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Copyright © 2016 R. Aguilar-López and J. L. Mata-Machuca. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization
and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory;
the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities
of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical
experiments corroborate the satisfactory results of the proposed scheme.

1. Introduction

Generally, nonlinear systems display complex dynamic
behavior as steady state multiplicity, instabilities, complex
oscillations, and so on, under different initial conditions,
external disturbances, and time-varying parameters, leading
to chaotic dynamic behaviors. However, besides the scientific
interest on the study and analysis of nonlinear system with
exotic dynamic behaviors, the applications for engineer-
ing purposes have been growing. Among these engineer-
ing applications, the employment of complex analysis for
transport phenomena, chemical reacting systems, electronic
industry, and synchronization technique for secure data
transmission are actually very important [1–4].

In particular, the synchronization of chaotic oscillator
is important for secure data transmission. Between several
types of synchronization, one of the simplest and frequently
studied types is the so called identical synchronization (IS).
In this case the main purpose is to synchronize two or more
chaotic oscillators with the same topology, which are coupled
via an output injection of the measured signal from the

master oscillator [5, 6]. The above has been analyzed with
control theory techniques under the framework of nonlinear
observers, where asymptotic, sliding-mode, finite-time, high
gain observers have been applied for synchronization pur-
poses [7–9].

In this work an identical synchronization technique for
a master-slave configuration employing a class of nonlinear
coupling of the measured signal to the slave system is
proposed, in order to generate finite-time synchronization.
The finite-time synchronization convergence is analyzed via
the dynamic of the so called synchronization error under the
assumptions that the upper bounds of the chaotic oscillators
are known.

The rest of this work is organized as follows. In Section 2
the problem statement is described and the observer design is
presented; the finite-time convergence is proved. In Section 3
the proposed methodology is applied in the synchronization
of the hyperchaotic Lorenz-Stenflo system with success.
Finally, in Section 4 the synchronization of the hyperchaotic
Lorenz-Haken system is given.
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2. Observer Design and Finite-Time
Convergence

Let us consider the following general state space model:

𝑥̇ = 𝑓 (𝑥) , 𝑥 (0) = 𝑥

0
,

𝑦 = ℎ (𝑥) ,

(1)

where 𝑥 = [𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
]

𝑇
∈ Ω ⊂ R𝑛 is the states variable

vector, 𝑦 ∈ Ω ⊂ R𝑛 is the corresponding measured output
vector, 𝑓 : Ω → Ω is a nonlinear differentiable vector
function, and 𝑓(𝑥) = [𝑓

1
(𝑥), 𝑓

2
(𝑥), . . . , 𝑓

𝑛
(𝑥)]

𝑇, with initial
conditions 𝑥(0) = 𝑥

0
∈ Ω ⊂ R𝑛.

It is assumed that all trajectories of the state vector 𝑥 of
system (1) are bounded, considering the set Ω ⊂ R𝑛 as the
corresponding physical realizable domain, such thatΩ = {𝑥 |

‖𝑥‖ ≤ 𝑥max}. In most practical cases, Ω will be an open
connected relatively compact subset of R𝑛, and in the ideal
cases, Ω will be invariant under the dynamics of system (1).

In the synchronization scheme, system (1) is considered
as the master system.

Now let us propose a dynamical system to be synchro-
nized with master system (1), which will be the slave system:

̇

𝑥̂

𝑖
= 𝑓

𝑖 (
𝑥̂) − 𝑘

1𝑖
(
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󵄨

−1/𝑝
− 𝑘

2𝑖
) (2)

for 𝑖 ∈ {1, 2, . . . , 𝑛}, where 𝑥̂

𝑖
is the 𝑖th state variable of the

slave system, 𝜀
𝑖
= 𝑥

𝑖
− 𝑥̂

𝑖
is defined as the synchronization

error, 𝑝 > 1 and it is considered an odd integer, and 𝑘

1𝑖
and

𝑘

2𝑖
are positive constants.
Nowwe establish the analysis of the synchronization error

and its finite-time convergence.

Proposition 1. Let master system (1), and consider slave
system (2), where the following conditions are fulfilled:

(A1) There exists a constantF
𝑖
∈ R+ such that
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, (3)

for all 𝑥, 𝑥̂ ∈ Ω ⊂ R𝑛.
(A2) The slave gains 𝑘

1𝑖
and 𝑘

2𝑖
are chosen such that

F
𝑖
≅ 𝑘

1𝑖
𝑘

2𝑖
. (4)

Then, dynamic system (2) acts as a finite-time state
observer for system (1), where the finite-time convergency is
given by
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with 𝜀
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.

Proof. Thedynamicmodeling of the estimation error dynam-
ics is developed employing (1) and (2) as
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Applying the Cauchy-Schwartz inequality and (A1) to (6),

󵄨

󵄨

󵄨

󵄨

̇𝜀

𝑖

󵄨

󵄨

󵄨

󵄨

≤ F
𝑖
− 𝑘

1𝑖
𝑘

2𝑖
+ 𝑘

1𝑖

󵄨

󵄨

󵄨

󵄨

𝜀

𝑖

󵄨

󵄨

󵄨

󵄨

−1/𝑝
.

(7)

Now, considering assumption (A2),
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Notice that inequality (8) is a class of finite-time stabilization
function, where the parameter 𝑝 > 1 and it is considered an
odd integer. Then the solution of inequality (8) is
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At steady state (𝜀
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Then, the finite-time convergency is given by
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3. Synchronization of the Hyperchaotic
Lorenz-Stenflo System

The Lorenz-Stenflo system is described as [10]
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(12)

where 𝑎, 𝑏, 𝑐, and 𝑑 are positive parameters. With 𝑎 = 1, 𝑏 =

0.7, 𝑐 = 26, and 𝑑 = 1.5 system (12) exhibits hyperchaotic
behavior, as is shown in Figure 1. For the numerical results we
have taken the initial conditions 𝑥

1
(0) = 1, 𝑥

2
(0) = 1, 𝑥

3
(0) =

1, and 𝑥

4
(0) = 1. In this section, system (12) is viewed as the

master system. We can see from Figure 1 that the whole state
solution of system (12) is bounded; therefore, we can claim
that assumption (A1) is completely fulfilled.

As slave system, we consider the dynamical system given
by
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with 𝑎 = 1, 𝑏 = 0.7, 𝑐 = 26, 𝑑 = 1.5, and 𝑝 = 3.
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Figure 1: Phase space of the hyperchaotic Lorenz-Stenflo system (12).

The numerical bounds for the trajectories of the Lorenz-
Stenflo system (12) have been estimated in [10]. It was proved
that system (12) has ultimate bounds and its trajectories
belong to an invariant set.

For the tuning of the slave gains of system (13) we include
Table 1 in order to find the upper bounds F

1
, F
2
, F
3
, and

F
4
, corresponding to assumption (A1).
According to the numerical results of Table 1, the values

ofF are approximated as

F
1
≅ 20,

F
2
≅ 70,

F
3
≅ 100,

F
4
≅ 5.

(14)

Then, applying assumption (A2), the slave gains are fixed as

𝑘

11
= 20,

𝑘

12
= 70,

𝑘

13
= 100,

𝑘

14
= 5,

𝑘

21
= 1,

𝑘

22
= 1,

𝑘

23
= 1,

𝑘

24
= 1.

(15)
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Figure 2: Phase space of the synchronization of the hyperchaotic Lorenz-Stenflo system (12) and its observer (13). The subscripts 𝑚 and 𝑠

represent the variables of master and slave systems (12) and (13), respectively.

Table 1: Estimation of the upper bounds of assumption (A1).

Bounds of 𝑥 Bounds of 𝑥̂ max (|𝑓(𝑥) − 𝑓(𝑥̂)|)
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Some numerical simulations are performed using the set-
up of parameters as 𝑎 = 1, 𝑏 = 0.7, 𝑐 = 26, and 𝑑 = 1.5 and
fixing the slave system exponent as 𝑝 = 3. We consider the
following initial conditions to the master system 𝑥

1
(0) = 1,

𝑥

2
(0) = 1, 𝑥

3
(0) = 1, and 𝑥

4
(0) = 1 and the initial conditions

to the slave system 𝑥̂

1
(0) = −1, 𝑥̂

2
(0) = 5, 𝑥̂

3
(0) = −2,

and 𝑥̂

4
(0) = −5. The synchronization between master system

(12) and slave system (13) is shown in Figure 2, where the
convergence of the state estimates to the real states is depicted.
The subscripts 𝑚 and 𝑠 represent the variables of master and
slave systems (12) and (13), respectively. As we can note in
Figure 3, the synchronization results achieved with the finite-
time observer are good, where each image represents the
corresponding synchronization error defined as

𝜀

1
= 𝑥

1𝑚
− 𝑥

1𝑠
,

𝜀
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𝜀
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𝜀
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− 𝑥
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.

(16)

4. Synchronization of the Hyperchaotic
Lorenz-Haken System

We illustrate the proposed synchronization scheme with
another hyperchaotic system so called Lorenz-Haken, given
by the following equations [11]:
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(17)

Figure 4 shows the hyperchaotic behavior of system (17)
for 𝑎 = 6, 𝑏 = 1.2, 𝑐 = 2.5, 𝛼 = 91, and 𝛽 = −1.5, with initial
conditions 𝑥

1
(0) = 5, 𝑥

2
(0) = 5, 𝑥

3
(0) = 4, and 𝑥

4
(0) = 20.

Consider Lorenz-Haken system (17), referred to as the
master system, and let us propose the following slave system:
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with 𝑎 = 6, 𝑏 = 1.2, 𝑐 = 2.5, 𝛼 = 91, 𝛽 = −1.5, and 𝑝 = 5.

Computer simulations have been carried out in order
to test the effectiveness of the proposed synchronization
strategy using the same set-up as above and fixing the slave
system gains as

𝑘
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= 50,

𝑘

12
= 40,

𝑘

13
= 50,

𝑘

14
= 20,

𝑘

21
= 1,

𝑘
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= 1,

𝑘
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= 1,

𝑘
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(19)

with the slave system initialized at 𝑥̂
1
(0) = 0.1, 𝑥̂

2
(0) = 0,

𝑥̂

3
(0) = 0, and 𝑥̂

4
(0) = 0. In Figure 5 we can see that the

synchronization in phase portraits, that is, the trajectories of
slave system (18), follows the trajectories of system (17).
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Figure 4: Phase space of the hyperchaotic Lorenz-Haken system (17).
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Figure 5: Phase portrait of the synchronization of the hyperchaotic Lorenz-Haken system (17) and its observer (18). The subscripts 𝑚 and 𝑠

represent the variables of master and slave systems (17) and (18), respectively.
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