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Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus,
these are the important design parameters for a cable network. While the effects of the former two on the network response
have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend
our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be
proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the
network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on
enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical
model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal
response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a
reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable

vibration control.

1. Introduction

Stay cables are important load carrying structural elements
on cable-stayed bridges. Due to high tension, friction
between the composing wires or strands of stay cables is
changed considerably which significantly reduces their struc-
tural damping [1-3]. This, along with their long and flexible
feature, renders cables on cable-stayed bridges very vulnera-
ble to various dynamic excitations. Over the past few decades,
the length of stay cables has been increasing noticeably owing
to the rapid growth of bridge span length. Therefore, using
external dampers to suppress cable vibrations turns to be less
effective because of the constraint on installation location.
But rather, the cross-tie solution, which connects a vulnerable
cable with its neighbouring ones using transverse cross-ties
to form a cable network, becomes more popular in designing
new cable-stayed bridges and rehabilitating the existing ones
(4, 5].

Though the geometric form of a cable network appears
to be relatively simple, its behaviour is highly sophisticated

and is yet to be fully understood. The effectiveness of a cross-
tie solution in improving stiffness and damping properties
of a vulnerable cable greatly depends on the properties
of cross-ties and the connected neighbouring cables. Up
till now, much of the research effort was dedicated to
investigate the enhancement on network in-plane stiffness
resulting from the cross-tie solution [6-9]; only very few
researchers explored how it would help to redistribute energy
among different consisting cables [10] and affect the damping
property of the network [11, 12]. While the undamped rigid
cross-tie assumption was made in most of the cable network
analytical models [6, 13], a few experimental and analytical
studies were conducted to investigate the effect of cross-tie
stiffness on the network behaviour. Scaled cable network
models were tested by Yamaguchi and Nagahawatta [3] as
well as Sun et al. [14]. It was found in both tests that the stiff
type of cross-tie was more effective in improving network
in-plane stiffness whereas the flexible one was more helpful
in dissipating energy and increasing network damping. A
study by Caracoglia and Jones [7] on a cable network on



the Fred Hartman Bridge showed that if flexible cross-ties
were selected instead of the rigid ones, the network funda-
mental frequency would decrease by 3%. On the contrary,
Bosch and Park [15] pointed out in a numerical study that
using oversized (too stiff) cross-tie would excite more local
modes. This was confirmed by Ahmad and Cheng [8] who
proposed an analytical model to investigate the impact of
cross-tie stiffness on the dynamic response of a cable network.
In the model, the main cables were assumed as taut cables
and the flexible cross-tie was assumed to behave like a
reversible tension/compression linear spring connector. It
was observed that when a more flexible cross-tie was used, the
local modes dominated by either the left or the right segments
of a corresponding cable network using stiffer cross-tie
would evolve into global modes. Giaccu and Caracoglia [16]
addressed the nonlinear interaction between main cables
and cross-ties with behaviour of the latter described by a
generalized power-law stiffness model. They also reported
that the equivalent nonlinear effects in network higher modes
could be responsible for the transition from a local mode to a
global one.

Itis clear from the above literature review that connecting
a vulnerable cable with its neighbouring ones through trans-
verse cross-ties would alter its in-plane stiffness and damping
property. The level of such alteration highly depends on cross-
tie properties. When designing a cable network, the selection
of cross-tie properties should be based on their combined
impact on the network in-plane stiffness and damping. To
properly assess the latter, the damping property of main
cables as well as the stiffness and damping of cross-ties should
be included in the analysis. The few available experimental
studies (e.g., [3, 14]) only discussed how the first modal
damping ratio of a vulnerable cable would be affected in a
cable network, but such an impact on higher order modes
was not addressed. Although a recent analytical study by the
authors [12] examined this issue, the proposed model only
considered damping in main cables, whereas the cross-tie
was assumed to be undamped and rigid. Thus, the response
between a vulnerable cable and its neighbouring ones was
“communicated” directly without the influence of cross-tie
properties. However, in reality, when transmitting responses
between these two parties, cross-tie would behave like a
“filter” which alters the transmitted response by its stiffness
and damping properties. Therefore, to properly assess the
effect of cross-tie solution on the dynamic response of a vul-
nerable cable and the formed cable network, it is imperative
to describe the cross-tie behaviour more accurately.

In view of the above needs, the current paper aims
at extending the analytical model proposed earlier by the
authors [12] to include both the stifftness and damping prop-
erties of cross-tie in the formulation. The network system
characteristic equation will be derived analytically and the
modal characteristics of the cable network will be determined
by solving the associated complex eigenvalue problem. The
proposed model would allow evaluating the impact of cross-
tie solution on the in-plane frequency and also the damping
property of a vulnerable cable, not only for the fundamental
mode, but for the higher order modes as well. The respective
role of cross-tie stiffness and damping in affecting network
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dynamic behaviour will be examined. These would further
enhance our understanding of cable network mechanics and
provide valuable information to improve the current practice
of cross-tie design.

2. Formulation of Analytical Model

The proposed analytical model consists of two horizontally
laid main cables connected by a transverse cross-tie, as shown
schematically in Figure 1. The two main cables are assumed to
be damped taut cables and are fixed at both ends. The length
of the two cables is L; and L, (L, > L,), respectively. It is
assumed that the longer cable (main cable 1) is vulnerable
to dynamic excitations. In the following discussion, it will
be referred to as the “target cable” whereas the shorter cable
(main cable 2) will be referred to as the “neighbouring cable”
O, and Oy, denote, respectively, the left and the right horizon-
tal offset of the neighbouring cable. In general, they are not
equal to each other. The unit mass, tension, and structural
damping ratio of the two main cables are denoted by m;,
H;, and & f (j = 1,2), respectively. The transverse cross-tie
is assumed to be located at I; (I, < 1) from the left end
of the target cable. Its axial stiffness property is represented
by a linear spring connector with an associated stiffness
constant of K, where the subscript “c” refers to “cross-tie”
The structural damping, which comes from various types of
energy dissipation mechanisms, is usually represented by a
highly idealized form in structural analysis. The equivalent
linear viscous damping model proposed by Rayleigh [17]
assumes the damping force to be linearly proportional to
the motion velocity. This model is commonly adopted due
to the simplicity of its form and the amenability in deriving
analytical solution. Therefore, in the current model, damping
property of the two main cables and that of the cross-tie
are all assumed to be the linear viscous type and uniformly
distributed along the member length. The corresponding
damping coefficients are denoted C; (j = 1,2) for the jth
main cable and C, for the cross-tie. The additional tension
in the main cables caused by vibration is neglected in the
proposed model.

When the cable network in Figure 1 is excited to vibrate
within its plane, all four main cable segments oscillate in
the transverse direction whereas the cross-tie moves along
its longitudinal direction. The motion of each main cable
segment can be described by the equation of motion of a taut
cable subjected to in-plane damped free vibration; that is,

o*v o*v ov

g9V 9 )
a2 Mor v

or

2 2

HM = Q 2)
Ox? ot?

where v, H, and m are, respectively, the transverse dis-

placement, the tension, and the unit mass of the taut cable,

C = 2méw, is the cable damping coefficient per unit

length, & is the cable structural damping ratio, and w, is
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FIGURE 1: Schematic layout of a two-cable network with damped
flexible cross-tie.

the undamped circular frequency of the taut cable. Separating
the temporal and spatial variables contained in the cable
transverse displacement v(x,t) using the Bernoulli-Fourier
method, it can be expressed as v(x,t) = V(x)e™, where v(x)
is the shape function and w is the complex circular frequency
of cable vibration. Substituting this expression into (2), it
becomes

7' (x) + ¥ (x) = 0 (3)
and its general solution would be
V(x) = Acos (ax) + Bsin (ax), (4)

where A and B are constants determined from the boundary
conditions and « is a complex wave number of the form

2 .
. \/mw —z-Zmewo' (5)
H
Since all four main cable segments in Figure 1 have one
end fixed, that is, ¥(0) = 0, constant A in (4) would be zero.
Therefore, their transverse motion shape functions can be
reduced to

Va2j1 (xzj—l) = B,j_; sin (‘xijj—l) =12 (6a)

V2j (ij) = Byjsin (“2jx2j) =12 (6b)

wherev,;_; and v,; represent, respectively, the shape function
of the left and the right segments of the jth main cable (j =
1,2) and B,;_, and B,; are the corresponding shape function
constants.

The mass of the cross-tie is not considered in the proposed
model since it is usually very small compared to that of the
main cables. The behaviour of the damped flexible cross-tie
is described by a linear tension/compression reversal spring
connector in parallel with a linear viscous damper. When
the cross-tie oscillates along its axial direction, the force
developed in it can be expressed as

ou

E.(0) = Kau()+Cos, @)

where u(t) is the change in cross-tie length; that is,

w(t)=v, (1) vy (1) = 7, (1) =7, ()] €. (8)

At point N, where the cross-tie connects with the target cable
(Figure 1), the equilibrium requires the force exerted by the
cross-tie on the target cable to be equal to the transverse force
in the left and the right segments of the target cable induced
by its tension; that is,

m
0x,

Plug (7) and (8) into (9); it gives

ov,

H, | =-F.(t). (9)
x,=l, 0x, x2—12> 1]

o, H, [B, cos (a1}) + B, cos (e, 1,)] W)
= [Bssin (ayl5) — By sin (a]})] [K, + iwC.] .

Moreover, longitudinal equilibrium of the isolated cross-tie
should satisfy

ov ov
( 1 -2 )Hl
axl x=l, axZ x,=1, ( )
1
R ( W, ) H, - 0.
0x;3 x3=l; 0%y |-,

Substitute (6a) and (6b) into (11); the following equation is
obtained:

o, Hy [B cos (eyl;) + B, cos (a,1,)] w
12
+ a,H, [B; cos (a,l3) + By cos (a,1,)] = 0.

The transverse displacement compatibility between the left
and the right main cable segments at nodes N, and N, gives

Vaj1 (lzj—l) =V (lzj) j=12 (13)
which, by considering (6a) and (6b), yields

B, sin (eyl;) — B, sin () = 0, (14a)

By sin (a,13) — B, sin (a,l,) = 0. (14b)

Combining (10), (12), (14a), and (14b) and expressing in a
matrix form, we get

[ST{X} = {0}, (15)



where

sin (0,)

0
[S] =
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—sin (0,) 0 0

0 sin (0;) —sin(0,)

(16)

YR, cos (0,) +sin (0,) wR, cos(0,) —sin(0;) 0

¥ cos (0;)

is the coefficient matrix, {X} = [B, B, B, B,]" is a vector
containing all four unknown shape function constants, and
{0} is the null vector. In the coefficient matrix [S], 0yi1 =
Rj&y;_y and 0,; = Rjé,; apply, respectively, to the left and the
right segment of the jth main cable (j = 1,2),R; = ;L isa
complex parameter, «; is the complex wave number defined
in(5), &)y = Lj/Ljand &; = I,;/L ; are the segment ratio
parameters for the left and the right cable segments of the
jth main cable (j = 1,2), and y; is the mass-tension ratio
parameter of the jth cable which is defined by

H.R./L .
Vi = #/]; (17)
7 HR,/L,

y is the nondimensional complex cross-tie parameter having
the form of

H,

LR +C] w

1!/:

Define Q) = nf/ f, as the nondimensional complex frequency
of the cable network and #; = f,/f; as the frequency
ratio of the jth (j = 1,2) main cable, where f and f; are,
respectively, the complex frequency of the cable network and
the undamped fundamental frequency of the jth (j = 1,2)
main cable; the complex parameter R; can be rewritten as

R = \][(an)z —ioangon| j=12,  (9)

where §; (j = 1,2) is the structural damping ratio of the jth
cable.

To find the nontrivial solution to (15), the determinant of
the coefficient matrix [S] should be set to zero. This leads to
the characteristic equation of the two-cable network shown in
Figure 1, which consists of two horizontally laid damped taut
main cables interconnected by a transverse damped flexible
cross-tie; that is,

y, sin (R, ) sin (05) sin (0,)
+ 7, sin (R,) sin (0, ) sin (0,) (20)
+ YR 17, sin (R, ) sin (R,) = 0.

If we neglect the damping in the two main cables and
the cross-tie, the three complex parameters R;, y; (j
1,2), and v in (17) to (19) would reduce to R; = Qn;

y; = \Hm;/Hmy, and y, = H,/L,K_. Therefore, (15)

Y1 cos(0,) 7y, cos(0;) y,cos(0,)

would be the same as the system characteristic equation
of an undamped two-cable network connected through an
undamped flexible cross-tie derived earlier by the authors [8],
and y, is the cross-tie stiffness parameter defined in [8].

3. Case Studies

In this section, the proposed analytical model will be val-
idated by finite element simulations and applied to study
dynamic behaviour of cable networks having different lay-
outs. By using the rigid cross-tie case as a reference base, the
impact of cross-tie stiffness and damping on network modal
responses will be evaluated.

A finite element model of the cable network shown
in Figurel will be developed using the commercial finite
element analysis software Abaqus 6.10. The behaviour of
the main cables will be simulated by the two-node linear
B21 beam element, whereas the flexible damped cross-tie
will be modeled by the CONN2D2 connector element. The
Rayleigh viscous damping model will be applied to simulate
the structural damping in the main cables and cross-tie.

3.1. Case 1: Twin-Cable Network. In a twin-cable network,
two main cables of the same geometric and physical prop-
erties are arranged in parallel with each other and inter-
connected by a transverse cross-tie. This type of cable
network is not common in practice. However, due to its
unique characteristics, seeking analytical solution of network
modal response would be possible. Thus, studying dynamic
behaviour of this special type of cable network has the merit
of deepening our understanding of phenomena associated
with cable networks.

Since the two main cables in a twin-cable network have
the same length, unit mass, tension, and damping, it gives
0, = 05,0, = 0,, R, = Ry, and y; = y, = 1. By inserting
these conditions into (20), the system characteristic equation
can be reduced to

2sin (R,)sin (0,)sin (0,) + yR;sin” (R,) =0 (21)
or
sin(R;) [2sin (0,)sin (0,) + YR, sin(R;)] =0.  (22)

Three sets of roots can be determined from (22). The first set,
yielded from sin(R;) = 0, describes network global modes
and is independent of cross-tie properties. Since the damping
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of main cables and cross-tie is considered in the current study,
the network complex frequency can be expressed as

Q=Q, +i-Q, (23)

where Q. = Q,4/1 -8 and Q;, = Q.8 are, respectively,

the real and the imaginary parts of Q, Q, is the nondimen-
sional undamped network frequency, and &, is the equivalent
damping ratio of the system. The real part of the complex
frequency describes network vibration frequency whereas
the imaginary part gives the system energy dissipation
capacity. Substitute (23) into sin(R;) = 0; we obtain Q. =

n\1 — (£/n)* and O, = 7€, where n and & are, respectively,
the mode number and damping ratio of an isolated single
main cable. The nondimensional modal frequency Q, and
modal damping ratio &, of the corresponding network global
mode can thus be computed from

Qy=\Q2+Q} =nr n=12.3,..., (24a)
Qim E
Eq=——m =2 n=1,23,.... (24b)

This set of network modal property is exactly the same as
those of an isolated single cable, which suggests that, in this
kind of global modes, the two main cables would oscillate in-
phase with the same shape and the modal properties are not
affected by the presence of cross-tie.

The other two sets of roots can be obtained by setting the
summation of the two terms in the square bracket of (22) to
zero; that is,

2sin (0,)sin (0,) + YR, sin (R;) = 0. (25)

It is important to note that should a rigid cross-tie be used in
a twin-cable network, that is, ¢ = 0, the second term in (25)
would vanish. Therefore, the two remaining sets of roots of
(22) can be directly obtained from sin(@,) = 0 and sin(@,) =
0, which represent, respectively, the network local modes
dominated by its left segments (LS) or right segments (RS).
However, if the cross-tie has certain flexibility and damping,
the second term in (25) would reflect the effect of cross-tie
properties (stiffness, damping, and position) on the network
local modes. Not only would their modal frequencies and
damping be “modified,” but also their mode shapes would
evolve from that dominated by the oscillations of either the
network left or right segments to the out-of-phase global
modes. This agrees with the earlier findings by the authors [8]
when studying two identical taut main cables interconnected
by an undamped flexible cross-tie.

When installing a cross-tie, it can be placed either at the
nodal point of a specific main cable mode or off the nodal
point. Noticing R, = 0,/¢; = 0,/e,, (25) can also be expressed
as

. . 10 ( 1 ) @2]
2 R 2 4(1-=)2| =0,
sin (0,) sin (0,) + v 1sm[ e + 52
(26)

where m is a positive integer or fraction which would satisfy
me, = 1 and thus (1 — 1/m) = &, when cross-tie happens to
be placed at the nodal point of a particular main cable mode.
Therefore, (26) can be further simplified as

sin (0,) {Zsin (0,) + YR, [cos (0,) + cos (9,) %”
=0. (27)

In (27), the condition of sin(@,) = 0 describes the counterpart
of LS modes in a rigid cross-tie network, the modal frequency
and damping ratio of which are

n=123,...,

7T
Q, = ”? (28a)

Eeq:§ n=123.... (28b)

This implies that if a damped flexible cross-tie is placed at
the nodal point of a particular main cable mode, although
the change in cross-tie properties would lead to evolution
of mode shapes into out-of-phase globe modes, the modal
frequency and damping of these modes will not be affected.

The roots obtained by setting the term enclosed by the
curly bracket in (27) to zero reflect how modal properties of
local RS modes in a rigid cross-tie case would be influenced
by the flexibility and damping of a cross-tie. They would
not only contribute to reduce modal frequency and increase
modal damping, but also excite more sizable oscillations
of the left segments. Therefore, a network local RS mode
would evolve into a global one should a rigid cross-tie
be replaced by a damped flexible one. The same mode
evolution phenomenon was reported earlier [8] for a twin-
cable network with an undamped flexible cross-tie located at
the quarter span of the main cables, which is the nodal point
of the second antisymmetric main cable mode.

From the above discussion, it is clear that, in a twin-cable
network, the in-phase global modes are independent of the
cross-tie position, stiffness, and damping. However, modal
properties of local RS modes in the rigid cross-tie case would
be “modified” by the cross-tie stiffness and damping and
evolve into global modes. The impact of cross-tie stiffness and
damping on the modal properties of local LS modes depends
on the cross-tie installation location. If the cross-tie is located
at the main cable nodal point, the frequency and damping of
the LS modes would be independent of cross-tie stiffness and
damping. However, if the cross-tie is not placed at the nodal
point, the presence of cross-tie stiffness and damping would
alter modal frequency and damping of the LS modes. In both
cases, such a change in cross-tie properties would render a
local LS mode evolving to an out-of-phase global mode.

3.1.1. Numerical Example. To validate the proposed cable
network analytical model and further discuss the modal
characteristics associated with twin-cable networks, a numer-
ical example is presented. Both main cables are assumed to
have a length of 72 m, a unit mass of 50 kg/m, a tension of
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TaBLE 1: Comparison of modal properties of a twin-cable network with damped flexible or rigid cross-tie at e = 1/3.

Damped flexible cross-tie Rigid cross-tie
Mode (K, = 30.54kN/m, C, = 1.0kN-s/m) (K, = 00,C, = 0)
f (Hz) Seq (%) Mode shape f (Hz) Eeq (%) Mode shape

Analytical FEA Analytical FEA
1 1.46 1.46 0.50 0.50 GM, in-phase 1.46 0.50 GM, in-phase
2 1.63 1.63 3.34 3.35 GM, out-of-phase 2.18 0.33 LM, RS
3 2.91 2.91 0.25 0.25 GM, in-phase 2.91 0.25 GM, in-phase
4 3.02 3.02 2.49 2.49 GM, out-of-phase 4.37 0.17 LM, RS
5 4.37 437 0.17 0.17 GM, in-phase 4.37 0.17 GM, in-phase
6 4.37 4.37 0.17 0.17 GM, out-of-phase 4.37 0.17 LM, LS
7 5.83 5.82 0.13 0.13 GM, in-phase 5.83 0.13 GM, in-phase
8 5.88 5.87 1.19 1.19 GM, out-of-phase 6.56 0.11 LM, RS
9 7.28 7.27 0.10 0.10 GM, in-phase 7.28 0.10 GM, in-phase
10 7.33 7.31 1.03 1.03 GM, out-of-phase 8.74 0.08 LM, RS

GM: global mode, LM: local mode, LS: left segment mode, and RS: right segment mode.

2200 kN, and a structural damping ratio of 0.5%. The stiffness
coefficient of cross-tie is assumed to be K, = 30.54 kN/m,
and its damping coefficient is C. = 1.0 kN-s/m. Two cross-tie
installation locations of ¢ = 1/3 and € = 2/5 are considered
in the example.

(a) Cross-Tie Installed at ¢ = 1/3. In this case, a flexible
damped cross-tie is placed at the one-third span of the two
main cables, which happens to be the nodal point of the 3rd
mode of an isolated single main cable. The modal properties
of the first ten network modes obtained from the proposed
analytical model and finite element simulation are listed in
Table 1, and the mode shapes are depicted in Figure 2. The
two sets of results are found to agree well. Given also in the
same table are the modal properties of the corresponding
rigid cross-tie twin-cable network. It can be seen from the
table that for all five in-phase global modes, that is, Modes
L, 3, 5, 7, and 9, their modal frequencies, modal damping
ratios, and mode shapes not only are independent of the
cross-tie flexibility and damping but also are not affected
by the presence of cross-tie. The properties of these modes
remain the same as those of an isolated single cable. Since
the cross-tie is placed at the main cable one-third span, the
modal frequency and damping of the first local LS mode,
Mode 6, remain the same when the rigid cross-tie is replaced
by a damped flexible one, but the mode shape evolves to an
out-of-phase global mode. Moreover, this particular cross-
tie position also renders the modal frequency and modal
damping ratio of Mode 6 to be the same as those of Mode
5, which is the 3rd in-phase network global mode. In the case
of Modes 2, 4, 8, and 10, which are pure local RS modes in
the rigid cross-tie case, the adoption of a flexible damped
cross-tie is found to not only considerably affect their modal
frequencies and damping ratios, but also alter their mode
shapes. For example, in the case of Mode 2, such a change
in the cross-tie properties would excite the left segments of
the network so that the mode shape becomes an out-of-
phase global mode. The modal frequency is reduced by 25%
from 2.18 Hz to 1.63 Hz, whereas the modal damping ratio

increases substantially from 0.33% to 3.34% by roughly ten
times. One possible reason for such a drastic increment in
the network modal damping ratio could be the relatively
high damping coefficient (C, = 1.0kN-s/m) and relatively
low stiffness coefficient (K. = 30.54 kN/m) assumed in the
example. Besides, it is also important to note that since linear
viscous type of damping model is used for the cross-tie,
the energy dissipation due to damped cross-tie would only
occur when the two ends of the cross-tie oscillate at different
velocities. Therefore, in the case of network in-phase global
modes (Modes1, 3, 5,7, and 9) of which the twin cables vibrate
with the same shape, the oscillating velocities at the cross-tie
two ends are the same so that a flexible damped cross-tie is
not capable of dissipating energy. Thus, all the network in-
phase global modes have the same modal damping ratio as
that of an isolated single cable vibrating in the same mode. On
the other hand, when a network out-of-phase global mode is
excited, velocities at the two ends of the cross-tie are equal but
opposite in direction, so the flexible damped cross-tie would
manifest the maximum possible energy dissipation capacity.
Similar pattern, that is, decrease in modal frequency and
significant increase in modal damping, can also be found in
higher order out-of-phase global modes (Modes 4, 8, and 10).

(b) Cross-Tie Installed at € = 2/5. Modal analysis of the same
twin-cable network is conducted by relocating the cross-
tie position to ¢ = 2/5. Table2 summarizes the modal
properties of the first ten network modes, and the mode
shapes are portrayed in Figure 3. A good agreement between
the modal results determined by the proposed analytical
model and finite element simulations can be clearly observed
from Table 2. For the convenience of comparison, the modal
properties of the corresponding rigid cross-tie network are
also listed in Table 2. Results show that, similar to the
previous case of ¢ = 1/3, the modal characteristics (modal
frequency, modal damping ratio, and mode shape) of the
in-phase global modes, that is, Modes 1, 3, 5, 7, and 9, are
not affected by the presence of cross-tie. They remain the
same as the flexibility and damping of the cross-tie change.
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TaBLE 2: Comparison of modal properties of a twin-cable network with damped flexible or rigid cross-tie at ¢ = 2/5.
Damped flexible cross-tie Rigid cross-tie
Mode (K, =30.54kN/m, C, = 1.0kN-s/m) (K, =00,C,=0)
f (Hz) Seq (%) Mode shape f (Hz) Eeq (%) Mode shape
Analytical FEA Analytical FEA

1 1.46 1.46 0.50 0.50 GM, in-phase 1.46 0.50 GM, in-phase
2 1.68 1.68 4.1 4.12 GM, out-of-phase 2.43 0.30 LM, RS

3 2.91 2.91 0.25 0.25 GM, in-phase 2.91 0.25 GM, in-phase
4 2.96 2.96 1.30 1.30 GM, out-of-phase 3.64 0.20 LM, LS

5 4.37 437 0.17 0.17 GM, in-phase 4.37 0.17 GM, in-phase
6 4.40 4.37 0.82 0.82 GM, out-of-phase 4.86 0.15 LM, RS

7 5.83 5.82 0.13 0.13 GM, in-phase 5.83 0.13 GM, in-phase
8 5.89 5.89 1.49 1.49 GM, out-of-phase 7.28 0.10 LM, RS

9 7.28 7.27 0.10 0.10 GM, in-phase 7.28 0.10 GM, in-phase
10 7.28 7.27 0.10 0.10 GM, out-of-phase 7.28 0.10 LM, LS

T

Mode 1 (GM, in-phase), Q = 1.07, &g = 0.50%
Mode 3 (GM, in-phase), Q = 2.07, §.q = 0.25%
Mode 5 (GM, in-phase), Q = 3.0, feq =0.17%

Mode 7 (GM, in-phase), Q = 4.07, Eeq =0.13%

— <

Mode 2 (GM, out-of-phase), Q = 1.127, §.q = 3.34%

Mode 4 (GM, out-of-phase), Q) = 2.087, feq =2.49%

Mode 6 (GM, out-of-phase), Q = 3.07, &q = 0.17%

Mode 8 (GM, out-of-phase), Q = 4.047, §.q = 1.19%

Mode 9 (GM, in-phase), Q = 5.07, &,q = 0.10%  Mode 10 (GM, out-of-phase), Q = 5.037, {oq = 1.03%

FIGURE 2: First ten modes of a twin-cable network with a damped flexible cross-tie (K. = 30.54kN/m, C, = 1.0kN-s/m) at & = 1/3.

When using a rigid cross-tie network as a reference base, by
increasing cross-tie flexibility and damping, modal frequency
of local RS modes decreases whereas modal damping ratio
increases. In addition, their mode shapes evolve to out-of-
phase global modes. Take Mode 2 as an example, when
replacing the rigid cross-tie by a flexible damped one with
K, = 3054kN/m and C, = 1.0kN-s/m, its frequency
drops from 2.43Hz to 1.68 Hz by 31%, but the associated
modal damping ratio increases approximately 12.5 times from

0.33% to 4.11%, and the oscillation extends from the right
segments to the entire network. The same phenomenon can
be observed in Mode 6 and Mode 8. In the case of Mode 4
and Mode 10, both of which are local LS modes in the rigid
cross-tie network, a cross-tie position of ¢ = 2/5 is off the
nodal point of the Ist antisymmetric mode of an isolated cable
in Mode 4, but it happens to be the nodal point of the 3rd
symmetric mode of an isolated cable in Mode 10. Thus, for
Mode 4, the change in cross-tie properties would not only
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Mode 1 (GM, in-phase), Q = 1.07, §q = 0.50%
Mode 3 (GM, in-phase), Q = 2.07, §oq = 0.25%
Mode 5 (GM, in-phase), Q = 3.07, §oq = 0.17%
Mode 7 (GM, in-phase), Q = 4.07, {4 = 0.13%

Mode 9 (GM, in-phase), Q = 5.07, Eeq =0.10%
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Mode 2 (GM, out-of-phase), Q = 1.157, feq =4.11%
Mode 4 (GM, out-of-phase), Q = 2.047, £, = 1.30%
Mode 6 (GM, out-of-phase), Q = 3.027, £, = 0.82%
Mode 8 (GM, out-of-phase), Q) = 4.057, feq =1.49%

Mode 10 (GM, out-of-phase), Q = 5.07, feq =0.10%

FIGURE 3: First ten modes of a twin-cable network with a damped flexible cross-tie (K, = 30.54kN/m, C, = 1.0kN-s/m) at € = 2/5.

cause evolution of its mode shape into an out-of-phase global
mode, but also alter its modal frequency and damping ratio,
whereas for Mode 10, its frequency and damping ratio remain
the same as those of the rigid cross-tie case, although the
mode evolution phenomenon occurs.

3.2. Case 2: Symmetric DMT Cable Network. In majority of
cable networks on real cable-stayed bridges, the consisting
main cables have different length, unit mass, and tension,
which results in different mass-tension (DMT) ratio. Besides,
since the spacing between cables is typically closer on the
pylon side than on the deck side, the geometric layout of
a real cable network is generally asymmetric. However, it is
understood from earlier studies [8, 12] that if rigid or flexible
undamped cross-ties are used in a symmetric cable network,
pure local modes dominated by oscillations of individual
main cables could form. Therefore, before analyzing a more
realistic asymmetric DMT cable network, the impact of using
flexible damped cross-ties on the modal response of a DMT
cable network having symmetric layout is studied first.

When the cable network in Figurel has a symmetric
layout, the left and the right offsets of main cable 2 are the
same; that is, O; = O, and the flexible damped cross-tie
locates at the mid-span of the two main cables. Therefore,
the segment parameters would satisty 0, = 0, = R;/2
and 0; = 0, = R,/2. Substitute these relations into (20);

the system characteristic equation of a symmetric DMT two-
cable network can be expressed as

() (5) oo () ()
+y2sin(%>cos<%> (29)

+2wR”§ﬂn(RJ]:O.

By setting each of the three terms on the left side of (29) to
zero, that is, the two sine terms and the one enclosed by the
square bracket, three sets of roots can be determined. The
first two sets, yielded, respectively, from sin(R,/2) = 0 and
sin(R,/2) = 0, describe the local modes dominated by the
target or the neighbouring cable. They are as follows:

Local modes of the target cable:
Q,=2nt n=123,..., (30a)

b
E“‘@m n=12.3,.... (30b)
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Local modes of the neighboring cable:

QUZZ”_” n=1,2,3,..., (31a)
Uy

£ R (31b)

‘4 (2n)

First of all, it is interesting to note that the form of (30a),
(30b) and (31a), (31b) implies that these two types of network
local modes have the same modal properties as the respective
isolated single cable antisymmetric modes. Secondly, the
same two types of network local modes, with exactly the same
modal frequencies and modal damping ratios, were identified
earlier [12] when analyzing modal behaviour of a symmetric
DMT two-cable network using rigid cross-tie. Clearly, since
the cross-tie is placed at the nodal point of the main cables,
the network local modes dominated by an individual main
cable would not be affected by the stiffness and damping of
the cross-tie.

The third set of roots, describing the modal properties of
network global modes, can be found by setting the term in
the square bracket of (29) to zero. While the first two terms
inside the square bracket show the interaction between the
two main cables and the coupling in their motions, the third
term reflects the role of cross-tie properties in “modifying”
the frequency and damping of network global modes. Should
a rigid cross-tie be used, this term would vanish, suggesting
that the properties of network global modes would only be
affected by the main cable properties. This set of solution can
be determined by separating the real and imaginary terms
and using the same procedure explained in Section 3.1 or [12].

3.2.1. Numerical Example. Consider a symmetric DMT cable
network with the following properties:

Main cable 1:
L, =72m, H, = 2200kN, m,; = 50kg/m, (32)
32
£, = 0.5%.
Main cable 2:
L, =60m, H, = 2400 kN, m, = 42kg/m, 33)
33
£, = 0.8%.
Cross-tie:
e = z, K, =30.54kN/m, C.=10kN-s/m. (34)

Modal properties of the first ten modes, obtained from the
proposed analytical model and finite element simulation,
are given in Table 3. The corresponding mode shapes are
illustrated in Figure 4. Again, the two sets of results are
found to agree well with each other. To assess the impact
of cross-tie stiffness and damping on the modal behaviour
of the studied symmetric DMT network, modal response of
the same network but using rigid cross-tie is also listed in
the same table. Noticing that the fundamental frequency of

the target cable is 1.46 Hz, and the associated modal damping
ratio is 0.5%, results in Table 3 show that when the target cable
is connected to the neighbouring one using a rigid cross-tie,
its fundamental frequency increases from 1.46 Hz to 1.68 Hz
by 15% and the modal damping ratio from 0.5% to 0.61% by
22%. However, if a flexible damped cross-tie with a stiffness
coeflicient of K, = 30.54kN/m and damping coeflicient of
C. = 1.0kN-s/m is used instead, the fundamental frequency
of the target cable would be increased by 6.2% to 1.55Hz,
whereas the modal damping ratio would be increased to
1.71% by 3.4 times. These suggest that using more rigid cross-
tie would further enhance the in-plane stiffness of a cable
network and thus the target cable, which agrees with the
experimental observations by Yamaguchi and Nagahawatta
[3] and Sun et al. [14]. Although the network fundamental
mode is an in-phase global mode, the velocities at the cross-
tie two ends are different due to the difference in the dynamic
properties of the two main cables. Thus, unlike the twin-cable
network case, damping existing in the cross-tie would offer
nonzero damping force and help to dissipate more energy
during oscillation.

In the case of the first out-of-phase global mode, the
flexibility in the cross-tie reduces its modal frequency, so it
is advanced from the third network mode (f = 3.375Hz)
in the rigid cross-tie case to the second network mode
(f = 2.153 Hz) should a damped flexible cross-tie be used.
Besides, since the relative velocity between the two cross-tie
ends reaches its maxima in this oscillation mode, the large
damping offered by the cross-tie leads to a drastic increment
of its modal damping ratio from 0.34% in the rigid cross-tie
case to 4.01% for a flexible damped cross-tie case.

The modal properties of the network local modes dom-
inated by either the target cable or its neighbouring one
are found to be independent of the cross-tie stiffness and
damping (Modes 3, 4, 6, 9, and 10). In these cases, one of
the main cables vibrates in an antisymmetric shape. Thus, the
cross-tie happens to locate at the nodal point of the mode
shape and would not have a role in altering modal properties.
However, it is interesting to note that although the frequency
of the 5th network mode, 4.42 Hz, is very close to the third
modal frequency of the isolated target cable, which is 4.38 Hz
(Q, = 3.0m), the modal damping ratio jumps by roughly
7 times from 0.16% (Eeq = &,/3) for a single cable to 1.11%
when it is networked. As can be seen from Figure 4, when
the network oscillates in this mode, the target cable vibrates
in its 3rd mode and is dominant. The cross-tie is located
at the maximum deformation location of the target cable
whereas the neighbouring cable is almost at rest. Therefore,
in terms of energy dissipation, the damped cross-tie acts like
a dashpot damper installed at the mid-span of the target cable
and “rigidly” supported by the neighbouring cable. Similar
phenomenon is also observed in the 7th and 8th modes of
the cable network, of which the motion is mainly dominated
by one cable with the other cable almost at rest.

3.3. Case Study 3: Asymmetric DMT Cable Network. The
same two main cables in the symmetric DMT cable network
of Section 3.2 are rearranged in this section such that the left
and the right offsets of the neighbouring cable with respect
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TaBLE 3: Comparison of modal properties of a symmetric DMT two-cable network with damped flexible or rigid cross-tie at ¢ = 1/2.

Damped flexible cross-tie
(K. = 30.54kN/m, C, = 1.0kN-s/m)

Rigid cross-tie
(K. =00,C.=0)

Mode

f(Hz) Seq (%) Mode shape f (Hz) Eeq (%) Mode shape

Ana. FEA Ana. FEA

1 1.55 1.55 1.71 1.72 GM, in-phase 1.68 0.61 GM, in-phase
2 2.15 215 4.01 4.01 GM, out-of-phase 2.91 0.25 LM, cable 1
3 2.91 2.91 0.25 0.25 LM, cable 1 3.37 0.34 GM, out-of-phase
4 3.98 3.98 0.40 0.40 LM, cable 2 3.98 0.40 LM, cable 2
5 4.42 4.41 111 112 LM, cable 1 5.04 0.21 GM, in-phase
6 5.83 5.82 0.12 0.12 LM, cable 1 5.83 0.13 LM, cable 1
7 6.03 6.02 1.29 1.29 LM, cable 2 6.74 0.17 GM, out-of-phase
8 731 730 0.72 0.72 LM, cable 1 7.97 0.20 LM, cable 2
9 7.97 7.96 0.20 0.20 LM, cable 2 8.41 0.13 GM, in-phase
10 8.74 8.72 0.08 0.08 LM, cable 1 8.74 0.08 LM, cable 1

— § T~

Mode 1 (GM, in-phase), Q = 1.077, Eeq =1.71%

N

Mode 3 (LM, cable 1), Q = 2.07, feq =0.25%

~—
Mode 5 (LM, cable 1), Q = 3.03m, Eeq =1.11%

N

Mode 7 (LM, cable 2), Q = 4.14m, Eeq =1.29%

N4

Mode 9 (LM, cable 2), Q = 5.47m, Eeq =0.20%

7®<

Mode 2 (GM, out-of-phase), ) = 1.487, Eeq =4.01%

N

Mode 4 (LM, cable 2), Q = 2.747, Eeq =0.40%

/N

Mode 6 (LM, cable 1), Q = 4.07, Eeq =0.12%

/AN

Mode 8 (LM, cable 1), Q = 5.027, feq =0.72%

A VAV

Mode 10 (LM, cable 1), Q = 6.0, Eeq =0.08%

FIGURE 4: First ten modes of a symmetric DMT two-cable network with a damped flexible cross-tie (K, = 30.54 kN/m, C. = 1.0kN-s/m) at

e=1/2.

to the target cable (Figure 1) are, respectively, 3m and 9 m.
In addition, the cross-tie is relocated to one-third span of
the target cable from its left support; that is, ¢ = 1/3. These
changes in the layout lead to an asymmetric DMT cable
network. Table 4 lists the modal properties of the first ten
network modes obtained from the proposed analytical model
and numerical simulation. A good agreement between the
two sets can be clearly seen. In addition, the modal analysis
results of a corresponding rigid cross-tie network are also

given in the same table for the convenience of comparison.
The mode shapes of these ten modes are depicted in Figure 5.

Results in Table 4 indicate that, by replacing the rigid
cross-tie with a damped flexible one, the frequency of the
network fundamental mode, which is an in-phase global
mode, decreases whereas its modal damping ratio increases
drastically. The target cable has a fundamental frequency of
146 Hz and a modal damping ratio of 0.50%. When it is
connected with the neighbouring cable using a rigid cross-tie,
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TABLE 4: Comparison of modal properties of an asymmetric DMT two-cable network with damped flexible or rigid cross-tie at € = 1/3.

Damped flexible cross-tie
(K. = 30.54kN/m, C, = 1.0kN-s/m)

Rigid cross-tie
(K. =00,C.=0)

Mode
f(Hz) Seq (%) Mode shape f (Hz) Eeq (%) Mode shape

Ana. FEA Ana. FEA
1 1.53 1.53 1.49 1.49 GM, in-phase 1.65 0.58 GM, in-phase
2 211 211 2.88 2.89 GM, out-of-phase 2.55 0.44 GM, out-of-phase
3 2.97 2.97 1.42 1.42 LM, cable 1 3.49 0.35 GM, in-phase
4 4.04 4.03 1.48 1.48 LM, cable 2 4.37 0.17 LM, cable 1
5 4.37 4.37 0.17 0.17 LM, cable 1 5.00 0.23 GM, out-of-phase
6 5.85 5.85 0.66 0.66 LM, cable 1 5.97 0.26 GM, out-of-phase
7 5.98 5.97 0.30 0.30 LM, cable 2 6.43 0.14 GM, out-of-phase
8 730 7.29 0.51 0.51 LM, cable 1 7.54 0.14 GM, in-phase
9 8.00 7.99 0.94 0.94 LM, cable 2 8.74 0.08 LM, cable 1
10 8.74 8.72 0.08 0.08 LM, cable 1 9.05 0.14 GM, out-of-phase

—F

Mode 1 (GM, in-phase), Q = 1.057, Eeq =1.49%

il N

Mode 3 (LM, cable 1), Q = 2.047, §q = 1.42%

N

Mode 5 (LM, cable 1), Q = 3.07, §q = 0.17%

7A<<7@T

Mode 7 (LM, cable 2), Q = 4.107, €4 = 0.30%

Mode 9 (LM, cable 2), Q = 5.497, Eeq =0.94%

———

Mode 2 (GM, out-of-phase), Q = 1.457, §.q = 2.88%

.

Mode 4 (LM, cable 2), Q = 2.77m, feq =1.48%

£ RN

Mode 6 (LM, cable 1), Q = 4.027, £,q = 0.66%

Mode 8 (LM, cable 1), Q = 5.0271, §q = 0.51%

L\

Mode 10 (LM, cable 1), Q = 6.07, Eeq =0.08%

FIGURE 5: First ten modes of an asymmetric DMT two-cable network with a damped flexible cross-tie (K. = 30.54kN/m, C, = 1.0 kN-s/m)

ate = 1/3.

the modal frequency is increased to 1.65 Hz by 13% and the
damping ratio to 0.58% by 16%. However, if the cross-tie has
properties of K, = 30.54kN/m and C, = 1.0kN-s/m, the
increment of its fundamental frequency and damping ratio
becomes 4.8% to 1.53 Hz and approximately three times to
1.49%, respectively. The same phenomenon can be observed
in Mode 2, which is an out-of-phase global mode; that is,
although using a damped flexible cross-tie would reduce the
gain in network stiffness to some extent, it could greatly

improve the energy dissipation capacity of the formed cable
network. This is consistent with the existing experience (e.g.,
[3, 14]). In addition, it should be noted that, similar to the
symmetric layout case in Section 3.2, such a change in cross-
tie properties would lead to excitation of more local modes
dominated by one of the main cables. This could be mainly
attributed to the increased flexibility in cross-tie, which offers
more freedom to one cable from the constraint of the other
so it can oscillate more independently. Among the first ten
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modes listed in Table 4, the number of local modes increases
from 2 to 8. Mode 4 and Mode 9 in the rigid cross-tie case
are dominated, respectively, by the 3rd and the 6th mode of
an isolated target cable. The position of cross-tie at ¢ = 1/3
happens to coincide with the nodal point of these single cable
modes. Thus, the modal properties of these two local modes
are not affected by the cross-tie stiffness and damping except
that they become the 5th and the 10th modes when a damped
flexible cross-tie is used instead.

Besides, a parametric study is conducted for this asym-
metric DMT cable network to better understand the effect
of cross-tie stiffness and damping on the modal frequency
and damping ratio of the network global modes. Figure 6
depicts the modal property variation of the lowest network
in-phase global mode and out-of-phase global mode with
respect to the undamped cross-tie stiffness parameter y,.
In the analysis, the cross-tie damping coeflicient is assumed
to be C, = 1.0kN-s/m, whereas v, varies from 0 (rigid)
to 1.0, which is a typical range of cross-tie stiffness on real
cable-stayed bridges [7]. It can be seen from Figure 6 that
overall the modal properties of the out-of-phase global mode
are more sensitive to the cross-tie stiffness. As expected, the
frequencies of both global modes decrease monotonically
with the increase of cross-tie flexibility. Within the studied
range of y,, the frequency of the in-phase global mode
decreases by 7% while that of the out-of-phase global mode
drops roughly by 18%. In terms of modal damping ratio,
since the linear viscous damping model is used for describing
cross-tie damping property, a more flexible cross-tie would
result in higher relative motion velocity between the cross-tie
two ends and thus more contribution to energy dissipation
of the oscillating main cables in the network. It is also
interesting to note from the figure that while the damping
ratio increment rate of the in-phase global mode is more
steady when v, increases from 0 to 1, that of the out-of-
phase global mode appears to be gradually decreasing as
the cross-tie becomes more and more flexible. In general,
the patterns of y,-Q and y,-., curves in Figure 6 imply
that although using a more flexible cross-tie would cause
some loss in network in-plane stiffness, the energy dissipation
capacity could be greatly improved, which is beneficial for
cable vibration control.

The influence of cross-tie damping level on the modal
properties of the two lowest network global modes is shown
in Figure 7. The modal frequencies of the two global modes
are independent of the cross-tie damping level and remain
as constants, whereas their modal damping ratios increase
almost linearly with the increase of cross-tie damping. Again,
the out-of-phase global mode is found to be more sensitive
to change in cross-tie damping. By increasing C. from 0 to
1.0 kN-s/m, the modal damping ratio of the lowest out-of-
phase global mode increases from 0.44% to 2.88% by roughly
6.5 times, whereas that of the in-phase global mode increases
almost three times from 0.58% to 1.49%.

4. Conclusions

Cross-tie solution has been successfully applied on site to sup-
press large amplitude bridge stay cable vibrations. Although it
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FIGURE 6: Effect of undamped cross-tie stiffness parameter y,
on modal frequency and modal damping ratio of the lowest in-
phase and out-of-phase global modes of an asymmetric DMT cable
network.
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frequency and modal damping ratio of the lowest in-phase and out-
of-phase global modes of an asymmetric DMT cable network.

is understood that the dynamic behaviour of a cable network
is highly dependent on the installation location, stiffness, and
damping of cross-ties, only the effects of the former two on
the network response have been investigated, whereas the
impact of cross-tie damping has rarely been addressed in
the past. To have a more comprehensive description of the
network properties and better predict its dynamic response,
in the current study, an analytical model of a cable network
has been proposed by considering the cross-tie stiffness and
damping, as well as the damping of the constituting main
cables in the formulation. The impact of cross-tie stiffness and
damping on cable networks having different configurations
has been investigated by using the corresponding undamped
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rigid cross-tie networks as the reference base. The findings
obtained from the current study are summarized as follows:

(1) In the case of a twin-cable network, the modal prop-
erties of its in-phase global modes are independent of
cross-tie installation location, stiffness, and damping.
However, replacing rigid cross-tie with a damped
flexible one could have a significant impact on the
local LS and RS modes and render them to evolve into
out-of-phase global modes. While the frequencies
and damping ratios of local RS modes would all be
altered by the cross-tie stiffness and damping, those
associated with local LS modes depend on the cross-
tie position. They would remain the same as those
in the rigid cross-tie case if the cross-tie position
coincides with the nodal point of a specific isolated
main cable mode, but they would be altered if the
cross-tie is installed at the off-nodal point location.

(2) For more general two-cable networks having either
symmetric or asymmetric layout, although, compared
to rigid cross-tie case, the adoption of a damped
flexible cross-tie would decrease the frequencies of
network global modes, considerable increase of their
modal damping ratio has been observed. Therefore, a
careful balance between the loss in network in-plane
stiffness and the gain in energy dissipation capacity
should be achieved when selecting cross-tie stiffness
and damping in the network design. In addition, such
a change in the cross-tie properties is found to excite
more local modes dominated by one of the main
cables.

(3) Results obtained from a parametric study indicate
that the flexibility of a cross-tie would affect both
frequency and damping of different cable network
modes, whereas cross-tie damping would only affect
the damping ratio of these modes. An approximate
linear relation between the cross-tie damping and
damping ratio of network global modes is observed.

(4) Compared to network in-phase global modes, modal
properties associated with out-of-phase global modes
are more sensitive to the change of cross-tie stiffness
and damping.

Overall, the findings of the current study imply that
although using a more flexible cross-tie would cause some
loss in the network in-plane stiffness, its effectiveness in
improving the energy dissipation capacity could make it more
beneficial in cable vibration control.
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