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Marine invertebrates are a significant source of biologically active compounds. Recent studies have highlighted the role of
microbiota associated with marine invertebrates in the production of bioactive compounds. Corals and sponges are the main
marine invertebrates producing bioactive substances, and Symbiodiniaceae dinoflagellates are well-recognized endosymbionts
with corals and sponges playing vital functions. .e biological properties of Symbiodiniaceae-derived compounds have garnered
attention in the past decades owing to their ecological implications and potentiality for bioprospecting initiatives. .is study aims
to systematically review studies on bioactivities and potential biotechnological applications of Symbiodiniaceae-derived com-
pounds. .e PRISMA guidelines were followed. Our study showed that anti-inflammatory and vasoconstrictive activities of
Symbiodiniaceae-derived compounds have been the most investigated. However, very few studies have been published, with in
vitro culturing of Symbiodiniaceae being themost significant challenge..erefore, we surveyed for themetabolites reported so far,
analyzed their chemodiversity, and discussed approaches to overcome culturing-related limitations.

1. Introduction

Although marine invertebrates have significant bio-
prospecting potential, it is associated with several meth-
odological, ecological, and logistical challenges owing to
limited sampling and the risk of changes in population
dynamics [1]. .ese challenges are owing to the prolonged
time and poor reproducibility of the complex environmental
conditions required for the cultivation of invertebrate bio-
mass (e.g., sponges) [2, 3]. Consequently, although marine
invertebrates produce bioactive compounds of biotechno-
logical utility, their biological characteristics limit large-scale
harvesting of secondary metabolites in vitro [4]. In addition,
challenges associated with large-scale production of the
target bioactive compounds from a marine organism, that is,

low yield on animal extraction and high costs and practical
limitations of chemical synthesis, further limit the use of
these compounds [5]. .e origin of marine natural products
(MNP) on bioprospecting studies on sessile or nonsessile
marine invertebrates remains uncertain, which could be the
organisms themselves, the associated microbiota, or the
interaction between them [6]. .e specialized metabolism of
the associated microbiota remains to be studied.

Marine invertebrates are hosts to a rich and dynamic
microbiota [7, 8] that are closely linked to the metabolism
and survival of the invertebrates [9]. Endosymbiotic rela-
tionships result in mechanisms that promote mutual nu-
trition and predator defense; for example, sponges and their
symbionts can produce toxic compounds to prevent attacks
by other marine organisms [10, 11]. Studies that have
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reported on the production of such active compounds by the
symbiotic microbiota also highlighted the need for further
research [6, 12–14]. For instance, the endosymbiotic Sym-
biodiniaceae dinoflagellates growing on Pseudopterogorgia
elisabethae produce pseudopterosins that provide the host
with oxidative stress tolerance [15]. In addition, unknown
free-living marine bacteria, frequently associated with the
tunicate Ecteinascidia turbinata, express groups of essential
genes for the synthesis of bioactive metabolites (e.g., tra-
bectedin) that are under research as potential oncologic
treatment agents [16].

.e dinoflagellate family Symbiodiniaceae (phylum
Myzozoa, class Dinophyceae) is a symbiotic organism under
active research [17]. .ese endosymbiotic microalgae provide
hosts with nutrients through photosynthesis and receive
protection and inorganic compounds [18–20]. .eir ecology
focuses on host compatibility, which depends on the type of the
associated host, their distribution, and variations in abiotic
factors such as irradiance, depth, pH, and temperature [21].
.e systematics of the family Symbiodiniaceae (formerly, the
Symbiodinium genus) were recently revised, with new genera
replacing the earlier clades. Currently, the Symbiodinium genus
only includes clade A (considered a living fossil) [22]. .is
taxon is known to produce secondary metabolites involving
compounds with unique chemical structures and activities.
Although several genera are known, several remain undis-
covered [23]. .e association between extensive genetic di-
versity and metabolic processes also remains unclear [24].

Although the importance of associated microbiota,
particularly of Symbiodiniaceae endosymbionts, in marine
invertebrate metabolism is understood, most literature re-
views have focused on the biology of these dinoflagellates or
their ecological implications. Two reviews (Gordon and
Leggat [25] and Kita et al. [26]) highlighted some bioactive
metabolites isolated from some Symbiodiniaceae species.
However, to our knowledge, this review is the first to sys-
tematically collect, summarize, and analyze the data avail-
able in the literature regarding Symbiodiniaceae-derived
bioactive metabolites. .is review focuses mainly on the
chemodiversity of the reported naturally occurring com-
pounds and their potential biotechnological applicability.

2. Methods

2.1. Search and Eligibility Criteria. We conducted a sys-
tematic search for literature on naturally occurring com-
pounds isolated from Symbiodiniaceae family members,
their bioactivities, and biotechnological potential. Scopus,
the Web of Science, and PubMed databases were used. .e
following search query was used: ((symbiodinium OR zo-
oxanthellae) AND (metabolite OR compound OR agent OR
substance OR molecule) AND (activity OR potential OR
bioactivity OR bioactive OR effect OR extract OR isolated
OR isolate OR derived OR isolation OR biotechnology)).
Inclusion criteria regardless of the year of publication were
(a) high-quality original articles, (b) describing the isolation
of secondary metabolites from cultures of microalgae of the
Symbiodiniaceae family (former genus Symbiodinium), and
(c) written in English.

2.2. Study Selection and Data Collection. Duplicate articles
were removed, and the title and abstract of each study were
independently filtered according to the eligibility criteria by
2 of the authors using the Rayyan QCRI tool, with the
classification categorized as included, excluded, or maybe
[27]. Papers matching the classification criteria were studied.
Articles classified as “maybe” were finally classified after
discussion and consensus. After initial classification, the full
texts of the articles were analyzed, and the information was
captured using a form to ensure comprehensive data col-
lection and bias elimination.

2.3. Analysis of Retrieved Compounds. All compounds
identified in the systematic review were represented using
the simplified molecular-input-line-entry system (SMILES)
notation, and these were enlisted to obtain a custom-made
library. .e SMILES-annotated compounds were incorpo-
rated in the software Osiris DataWarrior (Idorsia Phar-
maceuticals Ltd., Switzerland, version 5.2.1) [28], which was
used to determine the physicochemical properties: molec-
ular weight (MW), octanol/water partition coefficient
(cLogP), aqueous solubility (cLogS), hydrogen bond ac-
ceptor (H-acceptor), hydrogen bond donors (H-donors),
total surface area (TSA), polar surface area (PSA), relative
polar surface area (rPSA), and druglikeness.

3. Results and Discussion

3.1. General Findings. .e literature search identified 686
articles; 160 of the retrieved articles were identified as
duplicates among the 3 databases, leaving 356 unique
articles. Titles and abstracts of these 356 articles were
screened and filtered according to eligibility and selection
criteria. After screening, only 27 studies were selected for
data extraction. Based on full-text assessment and data
extraction, 20 articles were finally included in this sys-
tematic review (Figure 1).

.e included articles (n� 20) were published between
1993 and 2018 (Figure 2(a)). Most studies were published by
authors in Japan (n� 16), followed by those in the USA and
France (Figure 2(b)), which involved Symbiodiniaceae
strains from 5 different countries (Figure 2(c)). To assess the
publication behavior of bioprospecting studies on Sym-
biodiniaceae dinoflagellates, we compared all papers (that
were screened) published within the same years..e number
of studies increased during the same period, except for 2004
and 2005 (Figure 2(a)). However, a considerably low number
of studies investigating Symbiodiniaceae-derived com-
pounds and their bioactivity potential were published, with
the highest of 4 studies published in 2004..is low academic
productivity is associated with the small number of countries
researching on this topic (Figure 2(b)), which is in contrast
with the worldwide distribution of the Symbiodiniaceae
species [30] and the metabolite diversity that marine in-
vertebrates represent (e.g., corals and sponges) [1, 31–36],
including their associated microbiota [12]. Japan had the
highest contribution to research on this topic, with 45% of
the included papers from Nagoya University. Focus on
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bioprospecting was minimal, with most studies focusing on
topics such as ecology.

With regard to the diversity of Symbiodiniaceae isolates,
12 Symbiodinium strains have been studied for the spe-
cialized metabolism-derived products from these dinofla-
gellates (Table 1). .e most reported strain was
Symbiodinium sp Y-6 (isolated from the flatworm
Amphiscolops sp), from which 7 compounds were reported
(i.e., 1, 2, 6, 8, 9, 21, and 22; see Table 2). Although Sym-
biodiniaceae dinoflagellates have been reported to be
symbionts for various marine invertebrates [37], their
symbiosis with cnidarians has been most investigated. Of
interest, we found few studies (15.79%) on symbiosis with
corals (i.e., Sarcophyton glaucum, Pseudopterogorgia eli-
sabethae, and Eunicea fusca; see Table 1), which implies a
subexploration of the Symbiodiniaceae family diversity.

3.2. Biologically Active Compounds. Among the 23 com-
pounds identified from the selected publications (see
chemical structures in Figures S1 and S2 in Supplementary
Materials), biological activity evaluations were available only
for 9 compounds (Table 2). We examined the vasocon-
strictive and anti-inflammatory potency of these com-
pounds. Vasoconstriction was the first bioactivity reported
for Symbiodiniaceae-derived metabolites (i.e., 1 and 2), with

activity at concentrations >0.70 μM [47]. Furthermore,
metabolite 1 was also shown to induce platelet aggregation
[55]. Metabolite 2 effects vasoconstriction through voltage-
sensitive Ca2+ channels [46]. .is finding is consistent with
the calcium-dependent induction of platelet aggregation by
metabolite 1 [56]. Compound 5 reportedly exhibits 3-fold
higher vasoconstriction potency than compound 1 although
its mechanism of action remains unclear [41]. To our
knowledge, these compounds are yet being studied.

Metabolites 7, 10, 19, and 23 have been reported to have
anti-inflammatory potential. Metabolites 7 and 8 showed
65% and 32% cyclooxygenase-2 inhibition at 2 and 10 μM
concentrations, respectively [52, 53]. Compound 23 was
evaluated basis its ability to suppress delayed-type hyper-
sensitivity in mice [44]. Metabolite 10 has been reported to
inhibit L-phosphatidylserine-stimulated protein kinase C
activity [54]. Limited data availability makes estimating the
biotechnological potential of these compounds (except for
metabolite 23 [peridinin]) difficult.

Cytotoxicity of Symbiodiniaceae-derived metabolites
has been studied. Two compounds, 6 and 9, have been
reported to show antineoplastic potential against carcino-
mas [42, 43]. Both compounds were evaluated on A432 and
Nakata cell lines and exhibited inhibitory activity at con-
centrations <10 μM. Compound 9 exhibited 16-fold higher
potency [43]. Despite these encouraging results, we could
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Figure 1: PRISMA flow diagram. Modified from Moher et al. [29]. Compliance with the items in the statement guideline is summarized in
Table S1 in Supplementary Materials.
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not find further studies on the anticancer potential of these
compounds.

.e biological activities of compounds 3, 4, 8, 11–18, and
20–22 were not evaluated in the included papers; however,
the bioactivity potential of some of these have been reported
as they were isolated from other sources. In this regard, the
phenolic diterpenes pseudopterosins (i.e., 14–17) have been
shown to have potential anti-inflammatory, analgesic [57],
neuroprotective [58], and antioxidant [15, 59] activities.
Similarly, compound 18 has shown anti-inflammatory
properties superior to those of indomethacin [60]. Fuscol
(18) has also been reported to exhibit moderate inhibition

activity on elastase release assays [61]..ese findings present
an opportunity in the bioprospecting potential of Symbio-
diniaceae dinoflagellates.

3.3. Chemodiversity of the Symbiodiniaceae-Derived
Compounds. We clustered the retrieved compounds by
structural similarity to analyze chemodiversity. Four clusters
were formed, including 15 compounds, whereas 8 compounds
had unique structural fingerprints (Figure 3). Most of the
compounds corresponded to amides (i.e., 1–8) followed by
polyketides (i.e., 9–13), diterpenes (i.e., 14–18), and alkaloids
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Table 1: Symbiodiniaceae strains and their hosts in the included articles.

Strain code Strain Clade Hosta References
S1 Symbiodinium sp 2012-7-4S N/Ab Amphiscolops sp [38]
S2 Symbiodinium sp HA3-5 A1 Free-living [39–41]
S3 Symbiodinium sp JCUCS-1 B Cassiopea xamachana [42]
S4 Symbiodinium sp JCUSG-1 A Sarcophyton glaucum [42, 43]
S5 Symbiodinium sp OTCL2A N/A Tridacna crocea [44]
S6 Symbiodinium sp P083-2 A1 Amphisorus hemprichii [43]
S7 Symbiodinium sp P-78 D N/A [45]
S8 Symbiodinium sp PL-TS-1 A3 Tridacna crocea [43]
S9 Symbiodinium sp Y-6 A2 Amphiscolops sp [42, 43, 46–48]
S10 Symbiodinium sp N/A Pseudopterogorgia elisabethae [15, 49, 50]
S11 Symbiodinium sp N/A Eunicea fusca [50]
S12 Symbiodinium sp N/A Amphiscolops sp [51–54]
aScientific name of the host from which the Symbiodiniaceae strain was isolated. bN/A: not available.

4 .e Scientific World Journal



(i.e., 19–22); one was an apocarotenoid (i.e., 23)..ese data are
consistent with those from recent reports on the diversity and
abundance of specialized metabolite biosynthesis genes in
Symbiodiniaceae genomes, which show that polyketide syn-
thase genes are the primary diversified gene clusters associated
with specialized metabolism [62].

With regard to similarity analysis (Figure 3), compounds 3
and 4 in the larger group (i.e., 1, 2, 3, 4, 5, and 7) have been
described as artifacts produced under chemically active

conditions during the isolation process [41], leaving the
number of natural compounds at 21. In addition, this group has
compounds with vasoconstrictive bioactivity, possibly in-
volving Ca2+ channels [46, 53, 55], reinforcing the role of the
macrolactone moiety in this mechanism. With regard to the
remaining compounds, except for 6, clustering was anticipated
by the metabolite type and trivial names (Table 2, Figure 3).

Given the crucial role of physicochemical properties in
the development of therapeutic agents [63], we examined the

Table 2: Symbiodiniaceae-derived metabolites with the reported bioactivity and microalgae strain source.

Compound
no. Metabolite Bioactivity Symbiodiniaceae

strain References

1 Zooxanthellatoxin A Vasoconstriction, platelet aggregation S9 [47, 55, 56]
2 Zooxanthellatoxin B Vasoconstriction S9 [46, 47]
3 Zooxanthellamide A N/Ab S2 [39]
4 Zooxanthellamide B N/A S2 [40]
5 Zooxanthellamide C Vasoconstriction S2 [41]
6 Zooxanthellamide D Cytotoxicity S3 [42]

7 Symbiodinolide N-type Ca2+ channel inhibition, COX-2 inhibition (anti-
inflammatory) S12 [53]

8 Symbioramide-C16 N/A S9 [48]
9 Zooxanthellactone Cytotoxicity S4 [43]
10 Symbiospirol A Protein kinase C inhibition (anti-inflammatory) S12 [54]
11 Symbiospirol B N/A S12 [54]
12 Symbiospirol C N/A S12 [54]
13 Symbiodinolactone A N/A S1 [38]
14 Pseudopterosin A N/A S10 [15, 49, 50]
15 Pseudopterosin B N/A S10 [15, 49, 50]
16 Pseudopterosin C N/A S10 [15, 49, 50]
17 Pseudopterosin D N/A S10 [15, 49, 50]
18 Fuscol N/A S11 [50]

19 Symbioimine Osteoclastogenesis inhibition, COX-2 inhibition (anti-
inflammatory) S12 [51, 52]

20 Neosymbioimine N/A S12 [52]

21 Zooxanthellabetaine
A N/A S9 [48]

22 Zooxanthellamine N/A S9 [48]

23 Peridinin Delayed-type hypersensitivity inhibition (anti-
inflammatory) S5 [44]

aAssigned compound number. bN/A: not available.
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relevant properties of the selected compounds based on
some descriptors (i.e., MW, cLogP, cLogS, H-acceptor, H-
donors, and druglikeness; Figure 4). We identified 3 groups
of compounds for MW, TSA, PSA, H-acceptors, and H-
donors, whereas rPSA, cLogP, cLogS, and druglikeness
showed a wider distribution. For instance, only 4 com-
pounds had positive druglikeness values (i.e., 16, 17, 22, and
23), and the remaining compounds displayed values be-
tween −0.2 and −25.0 (Figure 4(h)). An implication of these
results is the attrition associated with a high likelihood of
failures in further research stages.

.e compounds were classified as low (approximately
500Da), medium (approximately 1200Da), or large (ap-
proximately 2700Da) MW compounds. Most compounds
(61.90%, excluding 3 and 4) were in the low MW group,
which is desirable in drug development. However, several
compounds in this group remain unevaluated for bioactivity

potential (i.e., 8, 13, 20, 21, and 22). .ese compounds,
except 22, were isolated in quantities <5mg (Table 3), which
could have limited their biological screening. In contrast, the
compounds from dinoflagellates have been recognized to
have long carbon-chain backbones (also known as super
carbon-chain compounds) [64]. Ten Symbiodiniaceae-de-
rived compounds have been reported (i.e., 1–7 and 10–12) to
be closely related structurally to polyketide-like compounds
with an amide moiety (see Figure 3).

3.4. Challenges Related to the Biotechnological Application of
Symbiodiniaceae-Derived Compounds. Studies published
from 1962 have described Symbiodiniaceae dinoflagellates as
slow-growing microorganisms under culture conditions
requiring several weeks to achieve appreciable new colonies
[65]. Studies have also reported poor yield of metabolites of
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Figure 4: Structure-based physicochemical properties of the Symbiodiniaceae-derived compounds. Properties were estimated using the
DataWarrior software. Box plots showing the distributions for (a) molecular weight (MW), (b) total surface area (TSA), (c) polar surface
area (PSA), (d) relative polar surface area (rPSA), (e) octanol/water partition coefficient (cLogP), (f ) aqueous solubility (cLogS),
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Table 3: Summary of the culture conditions and isolation yield data reported by some included articles regarding the biomass production of
the compounds isolated from Symbiodiniaceae strains.

Compound no. Culture time (days) Culture volume (L) Wet weight (g) Compound amount (mg)b Yield× 10−2 (%)c References
1 30–40 250 164.0 35.8 2.18 [47]
2 30–40 250 164.0 19.6 1.20 [47]
3 42 198 130.3 4.6 0.35 [39]
4 40 132 103.9 5.5 0.53 [40]
5 40 132 103.9 21.8 2.10 [41]
6 43 140 98.5 2.3 0.23 [42]
7 60 78 88.0 9.3 1.06 [53]
8 63 160 192.0 2.7 0.14 [48]
9 42 156 138.7 1.0 0.07 [43]
10 60 145 129.0 117.0 9.07 [54]
11 60 145 129.0 9.4 0.73 [54]
12 60 145 129.0 3.4 0.26 [54]
13 42 100 N/A 0.3 N/A [38]
19 20 80 36.0 5.7 1.58 [51, 52]
20 N/Aa N/A 112.0 4.2 0.38 [52]
21 63 160 192.0 0.8 0.04 [48]
22 63 160 192.0 37.6 1.96 [48]
23 40 132 82.0 24.7 3.01 [44]
aN/A: not available. bReported amount by authors for the isolated compound. cCalculated/reported yield for the isolated compound.
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interest in culture conditions [66]. .ese limitations pose
challenges in the bioprospecting of Symbiodiniaceae
microalgae. Although the yields of several of the isolated
compounds are within the expected values (Table 3), sig-
nificantly high culture volume and time are required to
obtain sufficient biomass (an average of 150 L and 47 days;
see Table 3). .ese challenges preclude pharmaceutical
applicability which requires large-scale production [64, 67].

Establishing axenic microalgae cultures is a remarkable
challenge [68]. Long-term culturing of endosymbionts such
as Symbiodiniaceae dinoflagellates can be resource intensive.
For instance, a study attempting to achieve a long-term
Cladocopium (former clade C) culture reported the im-
portance of host conditions for the survival of the Sym-
biodiniaceae microalgae. However, sustaining a long-term
culture was technically unfeasible [69]. Dinoflagellates are
sensitive to the hydrodynamic forces in culture media
[64, 70–72]. Although immobilized culturing has overcome
this limitation [73], it may not be applicable to culturing all
Symbiodiniaceae strains, given some strains are obligate
endosymbionts. Furthermore, discrepancies between en-
dosymbiotic and free-living states remain incompletely
understood [74–76], limiting the respective bioprospecting
applications. In addition, the super carbon-chain com-
pounds can also be considered a significant challenge from
the chemistry perspective, given the high number of chiral
carbons, functional groups, and aliphatic carbons in these
metabolites may hinder their structural elucidation. .ese
limitations restrict adequate identification, which in turn
limits chemistry-driven studies.

As opposed to primarily establishing axenic cultures,
microbial consortia have recently been proven effective in
the targeted production of metabolites [77, 78]. In fact,
except for studies by Fukatsu et al. [42] and Nakamura et al.
[47], the included articles omit describing the axenic con-
dition of the Symbiodiniaceae cultures; only 1 study [42]
reported the use of an axenic culture. .is implies a putative
role of other co-occurring species in the synthesis of the
specialized metabolites reported by the included papers.

Among the metabolites reviewed, peridinin (23) has
been studied the most. .is carotenoid pigment forms a
molecular complex of significance as a light-harvesting agent
for photosynthesis in dinoflagellates (reviewed in detail by
Carbonera et al. [79]). Owing to this property, it is currently
used as a fluorescent dye in flow cytometry [80]. .e study
reported producing this compound in a 132 L culture for
more than 40 days [44], with a yield of 24.7mg (Table 3).
However, using the immobilized approach and after 28 days
of culture, approximately 1 g of peridinin was produced
from the S. voratum CCAC 0047 strain [81]. .is im-
provement can possibly aid large-scale production and allow
exploring other bioactivity potentials of peridinin and other
Symbiodiniaceae-derived compounds.

4. Conclusions

Although studies on Symbiodiniaceae dinoflagellates are
increasing, those on bioprospecting remain considerably
low. In addition to a limited number of institutions

conducting research on this topic, the challenges in culturing
Symbiodiniaceae microalgae, such as slow growth, shear
sensitivity, and indeterminate nutrient requirements, con-
tribute to the lack of bioprospecting studies. However, using
more adaptable strains (e.g., free-living forms) and culture
approaches that prevent hydrodynamic stress (e.g., immo-
bilized growing) could address culturing limitations. .ese
considerations could facilitate more compelling studies by
neophyte groups interested in the bioprospecting of
dinoflagellates.

.is comprehensive literature survey shows that the
specialized metabolism of Symbiodiniaceae remains largely
unexplored. Future studies should explore new sampling
zones, including new hosts (e.g., sponges). Studies are also
required to determine genera with free-living stages and in
vitro conditions that affect their growth for improved bio-
mass production and better isolation yields.
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