

In practice, μ_{X} and σ_{X} are rarely known but also have to be estimated. As \mathbf{y} is shifted and scaled ahead of the back-transformation $W_{\delta}(\cdot)$, the initial choice of μ_{X} and σ_{X} affects the optimal choice of δ. Therefore the optimal triple $\widehat{\tau}=\left(\widehat{\mu}_{X}, \widehat{\sigma}_{X}, \widehat{\delta}\right)$ must be obtained iteratively.

Discussion of Algorithm 2: Algorithm 2 first computes $\mathbf{z}^{(k)}=\left(\mathbf{y}-\mu_{X}^{(k)}\right) / \sigma_{X}^{(k)}$ using $\mu_{X}^{(k)}$ and $\sigma_{X}^{(k)}$ from the previous step. This normalized output can then be passed to Algorithm 1 to obtain an updated $\delta^{(k+1)}=\widehat{\delta}_{G M M}$. Using this new $\delta^{(k+1)}$ one can back-transform $\mathbf{z}^{(k)}$ to $\mathbf{u}^{(k+1)}=W_{\delta(k+1)}\left(\mathbf{z}^{(k)}\right)$, and consequently obtain a better approximation to the "true" latent \mathbf{x} by $\mathbf{x}^{(k+1)}=\mathbf{u}^{(k+1)} \sigma_{X}^{(k)}+\mu_{X}^{(k)}$. However, $\delta^{(k+1)}$ - and therefore $\mathbf{x}^{(k+1)}$ - has been obtained using $\mu_{X}^{(k)}$ and $\sigma_{X}^{(k)}$, which are not necessarily the most accurate estimates in light of the updated approximation $\widehat{\mathbf{x}}_{\left(\mu_{X}^{(k)}, \sigma_{X}^{(k)}, \delta^{(k+1)}\right)}$. Thus Algorithm 2 computes new estimates $\mu_{X}^{(k+1)}$ and $\sigma_{X}^{(k+1)}$ by the sample mean and standard deviation of $\widehat{\mathbf{x}}_{\left(\mu_{X}^{(k)}, \sigma_{X}^{(k)}, \delta^{(k+1)}\right)}$, and starts another iteration by passing the updated normalized output

```
Algorithm 3 Random sample generation : rLambertW() in the LambertW package.
Input: number of samples \(n\); parameter vector \(\theta\); input distribution \(F_{X}(x)\) with finite mean and
    variance
Output: random sample \(\left(y_{1}, \ldots, y_{n}\right)\) of a Lambert \(\mathrm{W} \times F_{X}\) random variable.
    Draw \(n\) random samples \(\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \sim F_{X}(x)\).
    Compute \(\mu_{X}=\mu_{X}(\boldsymbol{\beta})\) and \(\sigma_{X}=\sigma_{X}(\boldsymbol{\beta})\) (for scale family set \(\mu_{X}=0\), for non-central, non-scaled
    also set \(\sigma_{X}=1\) )
    Compute normalized \(\mathbf{u}=\left(\mathbf{x}-\mu_{X}\right) / \sigma_{X}\).
    \(\mathbf{z}=\mathbf{u} \exp \left(\frac{\delta}{2} \mathbf{u}^{2}\right)\)
    return \(\mathbf{y}=\mathbf{z} \sigma_{X}+\mu_{X}\)
```

$\mathbf{z}^{(k+1)}=\frac{\mathbf{y}-\mu_{x}^{(k+1)}}{\sigma_{X}^{(k+1)}}$ to Algorithm 1 to obtain a new $\delta^{(k+2)}$. It returns the optimal $\widehat{\tau}_{\text {IGMM }}$ once convergence has been reached, i.e., if $\left\|\tau^{(k)}-\tau^{(k+1)}\right\|<t o l$.

D The Asymmetric Double-tail Case

Corollary D. 1 (Inverse transformation for Tukey's hh). The inverse of (3) is

$$
W_{\delta_{\ell}, \delta_{r}}(z)= \begin{cases}W_{\delta_{\ell}}(z), & \text { if } z \leq 0, \tag{79}\\ W_{\delta_{r}}(z), & \text { if } z>0 .\end{cases}
$$

Figure 3b shows $W_{\delta_{\ell}, \delta_{r}}(z)$ for $\delta_{l}=0$ and $\delta_{r}=1 / 10$. The transformation in Fig. 3a generates a right heavy tail version of U (x-axis) by stretching only the positive axis (y-axis). By definition $W_{\delta_{\ell}, \delta_{r}}(z)$ removes the heavier right tail in Z (positive y -axis). Figure 3 c shows how $W_{\delta}(z)$ operates for various degrees of heavy tails and $z \in[0,3]$. If δ is close to zero, then also $W_{\delta}(z) \approx z$; for larger δ, the inverse maps z to (much) smaller u.

Corollary D.2. The cdf and pdf of Z in (3) equal

$$
G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{\ell}, \delta_{r}\right)= \begin{cases}G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{\ell}\right), & \text { if } z \leq 0, \tag{80}\\ G_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{r}\right), & \text { if } z>0,\end{cases}
$$

and

$$
g_{Z}(z \mid \boldsymbol{\beta}, \delta)= \begin{cases}g_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{\ell}\right), & \text { if } z \leq 0, \tag{81}\\ g_{Z}\left(z \mid \boldsymbol{\beta}, \delta_{r}\right), & \text { if } z>0 .\end{cases}
$$

Remark D. 3 (IGMM for double-tail Lambert $\mathrm{W} \times F_{X}$). For a double-tail fit the one-dimensional optimization in Algorithm 1 has to be replaced with a two-dimensional optimization

$$
\begin{equation*}
\left(\widehat{\delta}_{\ell}, \widehat{\delta}_{r}\right)_{\mathrm{GMM}}=\arg \min _{\delta_{\ell}, \delta_{r}}\left\|\gamma_{2}(X)-\widehat{\gamma}_{2}\left(\mathbf{x}_{\left(\mu_{x}^{*}, \sigma_{x}^{*}, \delta_{\ell}, \delta_{r}\right)}\right)\right\| . \tag{82}
\end{equation*}
$$

Algorithm 2 remains unchanged, except for replacing $W_{\delta^{(k+1)}}\left(\mathbf{z}^{(k)}\right)$ with $W_{\delta_{\ell}^{(k+1)}, \delta_{r}^{k+1)}}\left(\mathbf{z}^{(k)}\right)$ and $\tau=$ $\left(\mu_{X}, \sigma_{X}, \delta_{\ell}, \delta_{r}\right)$.

