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We propose an iterative method for finding matrix sign function. It is shown that the scheme has global behavior with cubical rate
of convergence. Examples are included to show the applicability and efficiency of the proposed scheme and its reciprocal.

1. Introduction

It is known that the function of sign in the scalar case is
defined for any 𝑧 ∈ C not on the imaginary axis by

sign (𝑧) = {

1, Re (𝑧) > 0,

−1, Re (𝑧) < 0.

(1)

An extension of (1) for the matrix case was given firstly by
Roberts in [1]. This extended matrix function is of clear
importance in several applications (see, e.g., [2] and the refer-
ences therein).

Assume that 𝐴 ∈ C𝑛×𝑛 is a matrix with no eigenvalues on
the imaginary axis. To define this matrix function formally,
let

𝐴 = 𝑇𝐽𝑇
−1 (2)

be a Jordan canonical form arranged so that 𝐽 = diag(𝐽
1
, 𝐽
2
),

where the eigenvalues of 𝐽
1
∈ C𝑝×𝑝 lie in the open left half-

plane and those of 𝐽
2
∈ C𝑞×𝑞 lie in the open right half-plane;

then

𝑆 = sign (𝐴) = 𝑇(

−𝐼
𝑝

0

0 𝐼
𝑞

)𝑇
−1

, (3)

where 𝑝 + 𝑞 = 𝑛. A simplified definition of the matrix sign
function for Hermitian case (eigenvalues are all real) is

𝑆 = 𝑈 diag (sign (𝜆
1
) , . . . , sign (𝜆

𝑛
)) 𝑈
∗

, (4)

where

𝑈
∗

𝐴𝑈 = diag (𝜆
1
, . . . , 𝜆

𝑛
) (5)

is a diagonalization of 𝐴.
The importance of computing 𝑆 is also due to the fact

that the sign function plays a fundamental role in iterative
methods for matrix roots and the polar decomposition [3].

Note that although sign(𝐴) is a square root of the identity
matrix, it is not equal to 𝐼 or −𝐼 unless the spectrum of 𝐴 lies
entirely in the open right half-plane or open left half-plane,
respectively. Hence, in general, sign(𝐴) is a nonprimary
square root of 𝐼.

In this paper, we focus on iterative methods for finding 𝑆.
In fact, such methods are Newton-type schemes which are in
essence fixed-point-type methods by producing a convergent
sequence of matrices via applying a suitable initial matrix.

The most famous method of this class is the quadratic
Newton method defined by

𝑋
𝑘+1

=

1

2

(𝑋
𝑘
+ 𝑋
−1

𝑘
) . (6)

It should be remarked that iterative methods, such as (6),
and the Newton-Schultz iteration

𝑋
𝑘+1

=

1

2

𝑋
𝑘
(3𝐼 − 𝑋

2

𝑘
) (7)

or the cubically convergent Halley method

𝑋
𝑘+1

= [𝐼 + 3𝑋
2

𝑘
] [𝑋
𝑘
(3𝐼 + 𝑋

2

𝑘
)]

−1

, (8)
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(a) (b)

Figure 1: Attraction basins for (6) (a) and (8) (b) for the polynomial 𝑔(𝑥) = 𝑥
2

− 1.

are all special cases of the Padé family proposed originally in
[4]. The Padé approximation belongs to a broader category
of rational approximations. Coincidentally, the best uniform
approximation of the sign function on a pair of symmetric
but disjoint intervals can be expressed as a rational function.

Note that although (7) does not possess a global conver-
gence behavior, on state-of-the-art parallel computer archi-
tectures,matrix inversions scale less satisfactorily thanmatrix
multiplications do, and subsequently (7) is useful in some
problems. However, due to local convergence behavior, it is
excluded from our numerical examples in this work.

The rest of this paper is organized as follows. In Section 2,
we discuss how to construct a new iterative method for
finding (3). It is also shown that the constructed method is
convergent with cubical rate. It is noted that its reciprocal
iteration obtained from our main method is also convergent.
Numerical examples are furnished to show the higher numer-
ical accuracy for the constructed solvers in Section 3. The
paper ends in Section 4 with some concluding comments.

2. A New Method

The connection of matrix iteration methods with the sign
function is not immediately obvious, but in fact suchmethods
can be derived by applying a suitable root-finding method to
the nonlinear matrix equation

𝑋
2

= 𝐼 (9)

and when of course sign(𝐴) is one solution of this equation
(see for more [5]).

Here, we consider the following root-solver:

𝑥
𝑘+1

= 𝑥
𝑘
−

10 − 4𝐿 (𝑥
𝑘
)

10 − 9𝐿 (𝑥
𝑘
)

𝑓 (𝑥
𝑘
)

𝑓

(𝑥
𝑘
)

, (10)

with 𝐿(𝑥
𝑘
) = 𝑓



(𝑥
𝑘
)𝑓(𝑥
𝑘
)/𝑓


(𝑥
𝑘
)
2. In what follows, we

observe that (10) possesses third order of convergence.

Theorem 1. Let 𝛼 ∈ 𝐷 be a simple zero of a sufficiently
differentiable function 𝑓 : 𝐷 ⊆ C → C, which contains 𝑥

0

as an initial approximation. Then the iterative expression (10)
satisfies

𝑒
𝑘+1

= (

𝑐
2

2

5

− 𝑐
3
) 𝑒
3

𝑘
+ 𝑂 (𝑒

4

𝑘
) , (11)

where 𝑐
𝑗
= 𝑓
(𝑗)

(𝛼)/𝑗!𝑓


(𝛼), 𝑒
𝑘
= 𝑥
𝑘
− 𝛼.

Proof. The proof would be similar to the proofs given in [6].

Applying (10) on the matrix equation (9) will result in the
following new matrix fixed-point-type iteration for finding
(3):

𝑋
𝑘+1

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
) [9𝑋

𝑘
+ 11𝑋

3

𝑘
]

−1

, (12)

where𝑋
0
= 𝐴. This is named PM1 from now on.

The proposed scheme (12) is not amember of Padé family
[4]. Furthermore, applying (10) on the scalar equation 𝑔(𝑥) =

𝑥
2

− 1 provides a global convergence in the complex plane
(except the points lying on the imaginary axis). This global
behavior, which is kept for matrix case, has been illustrated
in Figure 1 by drawing the basins of attraction for (6) and (8).
The attraction basins for (7) (local convergence) and (12)
(global convergence) are also portrayed in Figure 2.

Theorem 2. Let 𝐴 ∈ C𝑛×𝑛 have no pure imaginary eigenval-
ues. Then, the matrix sequence {𝑋

𝑘
}
𝑘=∞

𝑘=0
defined by (12) con-

verges to 𝑆, choosing 𝑋
0
= 𝐴.

Proof. We remark that all matrices, whether they are diag-
onalizable or not, have a Jordan normal form 𝐴 = 𝑇𝐽𝑇

−1,
where the matrix 𝐽 consists of Jordan blocks. For this reason,
let 𝐴 have a Jordan canonical form arranged as

𝑇
−1

𝐴𝑇 = Λ = [
𝐶 0

0 𝑁
] , (13)
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Figure 2: Attraction basins of (7) (a) and (12) (b) for the polynomial 𝑔(𝑥) = 𝑥
2

− 1.

where 𝑇 is a nonsingular matrix and 𝐶,𝑁 are square Jordan
blocks corresponding to eigenvalues lying in C− and C+,
respectively. We have

sign (Λ)

= sign (𝑇
−1

𝐴𝑇) = 𝑇
−1 sign (𝐴) 𝑇

=diag (sign (𝜆
1
), . . . , sign (𝜆

𝑝
), sign (𝜆

𝑝+1
) , . . . , sign (𝜆

𝑛
)).

(14)

If we define 𝐷
𝑘

= 𝑇
−1

𝑋
𝑘
𝑇, then, from the method (12), we

obtain

𝐷
𝑘+1

= (2𝐼 + 15𝐷
2

𝑘
+ 3𝐷
4

𝑘
) [9𝐷

𝑘
+ 11𝐷

3

𝑘
]

−1

. (15)

Note that if𝐷
0
is a diagonal matrix, then, based on an induc-

tive proof, all successive 𝐷
𝑘
are diagonal too. From (15), it is

enough to show that {𝐷
𝑘
} converges to sign(Λ). We remark

that the case at which 𝐷
0
is not diagonal will be discussed

later in the proof.
In the meantime, we can write (15) as 𝑛 uncoupled scalar

iterations to solve 𝑔(𝑥) = 𝑥
2

− 1 = 0, given by

𝑑
𝑖

𝑘+1
= (2 + 15𝑑

𝑖

𝑘

2

+ 3𝑑
𝑖

𝑘

4

) [9𝑑
𝑖

𝑘
+ 11𝑑

𝑖

𝑘

3

]

−1

, (16)

where 𝑑
𝑖

𝑘
= (𝐷
𝑘
)
𝑖,𝑖
and 1 ≤ 𝑖 ≤ 𝑛. From (15) and (16), it is

enough to study the convergence of {𝑑𝑖
𝑘
} to sign(𝜆

𝑖
).

It is known that sign(𝜆
𝑖
) = 𝑠
𝑖
= ±1. Thus, we attain

𝑑
𝑖

𝑘+1
− 1

𝑑
𝑖

𝑘+1
+ 1

=

(−1 + 𝑑
𝑖

𝑘
)

3

(−2 + 3𝑑
𝑖

𝑘
)

(1 + 𝑑
𝑖

𝑘
)
3

(2 + 3𝑑
𝑖

𝑘
)

. (17)

Since |𝑑
𝑖

0
| = |𝜆

𝑖
| > 0, we have

lim
𝑘→∞












𝑑
𝑖

𝑘+1
− 1

𝑑
𝑖

𝑘+1
+ 1












= 0, (18)

and lim
𝑘→∞

|𝑑
𝑖

𝑘
| = 1 = | sign(𝜆

𝑖
)|. This shows that {𝑑𝑖

𝑘
} is

convergent.
In the convergence proof, 𝐷

0
may not be diagonal. Since

the Jordan canonical form of some matrices may not be
diagonal, thus, one cannot write (15) as 𝑛 uncoupled scalar
iterations (16). We comment that in this case our method
is also convergent. To this goal, we must pursue the scalar
relationship among the eigenvalues of the iterates for the
studied rational matrix iteration.

In this case, the eigenvalues of 𝑋
𝑘
are mapped from the

iterate 𝑘 to the iterate 𝑘 + 1 by the following relation:

𝜆
𝑖

𝑘+1
= (2 + 15𝜆

𝑖

𝑘

2

+ 3𝜆
𝑖

𝑘

4

) [9𝜆
𝑖

𝑘
+ 11𝜆

𝑖

𝑘

3

]

−1

. (19)

So, (19) clearly shows that the eigenvalues in the general case
are convergent to ±1; that is to say,

lim
𝑘→∞












𝜆
𝑖

𝑘+1
− 1

𝜆
𝑖

𝑘+1
+ 1












= 0. (20)

Consequently, we have

lim
𝑘→∞

𝑋
𝑘
= 𝑇( lim
𝑘→∞

𝐷
𝑘
)𝑇
−1

= 𝑇 sign (Λ) 𝑇
−1

= sign (𝐴) .

(21)

The proof is ended.

Theorem 3. Let 𝐴 ∈ C𝑛×𝑛 have no pure imaginary eigenval-
ues. Then the proposed method (12) converges cubically to the
sign matrix 𝑆.

Proof. Clearly,𝑋
𝑘
are rational functions of𝐴 and, hence, like

𝐴, commute with 𝑆. On the other hand, we know that 𝑆2 = 𝐼,



4 The Scientific World Journal

Table 1: Results of comparisons for Example 5 using𝑋
0
= 𝐴.

Methods NM HM PM1 PM2
IT 14 9 8 8
𝑅
𝑘+1

1.41584 × 10
−249

1.0266 × 10
−299

2.5679 × 10
−298

1.45091 × 10
−337

𝜌 1.99077 3 3 3

Table 2: Results of comparisons for Example 6 using𝑋
0
= 𝐴.

Methods NM HM PM1 PM2
IT 10 7 6 6
𝑅
𝑘+1

5.7266 × 10
−155

5.80819 × 10
−203

8.38265 × 10
−153

1.55387 × 10
−143

𝜌 2.00228 3.00001 3.00015 3

𝑆
−1

= 𝑆, 𝑆2𝑗 = 𝐼, and 𝑆
2𝑗+1

= 𝑆, 𝑗 ≥ 1. Using the replacement
𝐵
𝑘
= 9𝑋
𝑘
+ 11𝑋

3

𝑘
, we have

𝑋
𝑘+1

− 𝑆 = (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
) 𝐵
−1

𝑘
− 𝑆

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
− 𝑆𝐵
𝑘
) 𝐵
−1

𝑘

= (2𝐼 + 15𝑋
2

𝑘
+ 3𝑋
4

𝑘
− 9𝑆𝑋

𝑘
− 11𝑆𝑋

3

𝑘
) 𝐵
−1

𝑘

= − (−2𝑆 − 15𝑆𝑋
2

𝑘
− 3𝑆𝑋

4

𝑘
+ 9𝑋
𝑘
+ 11𝑋

3

𝑘
)

× 𝑆
−1

𝐵
−1

𝑘

= (𝑋
𝑘
− 𝑆)
3

(2𝐼 − 3𝑆𝑋
𝑘
) 𝑆
−1

𝐵
−1

𝑘
.

(22)

Now, using anymatrix norm fromboth sides of (22), we attain




𝑋
𝑘+1

− 𝑆




≤ (






𝐵
−1

𝑘












𝑆
−1










2𝐼 − 3𝑆𝑋

𝑘





)




𝑋
𝑘
− 𝑆






3

.

(23)

This reveals the cubical rate of convergence for the new
method (12). The proof is complete.

It should be remarked that the reciprocal iteration
obtained from (12) is also convergent to the sign matrix (3) as
follows:

𝑋
𝑘+1

= (9𝑋
𝑘
+ 11𝑋

3

𝑘
) [2𝐼 + 15𝑋

2

𝑘
+ 3𝑋
4

𝑘
]

−1

, (24)

where 𝑋
0

= 𝐴. This is named PM2. Similar convergence
results as the ones given inTheorems 2-3 hold for (24).

A scaling approach to accelerate the beginning phase of
convergence is normally necessary since the convergence rate
cannot be seen in the initial iterates. Such an idea was dis-
cussed fully in [7] for Newton’s method. An effective way to
enhance the initial speed of convergence is to scale the iterates
prior to each iteration; that is, 𝑋

𝑘
is replaced by 𝜇

𝑘
𝑋
𝑘
. Sub-

sequently, we can present the accelerated forms of our
proposed methods as follows:

𝑋
0
= 𝐴,

𝜇
𝑘
= is the scaling parameter computed by (27) ,

𝑋
𝑘+1

= (2𝐼 + 15𝜇
2

𝑘
𝑋
2

𝑘
+ 3𝜇
4

𝑘
𝑋
4

𝑘
) [9𝜇
𝑘
𝑋
𝑘
+ 11𝜇

3

𝑘
𝑋
3

𝑘
]

−1

,

(25)

or

𝑋
0
= 𝐴,

𝜇
𝑘
= is the scaling parameter computed by (27) ,

𝑋
𝑘+1

= (9𝜇
𝑘
𝑋
𝑘
+ 11𝜇

3

𝑘
𝑋
3

𝑘
) [2𝐼 + 15𝜇

2

𝑘
𝑋
2

𝑘
+ 3𝜇
4

𝑘
𝑋
4

𝑘
]

−1

,

(26)

𝜇
𝑘
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

√






𝑋
−1

𝑘











𝑋
𝑘






, (norm scaling) ,

√

𝜌 (𝑋
−1

𝑘
)

𝜌 (𝑋
𝑘
)

, (spectral scaling) ,

√




det (𝑋

𝑘
)





−1/𝑛

, (determinantal scaling) ,

(27)

where lim
𝑘→∞

𝜇
𝑘
= 1 and lim

𝑘→∞
𝑋
𝑘
= 𝑆.The different scal-

ing factors for𝜇
𝑘
in (27) are borrowed fromNewton’smethod.

For this reason it is important to show the behavior of the
accelerator methods (25)-(26) and this will be done in the
next section.

3. Numerical Examples

In this section, the results of comparisons in terms of number
of iterations and the residual norms have been reported for
variousmatrix iterations.We compare PM1 and PM2with (6)
denoted by NM and (8) denoted by HM. The programming
package Mathematica [8] is used throughout this section. In
Tables 1 and 2, IT stands for the number of iterates.

Note that the computational order of convergence for
matrix iterations in finding 𝑆 can be estimated by [9]

𝜌 =

log (

𝑋
2

𝑘+1
− 𝐼






/






𝑋
2

𝑘
− 𝐼






)

log (

𝑋
2

𝑘
− 𝐼





/






𝑋
2

𝑘−1
− 𝐼






)

, (28)

where𝑋
𝑘−1

, 𝑋
𝑘
, and𝑋

𝑘+1
are the last three approximations.

Example 4. In this example, we compare the methods for the
following 500 × 500 complex matrix:
n = 500; SeedRandom[123];
A = RandomComplex[{-100 - I, 100 + I},{n,n}];
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Figure 3: Convergence history versus number of iterations for
different methods in Example 4.

We apply here double precision arithmetic with the stop
termination 𝑅

𝑘+1
= ‖𝑋
2

𝑘+1
− 𝐼‖
∞

≤ 10
−5. Results are given in

Figure 3.

Example 5 (academic test). We compute the matrix sign for
the following complex test problem:

𝐴 = (

0 10 𝑖 7 + 𝑖

7 −5 6 −5

0 60 −2 9

0 5 9 𝑖

) , (29)

where

𝑆 = (

0.882671 + 0.0118589𝑖 0.461061 − 0.0519363𝑖 −0.167387 + 0.0215728𝑖 0.168184 − 0.0194164𝑖

0.219355 + 0.00464485𝑖 0.136809 − 0.00840032𝑖 0.313995 − 0.00196855𝑖 −0.314977 − 0.00219388𝑖

−0.566306 − 0.0184534𝑖 2.22878 + 0.0471091𝑖 0.189109 − 0.00416224𝑖 0.813305 + 0.0149399𝑖

0.145285 + 0.00157401𝑖 −0.57165 + 0.000347003𝑖 0.207909 − 0.00345322𝑖 0.791412 + 0.000703638𝑖

) . (30)

We apply here 600-digit fixed point arithmetic in our calcula-
tions with the stop termination 𝑅

𝑘+1
= ‖𝑋
2

𝑘+1
−𝐼‖
∞

≤ 10
−150.

The results for this example are illustrated in Table 1. We
report the COCs in 𝑙

∞
.

Iterative schemes PM1 and PM2 are evidently believed
to be more favorable than the other compared methods due
to their fewer number of iterations and acceptable accuracy.
Hence, the proposed methods with properly chosen initial
matrix𝑋

0
can be helpful in finding the sign of a nonsingular

complex matrix.

Example 6. Here we rerun Example 5 using the scaling
approaches (27) with the stop termination 𝑅

𝑘+1
= ‖𝑋

2

𝑘+1
−

𝐼‖
∞

≤ 10
−100. The results for this example are illustrated in

Table 2. We used the determinantal scaling for all compared
methods. The numerical results uphold the theoretical dis-
cussions of Section 2.

A price paid for the high order convergence is the
increased amount of matrix multiplications and inversions.
This is a typical consequence. However the most important
advantage of the presented methods in contrast to the meth-
ods of the same orders, such as (8), is their larger attraction
basins. This superiority basically allows the new methods to
converge to a required tolerance in one lower iteration than
their same order methods. Hence, studying the thorough
computational efficiency index of the proposedmethodsmay
not be an easy task and it must be pursued experimentally. In
an experimental manner, if the costs of one matrix-matrix
product and one matrix inversion are unity and 1.5 of unity,
respectively, then we have the following efficiency indices for

different methods: 𝐸
(6)

= 2
1/(14(1)+14(1.5))

≃ 1.020, 𝐸
(8)

=

3
1/(9(3)+9(1.5))

≃ 1.027, and 𝐸
(12)

= 3
1/(8(4)+8(1.5))

≃ 1.025.
Note that for Newton’s method we have one matrix-matrix
product per cycle due to the computation of stopping criter-
ion. Other similar computations for efficiency indices for
different examples show similar behaviors to the above
mentioned one.

4. Summary

Matrix functions are used in many areas of linear algebra and
arise in numerous applications in science and engineering.
The function of a matrix can be defined in several ways, of
which the following three are generally the most useful:
Jordan canonical form, polynomial interpolation, and finally
Cauchy integral.

In this paper, we have focus on iterative methods for this
purpose. Hence, a third order nonlinear equation solver has
been employed for constructing a new method for 𝑆. It was
shown that the convergence is global via attraction basins in
the complex plane and the rate of convergence is cubic.
Furthermore, PM2 as the reciprocal of the method PM1 with
the same convergence properties was proposed. The acceler-
ation of PM1 and PM2 via scaling was also illustrated simply.

Finally some numerical examples in both double and
multiple precisions were performed to show the efficiency of
PM1 and PM2. Further researches must be forced to extend
the obtained iterations for computing polar decompositions
in future studies.
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