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)is research considers the third-grade liquid flow and criticality branched-chain of a thermal reaction in a Couette generalized
medium with a nonlinear viscosity model. A dimensionless transformation of the system momentum and heat equations are
carried out. Compared with the diffusion coefficient, the flow is stimulated by initiation reaction rate, reaction branch-chain order,
non-Newtonian term, thermal Grashof number, and pressure gradient. )e reactive fluid is fully exothermic with consumption of
the material, and the heat exchange in the system is greater than the exchange of heat with the ambient. A semianalytical
collocation weighted residual scheme is employed for the branch-chain slice bifurcation, dimensionless energy, and momentum
solutions. )e results show that exponential decreases in the thermal fluid viscosity can help in controlling the boundless heat
produced by the Frank-Kamenetskii term and initiation reaction rate. )erefore, the results will help in stimulating positive
combustion processes.

1. Introduction

Limited industrial usage of Newtonian fluid has substantially
encouraged the interest in non-Newtonian fluid and its
applications in science, technology, and manufacturing
processes such as polymer film production and fiberglass.
)e flow of liquids under the action pressure gradient in a
device with the moving part where lubrication takes place
described Couette generalized flow [1, 2]. Non-Newtonian
fluid with viscoelastic characteristics can help in improving
lubricants of industrial machines and technology devices’
efficiency. As such, Nayak et al. [3] examined entropy op-
timization of the hydromagnetic non-Newtonian nano-
material with a joint approach for heat transfer
intensification and solar energy absorber. )e problem was
solved numerically, and the result shows that a rise in the
Weissenberg number enhanced fluid velocity. Wang et al.
[4] reported on the non-Newtonian reaction catalyst of the

heterogeneous-homogeneous Oldroyd fluid with radiation
and heat absorption. From the study, it was revealed that
radiation and Biot number have a direct relation to the
temperature distribution. With heat transfer, it is known
that shear rate and friction between the fluid and moving
devices can lead to significant heat production in the system
that may affect the device and fluid properties [5–8]. Among
the liquids that exhibit viscoelastic characteristics is the
third-grade liquid. )ird-grade fluid model is a non-New-
tonian liquid model that predicts shear thickening or
thinning properties over a definite boundary.

Due to its applications, Yilbas et al. [9] examined entropy
production of the third-grade liquid with unvarying vis-
cosity in an annular pipe using analytical approximate so-
lutions for the entropy generation and other flow properties.
It was reported that improved non-Newtonian material
terms will assist in reducing the irreversibility process.
Yurusoy et al. [10] improved on the work of Yilbas et al. [9]
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by considering Vogel model viscosity and solved the steady
third-grade fluid flow in a concentric rigid cylinder by the
perturbation method. It was noticed that heat-dependent
viscosity supported increasing the velocity field. In a con-
vective cooling channel, the irreversibility of the flow of the
third-grade reactive liquid with dissipative viscous heating
was carried out by Salawu and Adesanya et al. [11, 12]. )e
solutions to the equations were obtained using semi-
analytical techniques, and it was reported that the non-
Newtonian term decreases the flow rate. Okoya [13] studied
computationally the nonlinear viscosity of the third-grade
reactive fluid with heat effect on axial annular flow. It was
revealed that the reactive third-grade and Newtonian fluids
are the same qualitatively in an annulus pipe except for the
level of inward translocation of the peak temperature and
axial momentum. Khan et al. [14] considered modeling and
simulation of the micropolar ferrofluid for slip velocity of
second order with saturated permeable media. It was found
that the fluidmaterial terms decrease the fluid velocity due to
simulation in the liquid viscosity. However, in a reactive
combustion heat transfer process without heat diffusion,
exothermic reaction will reach the state of criticality no
matter the starting temperature [15, 16].

)ermal criticality performs a significant role in pro-
cessing and handling of the non-Newtonian fluid. It exists
when the heat generation rate in a reactive flow system
transcends heat dissipation to the environments [17, 18].
)is occurrence is the basis for thermal ignition or runaway
in a flow system, Frank-Kamenetskii [19]. )e main ob-
jective of analyzing thermal criticality is to predict the unsafe
or critical state of an exothermic reaction flow condition in a
combustion process. Combustion is absolute and essential
for the chemically reacting flow system with applications in
pollution control, power generation, processing material
industries, and so on, Balakrishnan et al. [20]. As a result of
its importance, Salawu et al. [21] investigated the irrevers-
ibility and thermal criticality of Powell–Eyring reactive
liquid flow with radiation and variable conductivity in
permeable media. )e authors revealed that thermal ex-
plosion can be avoided in a reactive system if heat source
terms are minimized. Makinde and Maserumule [5] ex-
amined thermal ignition and the second law of Couette fluid
flow with variable viscosity. Analytical solutions of the
problem were provided using perturbation techniques along
with the Hermite approximation method. )e results ob-
tained proved clearly that the Frank-Kamenetskii term is a
strong internal heat generation term that leads to thermal
criticality or ignition. In a porous-filled channel, analytical
solution of viscous reactive thermal ignition in a slab was
carried out by Makinde [22]. In the study, essential prop-
erties of heat distribution and criticality slice bifurcation
were reported. Also, with series of solution technique,
thermal explosion of exothermic reaction in a slab was
examined by Makinde [23]. )e study presented that energy
reactive parameters can assist in controlling exothermic
reaction combustion explosion.

)is study is built based on Okoya [16] which is an
extension of the work done by Varatharajan and Williams
[24] in which branch-chain transition and criticality in a slab

are considered. )e indisputable results obtained in their
studies and suggested further extension have motivated this
investigation. )is study presents coupling fluid flow and
heat transfer to investigate the bifurcation slice for the
thermal criticality of the third-grade reactive Couette fluid
with nonlinear viscosity and heat distribution. )erefore, it
is necessary to study the criticality of the branched-chain
thermal-reactive diffusion problem in order to obtain
competing effects of emerging parameters and enhance its
utilization in different manufacturing industries. )is study
is essential in determining combustion system capability
under different operating conditions in order to improve
safety; it will also help in decreasing combustion product
pollution. )e considered problem is solved by weighted
residual techniques coupled with the collocation scheme.
Results from the method used are observed to quantitatively
and qualitatively agree with the computed results.

2. Problem Formulation

Consider the flow of the reactive mixture in a Couette
generalized device (Figure 1) bounded with isothermal walls.
)e flow has a unidirectional velocity field with Reynold’s
viscosity under the influence of gravity, pre-exponential
factor m, and n order of reaction branching. )e isothermal
flow configuration is positioned at y � [−h; h] with y-axis
normal to the flow direction in the x-axis, and the non-
Newtonian formulation is used to create the viscoelastic
effects. )e branched-chain parameter is described in the
form of the reaction rate generalized law as

P � P0
Tk

]Z
 

m

exp −
E

RT
 . (1)

)e consumption chemical reactant is taken to be very
small with constant coefficients.)e termsP0, Z, k,E, m, n, ],
T0, and T correspond to the branch-chain rate, Planck’s
number, Boltzmann constant, activation energy, pre-
exponential constant, reaction branch order, frequency of
vibration, initial heat, and fluid heat. )emomentum single-
fluid balance for the dynamic species is given as follows
(Truesdell [25]):

ρ
dv
dt

� ρF + divT. (2)

Given that the chemical reaction does not create flow
momentum, the kinematic-related variables for the third-
grade fluid that are thermodynamically appropriate in the
stress tensor form according to Fosdick and Rajagopal [26]
can be expressed as

T � μB1 + r1B2 + r2B
2
1 + c3 trB

2
1 B1 − pI, (3)

where μ is the dynamic viscosity, I is the unit tensor, p is the
pressure, and tr is the trace matrix. )e terms r1, c3, and r2
are the variable temperature of the material coefficients
defined as follows:

μ≥ 0, r1 ≥ 0, c3 ≥ 0, r1 + r2


≤
�����
24μc3


. (4)
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)e kinematic tensors B1 and B2 can be expressed as

B1 � (∇v)
T

+(∇v), B2 �
d

dt
 B1 +(∇v)

TB1 + B1(∇v).

(5)

)e term ∇ is an operator (gradient), index T denotes
transpose, v is the vector velocity, and the derivative material
term is d/dt. )e flow ensues in an erect device with a

spontaneous velocity U as the chemical reaction is being
prompted to raise proliferation of chain carriers. )e re-
active fluid accelerates in the medium close to the wall, while
the other wall remains static.

Following the assumptions stated above and [16], the
nondimensional steady velocity and energy balance equa-
tions are written as

G + exp(−aθ)
d2w
dy

2  − aexp(−aθ)
dθ
dy

 
dw

dy
  + 6Λ

d2w
dy

2
dw

dy
 

2

+ Grθ � 0, (6)

d2θ
dy

2 + λθn
(1 + ϵθ)

mexp
θ

1 + ϵθ
  + Q � 0. (7)

Here, the parameters w and θ depict non-
dimensionless flow velocity and energy. )e terms Q, m, ϵ,
n, λ, Gr, G, a, and Λ individually represent the initiation
rate, pre-exponential factor, activation energy (that is, the
energy needed for a species reaction mixture to take place;
thus, it determines the transition state of a chemical
reaction), branch-chain order, Frank-Kamenetskii (that
is, homogeneous mixture of thermal ignition species at
walls’ constant temperature. It determines the species
reaction time to heat conducting time), heat Grashof

number, pressure gradient, variable viscosity, and non-
Newtonian. )e suitable nondimensional boundary
conditions are

w(−1) � 0,

w(1) � 1,

θ(−1) � 0,

θ(1) � 0.

(8)

g
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h

u = 0

T = 0

–h

u = U

T = T0

�ird-grade fluid

G = –dp/dx

Figure 1: Flow schematic coordinate.
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)e heat-dependent dynamic viscosity is assumed to
exponentially vary according to Salawu et al. [17, 27]:

μ � μ0 exp −α T − T0( ( . (9)

)e succeeding quantities are utilized to get nondi-
mensional formulated models (6) to (8):

y �
y

h
,

θ �
E T − T0( 

RT
2
0

,

μ �
μ
μ0

,

ε �
RT0

E
,

λ �
α0h

2
P0E

RT
2
0D

εT0

α0
 

n
kT0

Z]
 

m

exp
1
ε

 ,

U �
μ0
ρh

,

p �
Pρh

2

μ20
,

G � −
dP

dx
,

w �
ρhu

μ0
,

Λ �
μ0β3
ρ2h4,

Gr �
RT

2
0gβρ

2
h
3

μ20E
,

a �
RT

2
0α

E
,

Q �
P0Bα0
DT0ε

,

x �
x

h
.

(10)
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Figure 3: Velocity profile for increasing Gr.
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Figure 2: Velocity profile for rising values of a.
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2.1. Limiting Cases. When Gr � n � Q � 0, equations (6)
and (7) correspond to the case of the nonlinear viscosity flow
model with heat transfer investigated by Okoya [28], while
the corresponding model with Gr≠ 0 was considered by
Salawu and Fatunmbi [11, 29]. In the absence of momentum
and reaction branch order, the exceptional instance of ϵ �
Q � 0 corresponds to the Frank-Kamenetskii traditional
model [19], while the case ϵ≠ 0 and m ∈ 0.5, 0, −2{ } was
described was described by Boddington et al. [30].

3. Method of the Solution

)e solution technique for the criticality bifurcation slice,
temperature, and momentum equations is performed using
a semianalytical technique. In the scheme, it is taken that

u(y, d) � ϕ0(y) + 
n

i�1
diϕi, (11)

as defined in [31, 32], and ϕi(y) is an assigned function with
the boundary conditions satisfied.)e basis function u(y, d)

is individually illustrated for the boundary conditions and

their respective equations. Hence, for the arbitrary chosen
values of d′s, the residual equation is obtained as

W(y, d) � K(u(y, d)) − r(y). (12)

For the function ϕi in successful approximation, the
differential equations are satisfied by u(y, d). )e main aim
is to minimize W(y, d) errors to zero (say) in between the
domain, i.e.,


Y

W(y, d)Vidy � 0, i � 1, 2, .., n. (13)

)e number of weighted functions Vi must be translated
to the number of unknown constants di

′s in u. )e inte-
gration collocation scheme is adopted for the solution in
which the weight function is presented in Dirac delta as
Vi(y) � δ(y − yi) such that W(y, d) � 0.

)emethod is employed on boundary conditions (8) and
on dimensionless equations (6) and (7) to have the following
residual equations:
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Figure 4: Flow rate field for various values of Λ.
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m
+ . . .

(15)

Within the domain, the collocation techniques are ap-
plied on equations (14) and (15) which are then solved
together with the boundary conditions to get the coefficients
ai
′s and bi

′s. )e solution algorithms are repeated for
various values of parameters. Maple software is used to
determine the constant coefficients and solve the equations
completely.

4. Discussion of Results

)e solutions to the thermal criticality, velocity, and heat
equations are obtained via the weighted residual collocation
scheme. )e computational default values are taken
according to [33, 34]. )e results obtained are presented as
plots in Figures 2–11. )e accuracy and consistency of the
method are established by comparing it with the
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Fehlberg–Runge–Kutta scheme along with the shooting
method (numerical method) as depicted in the table. In
Table 1, the results for the weighted residual technique and
numerical scheme are compared as presented. )e semi-
analytical method used gives good solutions when relating
with the numerical method results. )e collocation WRM
contracted well with the other solution approaches with the
order of absolute error 10− 8.

4.1. Velocity Profile for Parameter-Dependent Solutions.
Figure 2 illustrates the impact of Reynold’s viscosity term a

on the velocity profile. As the values of the heat-dependent
viscosity term increase, the fluid viscosity diminishes, and
the fluid bonding force is discouraged. As such, the fluid
molecular diffusion is boosted which correspondingly di-
minishes the flow resistance force. Hence, the non-New-
tonian fluid particle collision is enhanced that leads to an
increasing fluid velocity distribution. In Figure 3, the re-
action of the non-Newtonian flow liquid to rising in the
Grashof number Gr is demonstrated. )e term Gr is the
ratio of buoyancy to the viscous force exerting on a liquid
which is equivalent to the Reynolds number. A rise in the
thermal Grashof number enhances heat source terms which
leads to a breakdown in the fluid bonding forces. )e
breaking down in the liquid bonding forces causes the fluid
particles to move freely and thereby increases the flow rate.

Figure 4 shows the response of the third-grade liquid to
variation in the non-Newtonian term Λ. Large shear rate
occurs in a generalized Couette flow, which acts as a source
term for the heat and velocity equations. In a third-grade
liquid, the term Λ needs to be kept at small values to dis-
courage flow opposition forces. )erefore, increasing the
values of the term Λ decreases the flow velocity field due to a
decrease in the source terms.

4.2. Temperature Field for Parameter-Dependent Solutions.
Figures 5–7 depict the temperature distribution for the rising
values of the terms n, Q, and λ for the function θ(y) plotted
against y. )e impacts of branch reaction order n on the
temperature profile are displayed in Figure 5. )e branch
reaction order is a basis for thermal ignition; it entails steps
of the reaction chain in which each step serves as a reagent
for the next step. )erefore, rising the reaction branch order
reduces the heat profile. )is is as a result of heat diffusion
from the device that causes general decreases in the system
heat field.)e influence of the rate of initiation Q and Frank-
Kamenetskii term λ on the energy distribution is illustrated
in Figures 6 and 7. Both parameters are high heat generation
terms and must be carefully monitored to avert the blow up
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of the reactive solution. )e temperature profile is enhanced
at the fixed wall and consistently rises until it gets to the
highest at the channel center. It then diminishes continu-
ously close to the moving surface. Continuous decrease in
the heat profiles is observed as the viscosity of the liquid
reduces in a reactive exothermic third-grade liquid. From
the viewpoint of technology design, total heat generation can
be minimized if the viscosity of the liquid as a result of rises
in heat can be exponentially reduced.

4.3. Criticality Branch-Chain and Ignition Solutions. )e
slice bifurcation thermal runaway plot for 0< ϵ≪ 1 and
different pre-exponential factor m in the plane (λ, θmax) is
demonstrated in Figures 8 and 9. )e diagrams depict the
qualitative difference in the reactive non-Newtonian liquid
as the term λ increases. In fact, for 0≤ ϵ≪ 1 and
m � −2, 0, 0.5, critical value λcr occurs so that, for 0< λ< λcr,
two solution branches are found. )e lower solution branch
is steady, while the upper branch solution diverges to infinity
as λ⟶ 0. When λ> λcr, there is no real solution but a
traditional form demonstrating temperature criticality. A
rise in the activation energy ϵ raises the system thermal
explosion but declines the system heat steadiness as the
chemical kinetics m is encouraged as described in Figures 8
and 9. )e considerable variations in the maximum heat
(θmax ,cr) and ignition criticality (λcr) for a third-grade re-
active flow as the parameter ϵ rises are confirmed in Fig-
ures 10 and 11. An increase in the branching reaction order n

causes complete reduction in a reactive exothermic diffusion
flow system as seen in the figures.

5. Conclusion

)e criticality of a reactive generalized third-grade Couette
fluid flow with Reynold’s viscosity model is analyzed using
the collocation weighted residual scheme. )e thermal
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Figure 10: Plot of θmax ,cr against ϵ for rising α.

Table 1: Comparison of results for the method of weighted residual
collocation and numerical scheme.

y
w(y) (weighted
residual results)

w(y) (numerical
results)

Absolute
error

−1.0 0 0 0
−0.8 0.2004037097 0.2004037157 6.0 × 10−9

−0.6 0.3901406612 0.3901406655 4.3 × 10− 8

−0.4 0.5663565669 0.5663565721 5.2 × 10− 8

−0.2 0.7257024719 0.7257024783 6.4 × 10− 8

0.0 0.8639755022 0.8639755148 7.6 × 10− 8

0.2 0.9754648475 0.9754648530 5.5 × 10− 8

0.4 1.0518261984 1.0518262021 3.7 × 10− 8

0.6 1.0819296871 1.0819296900 2.9 × 10− 8

0.8 1.0610331196 1.0610331246 5.0 × 10− 9

1.0 1.0000000000 1.0000000000 0

n = 3.0
n = 2.0

n = 1.0
n = 0.0

0 0.05 0.10 0.15 0.20

λ c
r

є

0.1

0.2

0.3

0.4

0.5

Figure 11: Plot of δcr against ϵ for rising α.
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branch-chain criticality bifurcation, momentum, and tem-
perature field solutions are analytically obtained. It is
revealed from the investigation that

(i) )e activation energy has no influence on the
considered non-Newtonian fluid and temperature
distribution in a Couette flow device

(ii) It is obtained that, for engineering processes, the
non-Newtonian reactive third-grade term enhances
fluid viscosity by decreasing the flow rate

(iii) From the aspect of industrial design, boundless
heat production in the system due to the Frank-
Kamenetskii term and initiation reaction rate can
be controlled by exponential decrease in the fluid
viscosity

)e results will assist in combustion processes and in
improving safety conditions of thermal explosion system.
)e solution algorithm is an interesting tool to study dif-
ferent parameter-dependent boundary-value nonlinear
problems in engineering and science.
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