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We construct a new general class of derivative free 𝑛-point iterative methods of optimal order of convergence 2𝑛−1 using rational
interpolant.The special cases of this class are obtained.These methods do not need Newton’s iterate in the first step of their iterative
schemes. Numerical computations are presented to show that the new methods are efficient and can be seen as better alternates.

1. Introduction

The problem of root finding has been addressed extensively
in the last few decades. In 1685, the first scheme to find the
roots of nonlinear equations was published by John Wallis.
Its simplified description was published in 1690 by Joseph
Raphson and was called Newton-Raphson method. In 1740,
Thomas Simpson was the first to introduce Newton’s method
as an iterative method for solving nonlinear equations. The
method is quadratically convergent but it may not converge
to real root if the initial guess does not lie in the vicinity
of root and 𝑓

󸀠

(𝑥) is zero in the neighborhood of the real
root.This method is a without-memory method. Later, many
derivative free methods were defined, for example, Secant’s
and Steffensen’s methods. However, most of the derivative
free iterative methods are with-memory methods; that is,
they require old and new information to calculate the
next approximation. Inspite of the drawbacks of Newton’s
method, many multipoint methods for finding simple root
of nonlinear equations have been developed in the recent
past using Newton’s method as the first step. However, many
higher order convergent derivative free iterative methods
have also appeared most recently by taking Steffensen type
methods at the first step. A large number of optimal higher
order convergent iterative methods have been investigated
recently up to order sixteen [1–3]. These methods used
different interpolating techniques for approximating the first
derivative.

In the era of 1960–1965, many authors used rational
function approximation for finding the root of nonlinear
equation, for example, Tornheim [4], Jarratt, and Nudds [5].

In 1967, Jarratt [6] effectively used rational interpolation
of the form

𝑦 =

𝑥 − 𝑎

𝑏𝑥
2
+ 𝑐𝑥 + 𝑑

, (1)

to approximate𝑓(𝑥) for constructing a with-memory scheme
involving first derivative. The order of the scheme was 2.732
and its efficiency was 0.2182.

In 1987, Cuyt and Wuytack [7] described a with-memory
iterative method involving first derivative based on rational
interpolation and they also discussed two special cases of
their scheme having order 1.84 with efficiency 0.1324 and
order 2.41 with efficiency 0.1910.

In 1990, Field [8] used rational function to approximate
the root of a nonlinear equation as follows:

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝑑
𝑖
, (2)

where 𝑑
𝑖
, the correction in each iterate, is the root of the

numerator of the Pade approximant to the Taylor series:

𝑓 (𝑥) =

∞

∑

𝑗=0

𝑓
(𝑗)

(𝑥
𝑖
)

𝑗!

(𝑥 − 𝑥
𝑖
)
𝑗

. (3)

He proved that 𝑥
𝑖
converges to the root 𝜉 with order

𝑚 + 𝑛 + 1, where 𝑚 and 𝑛 are degrees of the denominator
and numerator of the Pade approximant.
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In 1974, Kung and Traub [9] conjectured that amultipoint
iterative scheme without memory for finding simple root of
nonlinear equations requiring 𝑛 functional evaluations for
one complete cycle can have maximum order of convergence
2
𝑛−1 withmaximal efficiency index 2(𝑛−1)/𝑛. Multipoint meth-
ods with this property are usually called optimal methods.
Several researchers [1–3, 10] developed optimal multipoint
iterative methods based on this hypothesis.

In 2011, Soleymani and Sharifi [10] developed a four-
step without-memory fourteenth order convergent iterative
method involving first derivative having an efficiency index of
1.6952. The first derivative at the fourth step is approximated
using rational interpolation as follows:

𝑤
𝑛
= 𝜙
8
(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
)

𝑥
𝑛+1

= 𝑤
𝑛
−

(1 + 𝑏
4
(𝑤
𝑛
− 𝑥
𝑛
))
2

𝑓
󸀠
(𝑥
𝑛
) + 𝑏
3
(𝑤
𝑛
− 𝑥
𝑛
) (2 + 𝑏

4
(𝑤
𝑛
− 𝑥
𝑛
))

𝑓 (𝑤
𝑛
) ,

(4)

where 𝜙
8
is an optimal eighth order convergent method and

the rational interpolant is given as:

𝑚(𝑡) =

𝑏 + 𝑏
2
(𝑡 − 𝑥) + 𝑏

3
(𝑡 − 𝑥)

2

1 + 𝑏
4
(𝑡 − 𝑥)

. (5)

In 2012, Soleymani et al. [3] developed a three-step
derivative free eighth order method using rational interpo-
lation as follows:

𝑧
𝑛
= 𝜙
4
(𝑥
𝑛
, 𝑦
𝑛
, 𝑤
𝑛
) ,

𝑥
𝑛+1

= 𝑧
𝑛
−

(1 + 𝑎
3
(𝑧
𝑛
− 𝑥
𝑛
))
2

𝑎
1
− 𝑎
0
𝑎
3
+ 2𝑎
2
(𝑧
𝑛
− 𝑥
𝑛
) + 𝑎
2
𝑎
3
(𝑧
𝑛
− 𝑥
𝑛
)
2
𝑓 (𝑧
𝑛
) ,

(6)

where 𝜙
4
is any two-step fourth order convergent derivative

free iterativemethod.They used the same rational interpolant
as given in (5). The constants are determined using the
interpolating conditions.

In 2012, Soleymani et al. [2] added his contribution by
developing a sixteenth order four-point scheme using Pade
approximation. The scheme required four evaluations of
functions and one evaluation of first derivative and achieved
optimal order of sixteen and and an efficiency index 1.741.The
scheme was of the form

𝑤
𝑛
= 𝜙
8
(𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) ,

𝑥
𝑛+1

= 𝑤
𝑛
− ((1 + 𝑏

5
(𝑤
𝑛
− 𝑥
𝑛
))
2

𝑓 (𝑤
𝑛
))

× (𝑓
󸀠

(𝑥
𝑛
) + 2𝑏

3
(𝑤
𝑛
− 𝑥
𝑛
) + (3𝑏

4
+ 𝑏
3
𝑏
5
) (𝑤
𝑛
− 𝑥
𝑛
)
2

+2𝑏
4
𝑏
5
(𝑤
𝑛
− 𝑥
𝑛
)
3

)

−1

,

(7)

where 𝜙
8
is eighth order optimal method. They used the

rational interpolant of the following form:

𝑝 (𝑡) =

𝑏
1
+ 𝑏
2
(𝑡 − 𝑥) + 𝑏

3
(𝑡 − 𝑥)

2

+ 𝑏
4
(𝑡 − 𝑥)

3

1 + 𝑏
5
(𝑡 − 𝑥)

. (8)

Recently in 2013, Sharma et al. [1] developed a three-step
eighth order method and its extension to four-step sixteenth
order method using rational interpolation. In the scheme,
the first three steps are any arbitrary eight order convergent
method. The fourth step is the root of the numerator of the
method, which is given as
𝑡
𝑛
= 𝜙
8
(𝑥
𝑛
, 𝑧
𝑛
, 𝑤
𝑛
) ,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑃
1
𝑓 [𝑧
𝑛
, 𝑤
𝑛
] + 𝑄
1
𝑓 [𝑥
𝑛
, 𝑤
𝑛
] + 𝑅𝑓 [𝑡

𝑛
, 𝑤
𝑛
]

𝑃
1
𝐿 + 𝑄

1
𝑀+ 𝑅𝑁

𝑓 (𝑥
𝑛
) ,

(9)
where,

𝐿 =

𝑓 (𝑤
𝑛
) 𝑓 [𝑥

𝑛
, 𝑧
𝑛
] − 𝑓 (𝑧

𝑛
) 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]

𝑤
𝑛
− 𝑧𝑛

,

𝑀 =

𝑓 (𝑤
𝑛
) 𝑓
󸀠

(𝑥
𝑛
) − 𝑓 (𝑥

𝑛
) 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]

𝑤
𝑛
− 𝑥
𝑛

,

𝑁 =

𝑓 (𝑤
𝑛
) 𝑓 [𝑥

𝑛
, 𝑡
𝑛
] − 𝑓 (𝑡

𝑛
) 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]

𝑤
𝑛
− 𝑡
𝑛

,

𝑃
1
= (𝑥
𝑛
− 𝑡
𝑛
) 𝑓 (𝑥

𝑛
) 𝑓 (𝑡
𝑛
) ,

𝑄
1
= (𝑡
𝑛
− 𝑧
𝑛
) 𝑓 (𝑡
𝑛
) 𝑓 (𝑧
𝑛
) ,

𝑅 = (𝑧
𝑛
− 𝑥
𝑛
) 𝑓 (𝑧
𝑛
) 𝑓 (𝑥

𝑛
) ,

(10)

and rational polynomial of the following form:

𝑝
4
(𝑥) =

(𝑥 − 𝑥
𝑖
) + 𝜆

𝜇(𝑥 − 𝑥
𝑖
)
3

+ ](𝑥 − 𝑥
𝑖
)
2

+ 𝜉 (𝑥 − 𝑥
𝑖
) + 𝜂

. (11)

The efficiency index of the above sixteenth order method is
1.741. The method involves one derivative evaluation.

In this paper, we present a general class of derivative free
𝑛-point iterative method which satisfies Kung and Tarub’s
Hypothesis [9]. Proposed schemes require 𝑛 functional eval-
uations to acquire the convergence order 2𝑛−1 and efficiency
index can have 2(𝑛−1)/𝑛. The contents of the paper are sum-
marized as follows. In Section 2, we present a general class
of 𝑛-point iterative scheme and its special cases with second,
fourth, eighth, and sixteenth order convergence. Section 3
consists of the convergence analysis of the iterative methods
discussed in Section 2. In the last section of the paper, we give
concluding remarks and some numerical results to show the
effectiveness of the proposed methods.

2. Higher Order Derivative
Free Optimal Methods

In this section, we give a general class of 𝑛-point iterative
method involving 𝑛 functional evaluations having order of



The Scientific World Journal 3

convergence 2𝑛−1. Thus, the scheme is optimal in the sense
of the conjecture of Kung and Traub [9].

Consider a rational polynomial of degree 𝑛−1 as follows:

𝑟
𝑛−1

(𝑡) =

𝑝
1
(𝑡)

𝑞
𝑛−2

(𝑡)

, (12)

where,

𝑝
1
(𝑡) = 𝑎

0
+ 𝑎
1
(𝑡 − 𝑥) ,

𝑞
𝑛−2

(𝑡) = 1 + 𝑏
1
(𝑡 − 𝑥) + ⋅ ⋅ ⋅ + 𝑏

𝑛−2
(𝑡 − 𝑥)

𝑛−2

, 𝑛 ≥ 2,

𝑞
0
≡ 1.

(13)

We approximate 𝑓(𝑥) by rational function given by (12)
to construct a general class of 𝑛-point iterative scheme.Then,
the root of nonlinear equation 𝑓(𝑥) = 0 is the root of
the numerator of the rational interpolant of degree 𝑛 − 1

for the 𝑛-point method. The unknowns 𝑎
0
, 𝑎
1
, 𝑏
1
, . . . , 𝑏

𝑛−1
are

determined by the following interpolating conditions:

𝑟
𝑛−1

(𝑥) = 𝑓 (𝑥) ,

𝑟
𝑛−1

(𝑤
𝑘
) = 𝑓 (𝑤

𝑘
) , 𝑘 = 1, . . . , 𝑛 − 1, 𝑛 ≥ 2.

(14)

Then, the general 𝑛-point iterative method is given by

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

.

.

.

𝑤
𝑛
= 𝑥 −

𝑎
0

𝑎
1

, 𝑛 ≥ 2.

(15)

Now, we are going to derive its special cases. For 𝑛 = 2 in
(14)-(15),

𝑟
1
(𝑡) = 𝑎

0
+ 𝑎
1
(𝑡 − 𝑥) . (16)

We find 𝑎
0
and 𝑎
1
such that

𝑟
1
(𝑥) = 𝑓 (𝑥) , 𝑟

1
(𝑤
1
) = 𝑓 (𝑤

1
) . (17)

So, the two-point iterative scheme becomes

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

𝑤
2
= 𝑥 −

𝑓 (𝑥)

𝑓 [𝑤
1
, 𝑥]

.

(18)

The iterative scheme (18) is the same as given by Steffensen
[11] for 𝛽 = 1; thus, is a particular case of our scheme given
by (14)-(15).

For 𝑛 = 3, we have

𝑟
2
(𝑡) =

𝑎
0
+ 𝑎
1
(𝑡 − 𝑥)

1 + 𝑏
1
(𝑡 − 𝑥)

. (19)

We find 𝑎
0
, 𝑎
1
, and 𝑏

1
using the following conditions:

𝑟
2
(𝑥) = 𝑓 (𝑥) , 𝑟

2
(𝑤
1
) = 𝑓 (𝑤

1
) ,

𝑟
2
(𝑤
2
) = 𝑓 (𝑤

2
) .

(20)

By using conditions (20), we have

𝑎
0
= 𝑓 (𝑥) ,

𝑎
1
= 𝑓 [𝑤

2
, 𝑥] + 𝑏

1
𝑓 (𝑤
2
) ,

𝑏
1
=

𝑓 [𝑤
1
, 𝑥] − 𝑓 [𝑤

2
, 𝑥]

𝑓 (𝑤
2
) − 𝑓 (𝑤

1
)

.

(21)

Now, using (21), we have the following three-point iterative
scheme:

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

𝑤
2
= 𝑥 −

𝑓 (𝑥)

𝑓 [𝑤
1
, 𝑥]

,

𝑤
3
= 𝑥 −

𝑓 (𝑥) (𝑓 (𝑤
2
) − 𝑓 (𝑤

1
))

𝑓 (𝑤
2
) 𝑓 [𝑤

1
, 𝑥] − 𝑓 (𝑤

1
) 𝑓 [𝑤

2
, 𝑥]

.

(22)

For 𝑛 = 4, we have the following rational interpolant:

𝑟
3
(𝑡) =

𝑎
0
+ 𝑎
1
(𝑡 − 𝑥)

1 + 𝑏
1
(𝑡 − 𝑥) + 𝑏

2
(𝑡 − 𝑥)

2
, (23)

such that

𝑟
3
(𝑥) = 𝑓 (𝑥) , 𝑟

3
(𝑤
1
) = 𝑓 (𝑤

1
) ,

𝑟
3
(𝑤
2
) = 𝑓 (𝑤

2
) , 𝑟

3
(𝑤
3
) = 𝑓 (𝑤

3
) .

(24)

The conditions (24) are used to determine the unknowns 𝑎
0
,

𝑎
1
, 𝑏
1
, and 𝑏

2
. Thus, we attain a four-point iterative method as

follows:

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

𝑤
2
= 𝑥 −

𝑓 (𝑥)

𝑓 [𝑤
1
, 𝑥]

,

𝑤
3
= 𝑥 −

𝑓 (𝑥) (𝑓 (𝑤
2
) − 𝑓 (𝑤

1
))

𝑓 (𝑤
2
) 𝑓 [𝑤

1
, 𝑥] − 𝑓 (𝑤

1
) 𝑓 [𝑤

2
, 𝑥]

,

𝑤
4
= 𝑥 −

𝑓 (𝑥) (ℎ
1
+ ℎ
2
+ ℎ
3
)

ℎ
1
𝑓 [𝑤
1
, 𝑥] + ℎ

2
𝑓 [𝑤
2
, 𝑥] + ℎ

3
𝑓 [𝑤
3
, 𝑥]

,

(25)

where,

ℎ
1
= 𝑓 (𝑤

2
) 𝑓 (𝑤

3
) (𝑤
3
− 𝑤
2
) ,

ℎ
2
= 𝑓 (𝑤

1
) 𝑓 (𝑤

3
) (𝑤
1
− 𝑤
3
) ,

ℎ
3
= 𝑓 (𝑤

1
) 𝑓 (𝑤

2
) (𝑤
2
− 𝑤
1
) .

(26)
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For 𝑛 = 5, we have the following five-point iterative scheme:

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

𝑤
2
= 𝑥 −

𝑓 (𝑥)

𝑓 [𝑤
1
, 𝑥]

,

𝑤
3
= 𝑥 −

𝑓 (𝑥) (𝑓 (𝑤
2
) − 𝑓 (𝑤

1
))

𝑓 (𝑤
2
) 𝑓 [𝑤

1
, 𝑥] − 𝑓 (𝑤

1
) 𝑓 [𝑤

2
, 𝑥]

,

𝑤
4
= 𝑥 −

𝑓 (𝑥) (ℎ
1
+ ℎ
2
+ ℎ
3
)

ℎ
1
𝑓 [𝑤
1
, 𝑥] + ℎ

2
𝑓 [𝑤
2
, 𝑥] + ℎ

3
𝑓 [𝑤
3
, 𝑥]

,

𝑤
5
= 𝑥 −

𝑎
0

𝑎
1

,

(27)

where,

𝑟
4
(𝑡) =

𝑎
0
+ 𝑎
1
(𝑡 − 𝑥)

1 + 𝑏
1
(𝑡 − 𝑥) + 𝑏

2
(𝑡 − 𝑥)

2

+ 𝑏
3
(𝑡 − 𝑥)

3
, (28)

such that

𝑟
4
(𝑥) = 𝑓 (𝑥) , 𝑟

4
(𝑤
1
) = 𝑓 (𝑤

1
) ,

𝑟
4
(𝑤
2
) = 𝑓 (𝑤

2
) , 𝑟

4
(𝑤
3
) = 𝑓 (𝑤

3
) ,

𝑟
4
(𝑤
4
) = 𝑓 (𝑤

4
) .

(29)

The interpolating conditions (29) yield

𝑎
0
= 𝑓 (𝑥) ,

𝑎
1
= (𝑚
1
𝑓 [𝑤
1
, 𝑥] + 𝑚

2
𝑓 [𝑤
2
, 𝑥] + 𝑚

3
𝑓 [𝑤
3
, 𝑥]

+𝑚
4
𝑓 [𝑤
4
, 𝑥]) (𝑚

1
+ 𝑚
2
+ 𝑚
3
+ 𝑚
4
)
−1

,

(30)

where,

𝑚
1
= 𝑓 (𝑤

2
) 𝑓 (𝑤

3
) 𝑓 (𝑤

4
)

× {− (𝑤
3
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
3
)

+ (𝑤
2
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
2
)}

− (𝑤
2
− 𝑥) (𝑤

3
− 𝑥) ℎ

1
𝑓 (𝑤
4
)

𝑚
2
= 𝑓 (𝑤

1
) 𝑓 (𝑤

3
) 𝑓 (𝑤

4
)

× {(𝑤
3
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
3
)

− (𝑤
1
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
1
)}

− (𝑤
1
− 𝑥) (𝑤

3
− 𝑥) ℎ

2
𝑓 (𝑤
4
)

𝑚
3
= 𝑓 (𝑤

1
) 𝑓 (𝑤

2
) 𝑓 (𝑤

4
)

× {− (𝑤
2
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
2
)

+ (𝑤
1
− 𝑥) (𝑤

4
− 𝑥) (𝑤

4
− 𝑤
1
)}

− (𝑤
1
− 𝑥) (𝑤

2
− 𝑥) ℎ

3
𝑓 (𝑤
4
)

𝑚
4
= 𝑓 (𝑤

1
) 𝑓 (𝑤

2
) 𝑓 (𝑤

3
)

× {(𝑤
2
− 𝑥) (𝑤

3
− 𝑥) (𝑤

3
− 𝑤
2
)

− (𝑤
1
− 𝑥) (𝑤

3
− 𝑥) (𝑤

3
− 𝑤
1
)}

+ (𝑤
1
− 𝑥) (𝑤

2
− 𝑥) ℎ

3
𝑓 (𝑤
3
) ,

(31)

and ℎ
1
, ℎ
2
, ℎ
3
are given as in (26). Hence, we obtain the

following iterative method:

𝑤
1
= 𝑥 + 𝛽𝑓 (𝑥) ,

𝑤
2
= 𝑥 −

𝑓 (𝑥)

𝑓 [𝑤
1
, 𝑥]

,

𝑤
3
= 𝑥 −

𝑓 (𝑥) (𝑓 (𝑤
2
) − 𝑓 (𝑤

1
))

𝑓 (𝑤
2
) 𝑓 [𝑤

1
, 𝑥] − 𝑓 (𝑤

1
) 𝑓 [𝑤

2
, 𝑥]

,

𝑤
4
= 𝑥 −

𝑓 (𝑥) (ℎ
1
+ ℎ
2
+ ℎ
3
)

ℎ
1
𝑓 [𝑤
1
, 𝑥] + ℎ

2
𝑓 [𝑤
2
, 𝑥] + ℎ

3
𝑓 [𝑤
3
, 𝑥]

,

𝑤
5
= 𝑥 − (𝑓 (𝑥) (𝑚

1
+ 𝑚
2
+ 𝑚
3
+ 𝑚
4
))

× (𝑚
1
𝑓 [𝑤
1
, 𝑥] + 𝑚

2
𝑓 [𝑤
2
, 𝑥]

+𝑚
3
𝑓 [𝑤
3
, 𝑥] + 𝑚

4
𝑓 [𝑤
4
, 𝑥])
−1

.

(32)

We, now, give the convergence analysis of the proposed
iterative methods (18), (22), (25), and (32).

3. Convergence Analysis

Theorem 1. Let us consider 𝜔 ∈ 𝐼 as the simple root of
sufficiently differentiable function 𝑓 : 𝐼 ⊆ R → R in the
neighborhood of the root for interval 𝐼. If 𝑥 is sufficiently close
to 𝜔, then, for every 𝛽 ∈ R\ {−1}, the iterative methods defined
by (18) and (22) are second and fourth order convergent,
respectively, with the error equations given by

𝑒
𝑛+1

= 𝑐
2
(1 + 𝛽) 𝑒

2

𝑛
+ 𝑂 (𝑒

3

𝑛
) ,

𝑒
𝑛+1

= (𝑐
3

2
− 𝑐
2
𝑐
3
+ 2𝑐
3

2
𝛽 + 𝑐
3

2
𝛽
2

−2𝑐
2
𝑐
3
𝛽 − 𝑐
2
𝑐
3
𝛽
2

) 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) ,

(33)
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respectively, where,

𝑐
𝑘
=

1

𝑘!

𝑓
(𝑘)

(𝜔)

𝑓
󸀠
(𝜔)

, 𝑘 = 2, 3, . . . (34)

Proof. Let 𝑥 = 𝜔 + 𝑒
𝑛
, where 𝜔 is the root of 𝑓 and 𝑒

𝑛
is the

error at 𝑛th step. Now, using Taylor expansion of 𝑓(𝑥) about
the root 𝜔, we have

𝑓 (𝑥) = 𝑓
󸀠

(𝜔) [𝑒
𝑛
+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛
+ 𝑐
4
𝑒
4

𝑛

+ ⋅ ⋅ ⋅ + 𝑐
8
𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
)] ,

(35)

where 𝑐
𝑘
is defined by (34). Taylor’s expansions for 𝑤

1
and

𝑓(𝑤
1
) are

𝑤
1
= 𝑒
𝑛
+ 𝜔 + 𝛽 (𝑒

𝑛
+ 𝑐
2
𝑒
2

𝑛
+ 𝑐
3
𝑒
3

𝑛

+𝑐
4
𝑒
4

𝑛
+ 𝑐
5
𝑒
5

𝑛
) + 𝑂 (𝑒

6

𝑛
) ,

(36)

𝑓 (𝑤
1
)

= 𝑓
󸀠

(𝜔) [(1 + 𝛽) 𝑒
𝑛
+ (3𝛽𝑐

2
+ 𝑐
2
+ 𝑐
2
𝛽
2

) 𝑒
2

𝑛

+ (2𝑐
2

2
𝛽 + 2𝑐

2

2
𝛽
2

+ 𝑐
3
+ 4𝛽𝑐
3

+ 3𝑐
3
𝛽
2

+ 𝑐
3
𝛽
3

) 𝑒
3

𝑛

+ (5𝑐
2
𝛽𝑐
3
+ 8𝑐
2
𝛽
2

𝑐
3
+ 3𝑐
3
𝛽
3

+ 𝑐
4
+ 5𝛽𝑐
4
+ 6𝛽
2

𝑐
4
+ 4𝑐
4
𝛽
3

+ 𝑐
4
𝛽
4

+ 𝑐
3

2
𝛽
2

) 𝑒
4

𝑛

+ (𝑐
5
+ 6𝛽𝑐
5
+ 10𝑐
5
𝛽
2

+ 10𝑐
5
𝛽
3

+ 5𝑐
5
𝛽
4

+ 𝑐
5
𝛽
5

+ 6𝑐
2
𝛽𝑐
4
+ 14𝑐
2
𝑐
4
𝛽
2

+ 12𝑐
4
𝑐
2
𝛽
3

+ 4𝑐
4
𝑐
2
𝛽
4

+ 5𝑐
2

2
𝑐
3
𝛽
2

+ 3𝑐
2

3
𝛽 + 6𝑐

2

3
𝛽
2

+ 3𝑐
3
𝛽
3

𝑐
2

2
+ 3𝑐
2

3
𝛽
3

) 𝑒
5

𝑛
+ 𝑂 (𝑒

6

𝑛
)] .

(37)

Using (35), (36), and (37), we have

𝑤
2
= 𝜔 + 𝑐

2
(1 + 𝛽) 𝑒

2

𝑛

+ (−2𝑐
2

2
− 2𝑐
2

2
𝛽 + 2𝑐

3
+ 3𝛽𝑐
3
+ 𝑐
3
𝛽
2

− 𝑐
2

2
𝛽
2

) 𝑒
3

𝑛

+ (4𝑐
3

2
+ 5𝑐
3

2
𝛽 − 7𝑐

2
𝑐
3
− 10𝑐
2
𝛽𝑐
3
− 7𝑐
2
𝛽
2

𝑐
3

+ 3𝑐
3

2
𝛽
2

− 2𝑐
3
𝛽
3

𝑐
2
+ 3𝑐
4
+ 6𝛽𝑐
4
+ 4𝑐
4
𝛽
2

+𝑐
4
𝛽
3

+ 𝑐
3

2
𝛽
3

) 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) ,

(38)

which shows that the method (18) is quadratically convergent
for all 𝛽 ∈ R \ {−1}. Again using Taylor expansion of 𝑓(𝑤

2
),

we have

𝑓 (𝑤
2
) = 𝑓
󸀠

(𝜔) [𝑐
2
(1 + 𝛽) 𝑒

2

𝑛

+ (−2𝑐
2

2
− 2𝑐
2

2
𝛽 + 2𝑐

3

+3𝛽𝑐
3
+ 𝑐
3
𝛽
2

− 𝑐
2

2
𝛽
2

) 𝑒
3

𝑛

+ (5𝑐
3

2
+ 7𝑐
3

2
𝛽 − 7𝑐

2
𝑐
3
− 10𝑐
2
𝛽𝑐
3

− 7𝑐
2
𝛽
2

𝑐
3
+ 4𝑐
3

2
𝛽
2

− 2𝑐
3
𝛽
3

𝑐
2
+ 3𝑐
4
+ 6𝛽𝑐
4

+4𝑐
4
𝛽
2

+ 𝑐
4
𝛽
3

+ 𝑐
3

2
𝛽
3

) 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
)] .

(39)

Now, using (35)–(39), we see that the order of convergence of
the method (22) is four and the error equation is given by

𝑒
𝑛+1

= (𝑐
3

2
+ 2𝑐
3

2
𝛽 − 𝑐
2
𝑐
3
− 2𝑐
2
𝑐
3
𝛽

−𝑐
2
𝑐
3
𝛽
2

+ 𝑐
3

2
𝛽
2

) 𝑒
4

𝑛
+ 𝑂 (𝑒

5

𝑛
) .

(40)

Theorem 2. Let us consider 𝜔 ∈ 𝐼 as the simple root of
sufficiently differentiable function 𝑓 : 𝐼 ⊆ R → R in the
neighborhood of the root for interval 𝐼. If𝑥 is sufficiently close to
𝜔, then for all𝛽 ∈ R\{−1}, the iterativemethods defined by (25)
and (32) are eighth and sixteenth order convergent, respectively,
with the error equations given by

𝑒
𝑛+1

= 𝑐
2

2
(𝑐
5

2
𝛽
4

− 3𝑐
3
𝑐
3

2
𝛽
4

+ 4𝑐
5

2
𝛽
3

+ 𝑐
4
𝑐
2

2
𝛽
4

+ 2𝑐
2

3
𝑐
2
𝛽
4

− 12𝑐
3
𝑐
3

2
𝛽
3

+ 6𝑐
5

2
𝛽
2

− 𝑐
4
𝑐
3
𝛽
4

+ 4𝑐
4
𝑐
2

2
𝛽
3

+ 8𝑐
2

3
𝑐
2
𝛽
3

− 18𝑐
3
𝑐
3

2
𝛽
2

+ 4𝑐
5

2
𝛽 − 4𝑐

4
𝑐
3
𝛽
3

+ 6𝑐
4
𝑐
2

2
𝛽
2

+ 12𝑐
2

3
𝑐
2
𝛽
2

− 12𝑐
3
𝑐
3

2
𝛽 + 𝑐
5

2
− 6𝑐
4
𝑐
3
𝛽
2

+ 4𝑐
4
𝑐
2

2
𝛽 + 8𝛽𝑐

2
𝑐
2

3
− 3𝑐
3

2
𝑐
3

−4𝛽𝑐
3
𝑐
4
+ 𝑐
2

2
𝑐
4
+ 2𝑐
2
𝑐
2

3
− 𝑐
3
𝑐
4
) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) ,

𝑒
𝑛+1

= ((4𝑐
5

2
𝑐
3
𝑐
5
− 𝑐
2

3
𝑐
4
𝑐
5
+ 2𝑐
2
𝑐
2

3
𝑐
2

4
+ 2𝑐
2
𝑐
3

3
𝑐
5

− 4𝑐
3

2
𝑐
3
𝑐
2

4
− 5𝑐
3

2
𝑐
2

3
𝑐
5
− 𝑐
4

2
𝑐
4
𝑐
5
+ 18𝑐
4

2
𝑐
2

3
𝑐
4

− 13𝑐
6

2
𝑐
3
𝑐
4
− 9𝑐
2

2
𝑐
3

3
𝑐
4
+ 2𝑐
5

2
𝑐
2

4
+ 𝑐
4

3
𝑐
4

− 2𝑐
2
𝑐
5

3
− 𝑐
7

2
𝑐
5
− 7𝑐
9

2
𝑐
3
+ 3𝑐
8

2
𝑐
4
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+ 11𝑐
3

2
𝑐
4

3
− 21𝑐
5

2
𝑐
3

3
+ 18𝑐
7

2
𝑐
2

3

+2𝑐
2

2
𝑐
3
𝑐
4
𝑐
5
+ 𝑐
11

2
) 𝑐
4

2
𝛽
8

+ ⋅ ⋅ ⋅ + (4𝑐
5

2
𝑐
3
𝑐
5
− 𝑐
2

3
𝑐
4
𝑐
5
+ 2𝑐
2
𝑐
2

3
𝑐
2

4
+ 2𝑐
2
𝑐
3

3
𝑐
5

− 4𝑐
3

2
𝑐
3
𝑐
2

4
− 5𝑐
3

2
𝑐
2

3
𝑐
5
− 𝑐
4

2
𝑐
4
𝑐
5

+ 18𝑐
4

2
𝑐
2

3
𝑐
4
− 13𝑐
6

2
𝑐
3
𝑐
4
− 9𝑐
2

2
𝑐
3

3
𝑐
4

+ 2𝑐
5

2
𝑐
2

4
+ 𝑐
4

3
𝑐
4
− 2𝑐
2
𝑐
5

3
− 𝑐
7

2
𝑐
5
− 7𝑐
9

2
𝑐
3

+ 3𝑐
8

2
𝑐
4
+ 11𝑐
3

2
𝑐
4

3
− 21𝑐
5

2
𝑐
3

3
+ 18𝑐
7

2
𝑐
2

3

+2𝑐
2

2
𝑐
3
𝑐
4
𝑐
5
+ 𝑐
11

2
) 𝑐
4

2
) 𝑒
16

𝑛
+ 𝑂 (𝑒

17

𝑛
) ,

(41)

where,

𝑐
𝑘
=

1

𝑘!

𝑓
(𝑘)

(𝜔)

𝑓
󸀠
(𝜔)

, 𝑘 = 2, 3, . . . (42)

Proof. Let 𝑥 = 𝜔 + 𝑒
𝑛
, where 𝜔 is the root of 𝑓 and 𝑒

𝑛
is the

error in the approximation at 𝑛th iteration. We will use (35),
(37), (39), and (40) up to 𝑂(𝑒30

𝑛
) in this result and set

𝑤
3
= 𝜔 + (𝑐

3

2
+ 2𝑐
3

2
𝛽 − 𝑐
2
𝑐
3
− 2𝑐
2
𝑐
3
𝛽

−𝑐
2
𝑐
3
𝛽
2

+ 𝑐
3

2
𝛽
2

) 𝑒
4

𝑛

+ (4𝑐
3
𝛽
3

𝑐
2

2
− 2𝑐
4

2
𝛽
3

− 𝑐
2

3
𝛽
3

− 𝑐
4
𝛽
3

𝑐
2

− 4𝑐
2
𝛽
2

𝑐
4
+ 14𝑐
2

2
𝛽
2

𝑐
3
− 6𝑐
4

2
𝛽
2

− 4𝑐
2

3
𝛽
2

+ 18𝑐
2

2
𝛽𝑐
3
− 5𝑐
2
𝛽𝑐
4
− 8𝑐
4

2
𝛽 − 5𝑐

2

3
𝛽

−4𝑐
4

2
− 2𝑐
2
𝑐
4
+ 8𝑐
2

2
𝑐
3
− 2𝑐
2

3
) 𝑒
5

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
30

𝑛
) .

(43)

Again, using Taylor expansion of 𝑓(𝑤
3
), we have

𝑓 (𝑤
3
) = 𝑓
󸀠

(𝜔) [(𝑐
3

2
+ 2𝑐
3

2
𝛽 − 𝑐
2
𝑐
3
− 2𝑐
2
𝑐
3
𝛽

−𝑐
2
𝑐
3
𝛽
2

+ 𝑐
3

2
𝛽
2

) 𝑒
4

𝑛

+ (4𝑐
3
𝛽
3

𝑐
2

2
− 2𝑐
4

2
𝛽
3

− 𝑐
2

3
𝛽
3

− 𝑐
4
𝛽
3

𝑐
2

− 4𝑐
2
𝛽
2

𝑐
4
+ 14𝑐
2

2
𝛽
2

𝑐
3
− 6𝑐
4

2
𝛽
2

− 4𝑐
2

3
𝛽
2

+ 18𝑐
2

2
𝛽𝑐
3
− 5𝑐
2
𝛽𝑐
4
− 8𝑐
4

2
𝛽 − 5𝑐

2

3
𝛽

−4𝑐
4

2
− 2𝑐
2
𝑐
4
+ 8𝑐
2

2
𝑐
3
− 2𝑐
2

3
) 𝑒
5

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
30

𝑛
)] .

(44)

Now, using (35)–(39), (43), and (44), we see that the method
(25) has eighth order convergence with the error equation

𝑒
𝑛+1

= 𝑐
2

2
(𝑐
5

2
𝛽
4

− 3𝑐
3
𝑐
3

2
𝛽
4

+ 4𝑐
5

2
𝛽
3

+ 𝑐
4
𝑐
2

2
𝛽
4

+ 2𝑐
2

3
𝑐
2
𝛽
4

− 12𝑐
3
𝑐
3

2
𝛽
3

+ 6𝑐
5

2
𝛽
2

− 𝑐
4
𝑐
3
𝛽
4

+ 4𝑐
4
𝑐
2

2
𝛽
3

+ 8𝑐
2

3
𝑐
2
𝛽
3

− 18𝑐
3
𝑐
3

2
𝛽
2

+ 4𝑐
5

2
𝛽 − 4𝑐

4
𝑐
3
𝛽
3

+ 6𝑐
4
𝑐
2

2
𝛽
2

+ 12𝑐
2

3
𝑐
2
𝛽
2

− 12𝑐
3
𝑐
3

2
𝛽 + 𝑐
5

2
− 6𝑐
4
𝑐
3
𝛽
2

+ 4𝑐
4
𝑐
2

2
𝛽 + 8𝛽𝑐

2
𝑐
2

3
− 3𝑐
3

2
𝑐
3

−4𝛽𝑐
3
𝑐
4
+ 𝑐
2

2
𝑐
4
+ 2𝑐
2
𝑐
2

3
− 𝑐
3
𝑐
4
) 𝑒
8

𝑛
+ 𝑂 (𝑒

9

𝑛
) .

(45)

To find the error equation of (32), we use (45) up to 𝑂(𝑒30
𝑛
)

and set

𝑤
4
= 𝑐
2

2
(𝑐
5

2
𝛽
4

− 3𝑐
3
𝑐
3

2
𝛽
4

+ 4𝑐
5

2
𝛽
3

+ 𝑐
4
𝑐
2

2
𝛽
4

+ 2𝑐
2

3
𝑐
2
𝛽
4

− 12𝑐
3
𝑐
3

2
𝛽
3

+ 6𝑐
5

2
𝛽
2

− 𝑐
4
𝑐
3
𝛽
4

+ 4𝑐
4
𝑐
2

2
𝛽
3

+ 8𝑐
2

3
𝑐
2
𝛽
3

− 18𝑐
3
𝑐
3

2
𝛽
2

+ 4𝑐
5

2
𝛽 − 4𝑐

4
𝑐
3
𝛽
3

+ 6𝑐
4
𝑐
2

2
𝛽
2

+ 12𝑐
2

3
𝑐
2
𝛽
2

− 12𝑐
3
𝑐
3

2
𝛽 + 𝑐
5

2
− 6𝑐
4
𝑐
3
𝛽
2

+ 4𝑐
4
𝑐
2

2
𝛽 + 8𝛽𝑐

2
𝑐
2

3
− 3𝑐
3

2
𝑐
3

−4𝛽𝑐
3
𝑐
4
+ 𝑐
2

2
𝑐
4
+ 2𝑐
2
𝑐
2

3
− 𝑐
3
𝑐
4
) 𝑒
8

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
30

𝑛
) .

(46)

Taylor expansion of 𝑓(𝑤
4
) is

𝑓 (𝑤
4
) = 𝑓
󸀠

(𝜔) [(𝑐
7

2
𝛽
4

+ 𝑐
4

2
𝑐
4
+ 𝑐
7

2
+ 𝑐
4
𝛽
4

𝑐
4

2

− 𝑐
2

2
𝑐
4
𝑐
3
− 𝑐
4
𝑐
3
𝛽
4

𝑐
2

2
+ 8𝑐
3

2
𝑐
2

3
𝛽
3

+ 2𝛽
4

𝑐
2

3
𝑐
3

2
+ 8𝑐
3

2
𝛽𝑐
2

3
+ 12𝑐
3

2
𝛽
2

𝑐
2

3

− 18𝑐
5

2
𝑐
3
𝛽
2

− 12𝑐
5

2
𝑐
3
𝛽 − 3𝛽

4

𝑐
5

2
𝑐
3

+ 6𝑐
4

2
𝑐
4
𝛽
2

+ 4𝑐
4

2
𝑐
4
𝛽
3

+ 4𝑐
4

2
𝑐
4
𝛽

− 12𝑐
5

2
𝑐
3
𝛽
3

+ 6𝑐
7

2
𝛽
2

+ 4𝑐
7

2
𝛽
3

+ 4𝑐
7

2
𝛽

− 3𝑐
5

2
𝑐
3
+ 2𝑐
3

2
𝑐
2

3
− 6𝑐
3
𝛽
2

𝑐
4
𝑐
2

2

−4𝑐
2

2
𝑐
4
𝛽𝑐
3
− 4𝑐
4
𝑐
2

2
𝑐
3
𝛽
3

) 𝑒
8

𝑛

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
30

𝑛
)] .

(47)
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Table 1: Test functions and exact roots.

Numerical example Exact roots
𝑓
1
(𝑥) = √𝑥

4
+ 8 sin(𝜋/(𝑥2 + 2)) + 𝑥3/(𝑥4 + 1) − √6 + 8/17 𝜔

1
= −2

𝑓
2
(𝑥) = sin(𝑥) − 𝑥/100 𝜔

2
= 0

𝑓
3
(𝑥) = (1/3)𝑥

4

− 𝑥
2

− (1/3)𝑥 + 1 𝜔
3
= 1

𝑓
4
(𝑥) = 𝑒

sin(𝑥)
− 1 − 𝑥/5 𝜔

4
= 0

𝑓
5
(𝑥) = 𝑥𝑒

𝑥
2

− (sin(𝑥))2 + 3 cos(𝑥) + 5 𝜔
5
≈ −1.207647827130919

𝑓
6
(𝑥) = 𝑒

−𝑥

+ cos(𝑥) 𝜔
6
≈ 1.746139530408013

𝑓
7
(𝑥) = 10𝑥𝑒

−𝑥
2

− 1 𝜔
7
≈ 1.679630610428450

𝑓
8
(𝑥) = 𝑥

3

+ 4𝑥
2

− 15 𝜔
8
≈ 1.631980805566063

Hence, using (35)–(39), (43), (44), (46), and (47), we see that
iterative method (32) is sixteenth order convergent with the
error equation given by

𝑒
𝑛+1

= ((4𝑐
5

2
𝑐
3
𝑐
5
− 𝑐
2

3
𝑐
4
𝑐
5
+ 2𝑐
2
𝑐
2

3
𝑐
2

4
+ 2𝑐
2
𝑐
3

3
𝑐
5

− 4𝑐
3

2
𝑐
3
𝑐
2

4
− 5𝑐
3

2
𝑐
2

3
𝑐
5
− 𝑐
4

2
𝑐
4
𝑐
5

+ 18𝑐
4

2
𝑐
2

3
𝑐
4
− 13𝑐
6

2
𝑐
3
𝑐
4
− 9𝑐
2

2
𝑐
3

3
𝑐
4
+ 2𝑐
5

2
𝑐
2

4

+ 𝑐
4

3
𝑐
4
− 2𝑐
2
𝑐
5

3
− 𝑐
7

2
𝑐
5
− 7𝑐
9

2
𝑐
3

+ 3𝑐
8

2
𝑐
4
+ 11𝑐
3

2
𝑐
4

3
− 21𝑐
5

2
𝑐
3

3
+ 18𝑐
7

2
𝑐
2

3

+2𝑐
2

2
𝑐
3
𝑐
4
𝑐
5
+ 𝑐
11

2
) 𝑐
4

2
𝛽
8

+ ⋅ ⋅ ⋅ + (4𝑐
5

2
𝑐
3
𝑐
5
− 𝑐
2

3
𝑐
4
𝑐
5
+ 2𝑐
2
𝑐
2

3
𝑐
2

4
+ 2𝑐
2
𝑐
3

3
𝑐
5

− 4𝑐
3

2
𝑐
3
𝑐
2

4
− 5𝑐
3

2
𝑐
2

3
𝑐
5
− 𝑐
4

2
𝑐
4
𝑐
5
+ 18𝑐
4

2
𝑐
2

3
𝑐
4

− 13𝑐
6

2
𝑐
3
𝑐
4
− 9𝑐
2

2
𝑐
3

3
𝑐
4
+ 2𝑐
5

2
𝑐
2

4
+ 𝑐
4

3
𝑐
4
− 2𝑐
2
𝑐
5

3

− 𝑐
7

2
𝑐
5
− 7𝑐
9

2
𝑐
3
+ 3𝑐
8

2
𝑐
4
+ 11𝑐
3

2
𝑐
4

3

− 21𝑐
5

2
𝑐
3

3
+ 18𝑐
7

2
𝑐
2

3
+ 2𝑐
2

2
𝑐
3
𝑐
4
𝑐
5

+𝑐
11

2
) 𝑐
4

2
) 𝑒
16

𝑛
+ 𝑂 (𝑒

17

𝑛
) .

(48)

Remark 3. From Theorems 1 and 2, it can be seen that the
iterative schemes (18), (22), (25), and (32) are second, fourth,
eighth, and sixteenth order convergent requiring two, three,
four, and five functional evaluations, respectively. Hence,
the proposed iterative schemes (18), (22), (25), and (32) are
optimal in the sense of the hypothesis of Kung and Traub [9]
with the efficiency indices 1.414, 1.587, 1.681, 1.741. Also, it
is clear that (14)-(15) is a general 𝑛-point schemewith optimal
order of convergence 2𝑛−1.The efficiency index of this scheme
is 2(𝑛−1)/𝑛.

4. Numerical Results

In this section, we present some test functions to demon-
strate the performance of the newly developed sixteenth

order scheme (32) (FNMS-16). For the sake of comparison,
we consider the existing higher order convergent methods
based on rational interpolation. We consider the fourteenth
order method of Soleymani and Sharifi (4) (SS-14), the
sixteenth order method of Soleymani et al. (7) (SSS-16),
and the sixteenth order method of Sharma et al. (9) (SGG-
16). All the computations for the above-mentioned methods
are performed using Maple 16 with 4000 decimal digits
precision. The test functions given in Table 1 are taken from
[1, 2, 10]. We used almost all types of nonlinear functions,
polynomials, and transcendental functions to test the new
methods. Table 2 shows that the newly developed sixteenth
order methods are comparable with the existing methods
of this domain in terms of significant digits and number of
function evaluations per iteration. In many examples, the
newly developed methods perform better than the existing
methods. It can also be seen from the tables that, for the
choice of initial guess, near to the exact root or far from the
exact root, the performance of the new methods is better.

5. Attraction Basins

Let 𝜔
𝑖
be the roots of the complex polynomial 𝑝

𝑛
(𝑥), 𝑛 ≥

1, 𝑥 ∈ C, where 𝑖 = 1, 2, 3, . . . , 𝑛. We use two different
techniques to generate basins of attraction on MATLAB
software. We take a square box of [−2, 2] × [−2, 2] ∈ C in the
first technique. For every initial guess 𝑥

0
, a specific color is

assigned according to the exact root, and dark blue is assigned
for the divergence of themethod.Weuse |𝑓(𝑥

𝑘
)| < 10

−5 as the
stopping criteria for convergence and the maximum number
of iterations are 30. “Jet” is chosen as the colormap here.
For the second technique, the same scale is taken but each
initial guess is assigned a color depending upon the number
of iterations for the method to converge to any of the roots
of the given function. We use 25 as the maximum number
of iterations; the stopping criteria are the same as above
and colormap is selected as “hot.” The method is considered
divergent for that initial guess if it does not converge in the
maximum number of iterations and this case is displayed by
black color.

We take three test examples to obtain basins of attraction,
which are given as 𝑝

3
(𝑥) = 𝑥

3

− 1, 𝑝
4
(𝑥) = 𝑥

4

− 10𝑥
2

+ 9,
and 𝑝

5
(𝑥) = 𝑥

5

− 1. The roots of 𝑝
3
(𝑥) are 1.0, −0.5000 +

0.86605𝐼, and −0.5000−0.86605𝐼, the roots of𝑝
4
(𝑥) are−3, 3,
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Table 2: Comparison of various iterative methods.

𝑓(𝑥), 𝑥
0

(SS-14) (SGG-16) (SSS-16) (FNMS-16)
𝑓
1
, 𝑥
0
= −1.2

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.3𝑒 − 13 .1𝑒 − 15 .1𝑒 − 13 .1𝑒 − 15
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 181 .6𝑒 − 248 .1𝑒 − 211 .5𝑒 − 245
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.6𝑒 − 2538 .6𝑒 − 3751 .7𝑒 − 3379 .6𝑒 − 3916
𝑓
1
, 𝑥
0
= −3

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 5 .3𝑒 − 6 .3𝑒 − 7 .2𝑒 − 8

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.4𝑒 − 75 .1𝑒 − 96 .2𝑒 − 113 .1𝑒 − 132
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 1050 .3𝑒 − 1545 .2𝑒 − 1812 .5𝑒 − 2123
𝑓
2
, 𝑥
0
= 1.5

󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.95 .95 .64 .3𝑒 − 4
󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 10 .1𝑒 − 4 .3𝑒 − 6 .5𝑒 − 100
󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 88 .5𝑒 − 90 .1𝑒 − 111 .4𝑒 − 1632
𝑓
2
, 𝑥
0
= 3

󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 24 .1𝑒 − 25 .3𝑒 − 27 .2𝑒 − 44
󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.8𝑒 − 358 .8𝑒 − 425 .2𝑒 − 452 .9𝑒 − 743
󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

0 0 0 0

𝑓
3
, 𝑥
0
= 0.5

󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.5𝑒 − 8 .6𝑒 − 9 .3𝑒 − 9 .9𝑒 − 10
󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.8𝑒 − 114 .3𝑒 − 144 .4𝑒 − 149 .6𝑒 − 238
󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 1595 .1𝑒 − 2307 .1𝑒 − 2386 0

𝑓
3
, 𝑥
0
= 1.5

󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 11 .2𝑒 − 13 .2𝑒 − 11 .1𝑒 − 11
󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 158 .6𝑒 − 214 .1𝑒 − 179 .6𝑒 − 183
󵄨
󵄨
󵄨
󵄨
𝑓
3
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.3𝑒 − 2218 .8𝑒 − 3423 .2𝑒 − 2869 .6𝑒 − 2935

𝑓
4
, 𝑥
0
= 5

󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.8𝑒 − 1 .25 .8𝑒 − 1 .1𝑒 − 2
󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.4𝑒 − 15 .1𝑒 − 6 .3𝑒 − 16 .3𝑒 − 56
󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 213 .7𝑒 − 109 .9𝑒 − 262 .1𝑒 − 914
𝑓
4
, 𝑥
0
= 4

󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.92 .9𝑒 − 1 2.51 .1𝑒 − 17

󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.4𝑒 − 5 .1𝑒 − 25 .6𝑒 − 3 .3𝑒 − 295

󵄨
󵄨
󵄨
󵄨
𝑓
4
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 73 .1𝑒 − 423 .6𝑒 − 49 0
𝑓
5
, 𝑥
0
= −1

󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 3 .1𝑒 − 7 .8𝑒 − 4 .7𝑒 − 5
󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 66 .5𝑒 − 144 .9𝑒 − 80 .4𝑒 − 92
󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.4𝑒 − 946 .8𝑒 − 2327 .1𝑒 − 1294 .6𝑒 − 1488
𝑓
5
, 𝑥
0
= −0.6

󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.2𝑒44770 .4𝑒 − 1 .2𝑒44770 .1
󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.4𝑒44769 .4𝑒 − 40 .7𝑒44768 .3𝑒 − 23
󵄨
󵄨
󵄨
󵄨
𝑓
5
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.5𝑒44767 .4𝑒 − 664 .2𝑒44767 .8𝑒 − 386
𝑓
6
, 𝑥
0
= 0.5

󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.6𝑒 − 7 .9𝑒 − 9 .3𝑒 − 8 .1𝑒 − 14
󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.8𝑒 − 116 .1𝑒 − 152 .7𝑒 − 145 .1𝑒 − 254
󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 1748 .7𝑒 − 2456 .9𝑒 − 2332 .1𝑒 − 3999
𝑓
6
, 𝑥
0
= 3

󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.7 .53 .79 0.7𝑒 − 8
󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.9𝑒 − 5 .4𝑒 − 16 .2𝑒 − 5 .2𝑒 − 145
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Table 2: Continued.

𝑓(𝑥), 𝑥
0

(SS-14) (SGG-16) (SSS-16) (FNMS-16)
󵄨
󵄨
󵄨
󵄨
𝑓
6
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.7𝑒 − 102 .1𝑒 − 269 .5𝑒 − 125 0.3𝑒 − 2345
𝑓
7
, 𝑥
0
= 0

󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.1𝑒 − 6 .2𝑒 − 9 .1𝑒 − 5 .8𝑒 − 12
󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.5𝑒 − 99 .3𝑒 − 161 .6𝑒 − 98 .1𝑒 − 199
󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.3𝑒 − 1394 .6𝑒 − 2562 .5𝑒 − 1575 .3𝑒 − 3205
𝑓
7
, 𝑥
0
= 2.2

󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

1 .9𝑒 − 2 1 .8𝑒 − 8
󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

1 .6𝑒 − 40 D .9𝑒 − 136
󵄨
󵄨
󵄨
󵄨
𝑓
7
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

D .5𝑒 − 651 D .4𝑒 − 2183
𝑓
8
, 𝑥
0
= 0.5

󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.1𝑒7 .97 .1𝑒7 1.0
󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

16856.81 .2𝑒 − 25 16856.81 .8𝑒 − 15
󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

183.46 .3𝑒 − 435 183.46 .1𝑒 − 256
𝑓
8
, 𝑥
0
= 1

󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
1
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 2 .5𝑒 − 5 .2𝑒 − 2 .6𝑒 − 3
󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
2
)
󵄨
󵄨
󵄨
󵄨

.2𝑒 − 65 .1𝑒 − 109 .2𝑒 − 65 .7𝑒 − 67
󵄨
󵄨
󵄨
󵄨
𝑓
8
(𝑥
3
)
󵄨
󵄨
󵄨
󵄨

.6𝑒 − 1073 .1𝑒 − 1782 .6𝑒 − 1073 .1𝑒 − 1089
∗D stands for divergence.
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Figure 1: Basins of attraction of method (7) for 𝑝
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(𝑥).
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Figure 2: Basins of attraction of method (9) for 𝑝
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Figure 3: Basins of attraction of method (32) for 𝑝
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(𝑥).
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Figure 6: Basins of attraction of method (32) for 𝑝
4
(𝑥).
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Figure 7: Basins of attraction of method (7) for 𝑝
5
(𝑥).
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Figure 9: Basins of attraction of (32) for 𝑝
5
(𝑥).

−1, 1, and for𝑝
5
(𝑥) roots are 1.0, 0.3090+0.95105𝐼, −0.8090+

0.58778𝐼, −0.8090 − 0.58778𝐼, and 0.30902 − 0.95105𝐼.
We compare the results of our newly constructedmethod

(32) with some existing methods (7) and (9), as given in
Section 1. Figures 1, 2, 3, 4, 5, 6, 7, 8, and 9 show the dynamics
of the methods (7), (9), and (32) for the polynomials 𝑥3 −
1, 𝑥4 − 1, and 𝑥

5

− 1. Two types of attraction basins are
given in all figures. One can easily see that the appearance
of darker region shows that the method consumes a fewer
number of iterations. Color maps for both types are given
with each figure which shows the root to which an initial
guess converges and the number of iterations in which the
convergence occurs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. R. Sharma, R. K. Guha, and P. Gupta, “Improved King’s
methods with optimal order of convergence based on rational
approximations,”AppliedMathematics Letters, vol. 26, no. 4, pp.
473–480, 2013.

[2] F. Soleymani, S. Shateyi, and H. Salmani, “Computing simple
roots by an optimal sixteenth-order class,” Journal of Applied
Mathematics, vol. 2012, Article ID 958020, 13 pages, 2012.

[3] F. Soleymani, S. Karimi Vanani, and M. J. Paghaleh, “A class
of three-step derivative-free root solvers with optimal conver-
gence order,” Journal of Applied Mathematics, vol. 2012, Article
ID 568740, 15 pages, 2012.

[4] L. Tornheim, “Convergence of multipoint iterative methods,”
Journal of the Association for Computing Machinery, vol. 11, pp.
210–220, 1964.

[5] P. Jarratt and D. Nudds, “The use of rational functions in
the iterative solution of equations on a digital computer,” The
Computer Journal, vol. 8, pp. 62–65, 1965.

[6] P. Jarratt, “A rational iteration function for solving equations,”
The Computer Journal, vol. 9, pp. 304–307, 1966.

[7] A. Cuyt and L. Wuytack, Nonlinear Methods in Numerical
Analysis, Elsevier Science Publishers, 1987.

[8] D. A. Field, “Convergence rates for Padé-based iterative solu-
tions of equations,” Journal of Computational and Applied
Mathematics, vol. 32, no. 1-2, pp. 69–75, 1990.

[9] H. T. Kung and J. F. Traub, “Optimal order of one-point and
multipoint iteration,” Journal of the Association for Computing
Machinery, vol. 21, no. 4, pp. 643–651, 1974.

[10] F. Soleymani and M. Sharifi, “On a general efficient class
of four-step root-finding methods,” International Journal of
Mathematics and Computers in Simulation, vol. 5, pp. 181–189,
2011.

[11] J. F. Steffensen, “Remarks on iterations,” Scandinavian Actuarial
Journal, vol. 16, no. 1, pp. 64–72, 1933.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


