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)is paper investigated the performance of a number of acoustic measures, both individually and in combination, in predicting
the perceived quality of sustained vowels produced by people impaired with Parkinson’s disease (PD). Sustained vowel recordings
were collected from 51 PD patients before and after the administration of the Levodopa medication. Subjective ratings of the
overall vowel quality were garnered using a visual analog scale. )ese ratings served to benchmark the effectiveness of the acoustic
measures. Acoustic predictors of the perceived vowel quality included the harmonics-to-noise ratio (HNR), smoothed cepstral
peak prominence (CPP), recurrence period density entropy (RPDE), Gammatone frequency cepstral coefficients (GFCCs), linear
prediction (LP) coefficients and their variants, and modulation spectrogram features. Linear regression (LR) and support vector
regression (SVR) models were employed to assimilate multiple features. Different feature dimensionality reduction methods were
investigated to avoid model overfitting and enhance the prediction capabilities for the test dataset. Results showed that the RPDE
measure performed the best among all individual features, while a regression model incorporating a subset of features produced
the best overall correlation of 0.80 between the predicted and actual vowel quality ratings. )is model may therefore serve as a
surrogate for auditory-perceptual assessment of Parkinsonian vowel quality. Furthermore, the model may offer the clinician a tool
to predict who may benefit from Levodopa medication in terms of enhanced voice quality.

1. Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disease, after Alzheimer’s disease [1].
Pathological symptoms of PD are severe loss of dopami-
nergic neurons in the nigrostriatal region and the appear-
ance of cytoplasmic inclusions known as Lewy bodies (LBs)
[2, 3]. A reduction in dopamine production leads to the
appearance of rest tremors, akinesia, cogwheel rigidity, and
postural instability. In addition, statistics show that nearly
90% of people impaired with PD develop voice and speech
disorders during the course of their disease [4, 5]. )e classic
characteristics of Parkinsonian speech and voice include
reduced vocal loudness (hypophonia), with a tendency of the
voice to fade out; reduced prosodic pitch inflection
(hypoprosodia); breathy or hoarse voice; imprecise articu-
lation of consonants and vowels; andmumbled speech [4, 5].

While speech articulation and fluency problems appear at
later stages of PD, voice abnormalities may appear at earlier
stages of the course of the disease [5]. As such, assessment of
voice characteristics of PD patients forms a critical part of
their treatment and rehabilitation processes.

For medical treatment, Levodopa is the most commonly
used medication that has been shown to improve the motor
symptoms of the disease [6]. Levodopa crosses the blood-
brain barrier and increases the production of dopamine.)is
process reduces the effect of the dopamine production drop
caused by PD and enhances the efficiency of the motor
features of the PD subject [6]. Despite its therapeutic effects
in the treatment of motor deficits of PD, Levodopa does not
have the same healing effect on PD voice. In general, the
magnitude, consistency, and long-term effects of Levodopa
are far from satisfactory for voice rehabilitation in PD pa-
tients [5, 7]. For example, Cushnie-Sparrow et al. [8] recently
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investigated the effect of the Levodopa on the perceived
quality of vowels produced by PD patients. Vowel samples
were collected from 51 PD subjects before and after Levo-
dopa administration, and these samples were rated by three
listeners. Results showed no statistically significant differ-
ence in the perceived quality of the vowels produced by PD
patients before and after taking the Levodopa. A more in-
depth analysis revealed an interesting fact: there was a
statistically significant improvement in the vowel quality
with the administration of Levodopa for those PD patients
whose off-medication vowel quality was rated as poor. )is
finding motivates the need for the assessment of vowel
samples from PD patients so that the potential benefit from
Levodopa medication on their voice quality can be
estimated.

While subjective assessment is considered the gold
standard of voice quality evaluation, it is not efficient in
terms of time and cost, especially when multiple voice
samples need to be rated by a group of listeners [9]. )is
weighs in favour of objective, instrumental assessment of
voice quality [9]. Traditional acoustic characterization of
vowel samples includes jitter, shimmer, harmonics-to-noise
ratio (HNR), and cepstral peak prominence (CPP). Jitter is
defined as the cycle-to-cycle variation of the fundamental
frequency, while the relative jitter is the ratio between the
absolute jitter and the average fundamental frequency [10].
Shimmer is defined as the variability of the peak-to-peak
amplitude in decibels, while relative shimmer is the ratio
between the absolute shimmer and the average amplitude
[10]. HNR quantifies the relationship between the periodic
components (harmonics) and the aperiodic components
(noise) of the signal [8]. Finally, CPP is defined as the
difference between the peak of the cepstrum and its linear
regression function [11].

Few studies investigated the performance of traditional
acoustic measures in predicting the perceived quality of PD
vowels. Jannetts et al. [12] collected recordings of the sus-
tained phonation of /a/, a sentence, and normal conversation
from 43 speakers with PD and 10 participants with ataxia.
)e recordings were rated subjectively using the GRBAS
scale (G: the grade or overall dysphonia severity, R:
roughness, B: breathiness, A: asthenia or weakness, and S:
strain). Among the aforementioned traditional acoustic
measures, CPP was found to produce the highest Spearman’s
rank-order correlation with “Grade” voice quality attribute.

Cushnie-Sparrow et al. [8] investigated the effect of the
Levodopa medication on the perceived quality of vowels
produced by PD patients. Sustained vowel recordings were
collected from 51 subjects impaired with PD, in addition to
11 healthy control individuals. Measured acoustic metrics
included jitter, shimmer, HNR, CPP, and the acoustic voice
quality index (AVQI). Measurement of the perceived quality
was obtained from a panel of 3 listeners. )e authors found
that the HNR resulted in the highest Pearson’s correlation
coefficient of 0.55 with the averaged subjective quality
scores.

In addition to these traditional measures, a multitude of
other features has been extracted from vowel samples based
on nonlinear dynamic, filterbank, and spectrotemporal

modulation analyses (e.g., [13, 14]). Examples of such fea-
tures include the recurrence period density entropy (RPDE),
Mel and Gammatone frequency cepstral coefficients
(MFCCs and GFCCs), linear prediction (LP) based features,
and modulation spectrogram features. In addition, these
features often need to be combined through a linear or
nonlinear regressionmodel, so that a single index of disorder
severity may be obtained. A vast majority of past studies
investigating these features and feature mapping models
focused on their effectiveness in discriminating between
normal and PD vowel samples (e.g., [14]) or in predicting the
Unified Parkinson’s Disease Rating Scale (UPDRS) [13]. To
the best of our knowledge, no study has investigated the
application of these features and their regression models in
predicting the perceived quality of PD vowels.

)is work, therefore, aims to build a valid regression
model that assimilates relevant acoustic features for im-
proved estimation of the perceived quality of PD vowels.
Using the previously collected subjective database by
Cushnie-Sparrow et al. [8], the performance of several
acoustic features was assessed, both individually and in
combination. Multivariate linear regression and support
vector regression techniques were utilized to assimilate the
feature sets, both with and without feature reduction
techniques. A final composite objective index was developed
that produced a statistically significant improvement in
predicting the perceived PD vowel quality ratings.

2. Methods

2.1. Voice Recordings and Subjective Evaluation. As men-
tioned earlier, subjective data collected by Cushnie-Sparrow
et al. [8] were used to develop and benchmark the perfor-
mance of the objective metrics. A brief description of the
subjective data collection procedure is given here for the sake
of completion. Samples of the sustained vowel ‘ah’ were
collected from 51 PD subjects. Salient demographic data
includes (a) 39 male and 12 female subjects, (b) age range of
47 to 82 years (M� 65.78, SD� 4.19), (c) diagnosis duration
range of 2 to 16 years (M� 9.22, SD� 4.19), and (d) Levo-
dopa use duration range of 2 to 16 years (M� 7.51, SD� 3.91)
[8].

PD patients were evaluated off and on the Levodopa
medication. In addition, sustained vowel recordings were
also collected from 11 subjects who were nonimpaired with
PD; these recordings served as a control of the measurement
process. All recordings were collected using a high-quality
headset microphone (DPA 4060) at a 44100Hz sampling
rate and 16 bits/sample quantization. )e headset micro-
phone was placed 6 cm horizontal from the middle of the
upper lip philtrum and to the side of the mouth (approx-
imately 45 degrees). Speech intensity was calibrated using a
70 dB SPL reference and a sound level meter positioned
15 cm from themouth of the PD patient. A total of 113 vowel
recordings were collected through this procedure. Two-
second samples from the middle of each vowel recording
were extracted for analysis, and perceptual judgments of
each segment were provided by 3 listeners (graduate stu-
dents in the Speech Language Pathology program atWestern
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University).)e listeners were instructed to judge the overall
voice quality of each vowel sample using a visual-analogue
scale (VAS).)e scale was 10 cm in length, and the endpoint
descriptors were “poor voice quality” on the left and “better
voice quality” on the right. VAS score was recorded as the
distance from the left endpoint to the listeners’ mark. )e
average of the three listener ratings served as the overall
quality rating of the vowel recordings. To test intrarater
reliability, 20% of the vowel samples were randomly selected
and inserted into the presentation order in a random
fashion, for a rerating. More details can be found in [8].

2.2. Features and (eir Computation. Subjective ratings
obtained through the procedure outlined in the previous
section were used to benchmark the performance of the
objective measures. Prior to feature extraction, the sustained
vowel recordings were decimated to a 16 kHz sample rate. In
addition, the complete 113-sample database was divided into
2 datasets. )e first dataset contained 80% of the whole
dataset or 91 samples to constitute the training dataset, while
the remaining 20% of the data or 22 voice samples made up
the test dataset.

2.2.1. Filterbank-Based Features. GFCC coefficients are
mainly used in computational auditory sense analysis
(CASA) studies to transform signals into time-frequency (T-
F) domain to perform robust speech recognition [3, 15]. )e
recorded signal was segmented into frames of 256 samples,
with a frame overlap of 100 samples. Afterwards, the power
spectrum of each frame was obtained after multiplying with
a Hamming window. )e equivalent rectangular bandwidth
(ERB) filterbank was applied to the frame power spectra. In
this research, 128 filters constituted the ERB filterbank, and
the log filterbank energies were decorrelated using the
discrete cosine transform (DCT) [15]. )e frame averaged
GFCCs and their first-order time differences (“delta” values)
resulted in the final GFCC feature set that contained 60
features.

2.2.2. Modulation-Based Features. Two features extracted
from the envelope, namely, the speech-to-reverberation
modulation energy ratio (SRMR) and modulation area
(ModA), served as the modulation-based features [9]. )e
envelope of the waveform was extracted and filtered to a
number of filters [16, 17]. )e ratios of the energy in the low
band filters, which are assumed to contain the speech
modulation energies, and the high band filters which are
assumed to contain the noise modulation energies represent
the quality of the sustained vowel signal.

In SRMR [16], the speech signal was processed through a
23-channel Gammatone filterbank with center frequencies
ranging from 125Hz to half the sampling rate. Hilbert
transform was then applied to the filterbank outputs, to
extract the temporal envelope in each channel. )ese en-
velopes had frequencies that ranged between 0 and 128Hz.
At this point, each envelope was filtered into eight over-
lapping modulation bands, with center frequencies ranging

from 4 to 128Hz. Finally, SRMR was computed as a ratio
between the energy stored in the first four filters, which
contain most of the speech energy, and the last four filters,
which contain the background noise [16].

In ModA, the speech signal was decomposed using only
4 bandpass filters, and filtered signals had Hilbert transform
applied to derive the band-specific temporal envelopes. Each
envelope was subsequently downsampled to 20Hz and then
processed through 1/3 octave filterbank with center fre-
quencies ranging between 0.5 and 8Hz. )e filterbank
output energies were then used to derive the area under each
acoustic band, and then those areas are averaged to produce
the ModA metric [17].

2.2.3. Linear Prediction-Based Features. )e LP-based fea-
ture extraction methodology is presented in Low Complexity
Quality Assessment (LCQA) proposed by Grancharov et al.
[18]. )e central idea of LCQA is to extract statistical features
of the speech signal [18]. Each speech recording was seg-
mented into 20ms nonoverlapping frames, an 18th order LP
model was computed for each frame, and a vector of features
is extracted from each frame. )is features’ vector incorpo-
rates 10 features which are the spectral flatness, the excitation
variance, the signal variance, the spectral centroid, and the
spectral dynamics for each frame in addition to the first
derivative of each of the aforementioned features [19]. At this
point, the statistical properties of each one of the 10 features
are calculated across all the frames; these statistical features
include mean, variance, skew, and kurtosis [18]. )is yields to
the formation of a vector of size 40 × 1 for each speech signal
[15, 19].

2.2.4. Recurrence Period Density Entropy (RPDE). In RPDE
measurements, the signal was first applied to a time delay
embedding to recreate the phase space of a nonlinear dy-
namic system [20]. RPDE quantifies the percentage of the
dynamics in the reconstructed phase space that are periodic
or repeated exactly [20, 21]. Recurrence time (T) is the time
that the recurrent signal takes to turn back to the same point
[20]. It was previously shown that the deviation from the
entropy calculated by the entropy H of the distribution of
these recurrence periods is a good indication of general voice
disorders [20]. RPDE has been used in [20] to classify
disordered voice and normal voice, and its accuracy reached
91%.)ese results led to incorporating RPDE in this study to
assess the quality of Parkinsonian sustained vowels. )e
RPDE was computed using the voice analysis toolbox based
on the research by Tsanas et al. [13].

2.2.5. Traditional Acoustic Measures. )e traditional
acoustic measures of percent jitter, absolute shimmer, HNR,
and CPP was computed from the sustained vowel records
using the Praat software package (version 6.0) [22]. )e
records were analyzed using a custom Praat script, and the
traditional acoustic measures were extracted from the report
of voice characteristics returned by the script.
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2.3. Feature Mapping. While RPDE, HNR, and CPP are
single numbers that represent the predicted speech quality,
the GFCC and LCQA are multidimensional feature vectors.
Mapping algorithms aim to generate a function that as-
similates the multidimensional feature vectors to match the
subjective scores. To express this mathematically, we have
[23]

y � f(θ,X) + b, (1)

where θ represents the parameters and functions associated
with the feature mapper, X is the feature matrix that has size
m × n, m is the number of training samples, n is the size of
the feature vector, y are the subjective scores corresponding
to the training samples, and b is the prediction error.
Commonly used feature mappers include multivariate linear
regression (LR) and support vector regression (SVR) [24].

2.4. Principal Component Analysis (PCA). PCA is used to
reduce the dimensionality of the input features of the ma-
chine learning algorithm and enhance the interpretation of
the features [25]. )is dimensionality reduction or feature
reduction has to be done in a way that maintains the in-
formation contained in the input features [25]. PCA utilizes
the eigenvalues and the eigenvectors to come up with new
features that have smaller dimensionality but maximizes the
variance of the dataset [25]. More details about PCA can be
found in [25].

2.5. Feature Selection and Reduction. A higher dimension-
ality of the feature vector may cause overfitting. In such
situations, extracted numbers of features for each metric
must be reduced before applying the machine learning al-
gorithm to avoid overfitting. To accomplish this goal, the
correlation between each single feature and the subjective
scores was obtained, and then the features were rearranged
according to their correlation values from the highest to the
lowest. Subsequently, a Monte Carlo algorithm was applied
to extract the maximum number of features that minimized
the cost function for both the training and the test datasets.
)is algorithm took the rearranged features’ matrix and the
subjective scores vector as two inputs [26]. At this point, the
data was split into a training dataset and test dataset where
the training dataset contained 80% of the full data, while the
test dataset contained the remaining 20% of the dataset. )e
algorithm applied linear regression to a subset of the datasets
to find which subset achieved the minimum mean square
error (MSE) with the subjective scores.

3. Results

3.1. Subjective Results. Intrarater reliability of the perceptual
judgment of voice quality was assessed using the intraclass
correlation coefficient (ICC) [8]. Each rater was assessed
using average agreement in a two-way mixed model. )e
average ICC across all raters [8], which is considered to be
moderate intrarater reliability. Interrater reliability across
the 3 subjective estimators was assessed using average

consistency in a two-way random model, average [8], which
can be interpreted as good interrater reliability.

Paired sample t-tests showed that there were no statis-
tically significant differences between PD vowel quality
ratings on and off Levodopa. In other words, when the PD
patient cohort was considered as a whole, the PDmedication
did not have any influence on their vowel quality. An in-
teresting finding does emerge, however, when PD group is
divided into two groups: those with poor perceived voice
quality and those with good perceived voice quality in the
off-medication condition. )ere was a significant im-
provement in perceived vowel quality for the poor-quality
group with the administration of medication. )e differ-
ences among the two groups in terms of the off-medication
voice quality and the improvement after medication are
shown in Figure 1. It can be seen that patients who have low
sustained vowel quality ratings before taking Levodopa have
a high improvement in voice quality after taking the
medication. On the other hand, people who have high voice
quality ratings before taking the medication have a statis-
tically insignificant change in voice quality. )ese results
highlight the need for either subjective or objective as-
sessment of PD voice quality, in order to predict the ef-
fectiveness of Levodopa medication on voice quality.

3.2. Objective Results. Figure 2 displays the sample spec-
trograms associated with sustained vowel samples collected
from 2 subjects in the database. Figure 3(b) displays the
spectrogram of the normal control subject with a high
subjective quality score. )is record had a relative jitter of
0.29%, a relative shimmer of 2.99 dB, a CPP value of 11 dB,
and a HNR value of 22.8 dB. Figure 3.2 displays the spec-
trogram of a subject impaired with PD.)is subject had been
off Levodopa medication and had a low sustained vowel
quality rating. )is record of the PD subject has a relative
jitter of 1.02%, a relative shimmer of 12.13 dB, a CPP value of
15.5 dB, and a HNR value of 14.23 dB.

Detailed analyses revealed that jitter and shimmer had
poor correlation values with the subjective scores of the
quality of sustained vowel records, and therefore, they were
not considered to be reliable objective metrics of the quality
of Parkinsonian sustained vowels.

Table 1 shows (a) the correlation values between the
objective scores and the subjective perceived quality ratings
using different metrics, and (b) standard deviation of pre-
diction error (SDPE) given by SDPE � σs

�����
1 − ρ2


, where σs

is the standard deviation of the subjective speech quality
scores and ρ is the correlation coefficient between the true
and predicted quality scores [27]. )e statistical significance
of the ρ parameter was computed as well, and correlation
coefficients with significance values p< 0.05 and p< 0.01 are
denoted by ∗ and ∗∗, respectively. It must be noted here that
while high correlation coefficients between objective and
subjective measures are desirable, a big difference between
the correlation coefficients for training and test datasets is an
indication of overfitting.

(1) Individual Feature Performance. )e first five ob-
jective metrics, SRMR, ModA, CPP, HNR, and
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RPDE, are solo features. Consequently, LR was ap-
plied to the training dataset which contained 80% of
the whole database, and then the trained linear
model was applied to the test dataset to benchmark
the objective metric performance. Both SRMR and
ModA had low, statistically insignificant correlation
values with the quality of sustained vowels for the

training and the test datasets. An explanation of that
is the envelope of the high-quality sustained vowel
does not have a lot of variations, while the envelope
of the low-quality sustained vowel contains high
variations (see Figures 3(a) and 3(b), respectively).
)is contradicts the way SRMR and ModA measure
the quality of running speech in which the variations
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Figure 2: Waveforms and spectrograms of selected sustained vowels recordings from subjects in the database. (a, c) )e waveform and the
spectrogram for the sustained vowel “∖a∖” collected from a normal control subject; (b, d) the waveform and the spectrogram for “∖a∖”
sustained vowel collected from a PD subject who has been off his medication. (a) Control subject waveform. (b) PD subject waveform.
(c) Control subject, high quality. (d) Parkinsonian subject, poor quality.

6 )e Scientific World Journal



Ta
bl

e
1:
C
or
re
la
tio

n
co
effi

ci
en
ts
an
d
st
an
da
rd

de
vi
at
io
n
of

pr
ed
ic
tio

n
er
ro
r(
SD

PE
)o

fo
bj
ec
tiv

e
m
et
ri
cs
w
ith

su
bj
ec
tiv

e
sc
or
es
.I
nd

ic
es

th
at
ar
eb

ol
de
d
in

a
co
lu
m
n
ar
es

ta
tis
tic
al
ly
sim

ila
ri
n

th
ei
r
pe
rf
or
m
an
ce

bu
ta

re
sig

ni
fic
an
tly

be
tte

r
th
an

ot
he
rs

in
th
at

co
lu
m
n.

Si
gn

ifi
ca
nc
e
of

co
rr
el
at
io
n
va
lu
es

in
di
ca
te
d
by
∗
p
<
0.
05

an
d
∗∗

p
<
0.
01
.

M
et
ri
c

Fu
ll
se
t

PC
A

Re
du

ce
d

C
or
re
la
tio

n
(t
ra
in
in
g)

SD
PE

(t
ra
in
in
g)

C
or
re
la
tio

n
(t
es
t)

SD
PE

(t
es
t)

C
or
re
la
tio

n
(t
ra
in
in
g)

SD
PE

(t
ra
in
in
g)

C
or
re
la
tio

n
(t
es
t)

SD
PE

(t
es
t)

C
or
re
la
tio

n
(t
ra
in
in
g)

SP
D
E

(t
ra
in
in
g)

C
or
re
la
tio

n
(t
es
t)

SD
PE

(t
es
t)

SR
M
R

0.
28
∗∗

17
.2
6

0.
16

17
.7
4

—
—

—
—

—
—

—
—

M
od

A
0.
40
∗∗

16
.4
8

0.
33

16
.9
7

—
—

—
—

—
—

—
—

C
PP

0.
29
∗∗

17
.2
0

0.
53
∗

15
.2
4

—
—

—
—

—
—

—
—

H
N
R

0.
55
∗∗

15
.0
1

0.
74
∗∗

12
.0
9

—
—

—
—

—
—

—
—

RP
D
E

0.
80
∗∗

10
.7
9

0.
75
∗∗

11
.9
8

—
—

—
—

—
—

—
—

G
FC

C
-L
R

0.
86
∗∗

9.
15

−
0.
25

17
.4
4

0.
65
∗∗

13
.6
3

0.
42

16
.3
5

0.
56
∗∗

14
.8
6

0.
55
∗∗

15
.0
5

G
FC

C
-S
V
R

0.
60
∗∗

14
.3
5

0.
06

17
.9
8

0.
60
∗∗

14
.3
5

0.
30

17
.1
9

0.
54
∗∗

15
.1
0

0.
52
∗

15
.3
9

LC
Q
A
-L
R

0.
82
∗∗

10
.2
7

0.
46
∗

16
.0
0

0.
76
∗∗

11
.6
6

0.
55
∗∗

15
.0
5

0.
75
∗∗

11
.8
7

0.
75
∗∗

11
.9
2

LC
Q
A
-S
V
R

0.
66
∗∗

13
.4
8

0.
66
∗∗

13
.5
4

0.
73
∗∗

12
.2
6

0.
53
∗

15
.2
8

0.
66
∗∗

13
.4
8

0.
66
∗∗

15
.2
8

C
om

bi
ne
d-

LR
0.
87
∗∗

8.
85

0.
51
∗

15
.5
0

0.
73
∗∗

12
.2
6

0.
70
∗∗

12
.8
7

0.
81
∗∗

10
.5
2

0.
80
∗∗

10
.8
1

C
om

bi
ne
d-

SV
R

0.
75
∗∗

11
.8
7

0.
77
∗∗

11
.5
0

0.
71
∗∗

12
.6
3

0.
66
∗∗

13
.5
4

0.
71
∗∗

12
.6
3

0.
82
∗∗

10
.3
1

PC
A
:p

ri
nc
ip
al

co
m
po

ne
nt

an
al
ys
is;

RP
D
E:

re
cu
rr
en
ce

pe
ri
od

de
ns
ity

en
tr
op

y;
SR

M
R:

sp
ee
ch
-t
o-
re
ve
rb
er
at
io
n
m
od

ul
at
io
n
ra
tio

;H
N
R:

ha
rm

on
ic
s-
to
-n
oi
se

ra
tio

;C
PP

:c
ep
st
ra
l
pe
ak

pr
om

in
en
ce
;M

od
A
:

m
od

ul
at
io
n
ar
ea
;G

FC
C
:G

am
m
at
on

e
fr
eq
ue
nc
y
ce
ps
tr
al

co
effi

ci
en
ts
;L

C
Q
A
:L

ow
C
om

pl
ex
ity

Q
ua
lit
y
A
ss
es
sm

en
t;
an
d
SV

R:
su
pp

or
tv

ec
to
r
re
gr
es
sio

n.

)e Scientific World Journal 7



of the envelope and the ratio between energies in the
low band and the energies in the high bands of the
envelope indicate the quality of the waveform. )e
correlation between HNR and the subjective scores
was 0.55 for the training database and 0.74 for the
test database, while the correlation values between
the subjective measurements and the CPP scores
were 0.29 and 0.53 for the training and the test
datasets, respectively—all of which were statistically
significant. RPDE was the highest among the single-
feature objective metrics to have values of correlation
with the subjective scores that reached statistically
significant 0.80 and 0.75 values for the training and
the test datasets, respectively. It is noted that there is
still a difference between the correlation values of the
training and the test datasets of RPDE, which means
that this metric has deficiency in predicting the
quality for new (i.e., unseen) sustained vowel sam-
ples. Figure 3 shows the scatter plot for the RPDE
and HNR measures against the subjective scores.

(2) Objective Metrics with Multiple Features. )e full set
metrics are the metrics that contained multiple
features and the whole set of features are trained
without any feature reduction. Using machine
learning algorithms on the GFCC features did not
yield a reliable metric to estimate the Parkinsonian
voice quality while applying SVR on the LCQA
features resulted in a LCQA-SVR metric that has a
0.66 correlation value with the subjective scores.

(3) Reduced Multiple Feature Objective Metrics. Apply-
ing PCA and the Monte Carlo feature selection and
reduction method to the GFCC and LCQA features
led to a reduction of the number of dimensions of the
GFCCmetric from 60 to 3 features only. It also led to
reducing the number of LCQA features from 40 to
16. It is noted that the metrics resulting from the
feature reduction method led to higher performance
than the PCA method. )is enhanced the perfor-
mance of most of the metrics. Applying LR to the
LCQA metric led to obtaining an objective metric
that has a statistically significant 0.75 correlation
value with the subjective scores.

(4) A Composite Objective Voice Quality Estimator. A
composite metric was derived by augmenting the
HNR and CPP features with LCQA features and
applying SVR and LR to estimate the vowel quality
scores. )e combined metric, which included 42
features, resulted in predicted quality scores that had
a 0.77 correlation value with the subjective quality
scores. )is is noteworthy in that it is higher than all
the other multiple feature metrics.

Afterwards, the PCA method was applied to the features
before training the model to estimate the vowel quality. )e
number of dimensions was reduced to 23 features, which
explained 95% of the data variance. Finally applying the
feature reduction method had greater improvement of the
performance more than using PCA. Applying LR to the

reduced combined feature set resulted in a model that es-
timated the quality of the vowels with a statistically sig-
nificant 0.80 correlation value with the subjective scores. To
test the statistical significance between the correlation values
of the obtained scores from the combined metric compared
to the second-highest objective metric which is the reduced
LCQA metric, Steiger’s Z-test [28] was applied to measure
the statistical difference. It was found that there is a statistical
enhancement when using the combined reduced metric
instead of the reduced LCQA metric. Figure 4 shows the
scatter plot of the subjective voice quality scores on the x-
axis against the predicted quality scores by the composite
metric on the y-axis for the training, test, and full data.

It is noted that the composite metric had the highest
correlation for training and test datasets, followed by the
RPDE feature. In order to further confirm this finding, both
these metrics were trained repeatedly with different training
datasets (different samples selected randomly from the
whole dataset each time) and then applied to the corre-
sponding test dataset. )en, the average correlation values
for the training and the test datasets were calculated, and
they were found to be 0.75 for the RPDEmethod and 0.80 for
the combined reducedmethod.)e difference between these
two correlation coefficients was statistically significant, in-
dicating the composite measure provided a better overall
performance that was robust to random partitioning of the
database.

4. Discussion and Conclusion

In this paper, the quality of the sustained vowels produced
by patients with PD was predicted through objective
acoustical analyses. A previously collected vowel database
by Cushnie-Sparrow et al. [8] was utilized for this purpose.
)is database consisted of sustained vowel samples from 51
PD patients before and after taking the Levodopa medi-
cation, along with vowel samples from 11 healthy control
subjects, which resulted in the formation of a database of
113 vowels. A panel of 3 listeners rated the perceived
quality of these vowel recordings [8], which were used in
training the objective models and assessing their accuracy.
Vowel quality prediction features included GFCC, LCQA,
HNR, smoothed CPP, and RPDE. Machine learning al-
gorithms SVR and LR were applied to these multidimen-
sional features to estimate the quality objectively. Some of
the features mentioned above were blended to form a
composite objective metric that displayed significantly
better performance than the other metrics. Moreover, PCA
and feature reduction were applied to reduce the number of
input features to machine learning algorithms to reduce the
overfitting and enhance the performance of the objective
metrics.

Initial investigation focused on individual features and
parameters extracted from the vowel samples. Although a
number of these individual features exhibited statistically
significant correlation values with auditory-perceptual rat-
ings, only a subset of the measures exhibited correlation
coefficients greater than 0.5. Of the commonly reported
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vowel acoustic measures, HNR performed the best, with
Pearson correlation coefficients of 0.55 and 0.74 for the
training and test partitions, respectively. )e correlation
coefficients exhibited by HNR and CPP [8] but are lower
than those reported by Jannetts and Lowit [12]. It is
worthwhile to note that Jannetts and Lowit [12] reported
Spearman’s rank-ordered correlation between the percep-
tual ratings and acoustic measures, unlike Pearson’s cor-
relation coefficient reported here, which can perhaps explain
the discrepancy. Furthermore, Jannetts and Lowit [12]
employed the GRBAS scale, and the auditory-perceptual
ratings were provided by an experienced clinician. It is
plausible that these methodological differences also con-
tributed to the differences.

Among the individual measures, the RPDE parameter
produced the best performance. )e correlation coefficients
of 0.8 and 0.75 with training and test partitions were sig-
nificantly better than those reported by other individual
measures. RPDE has been previously employed for dis-
criminating between normal and PD voices [14, 20], and our
results demonstrate that it is suitable for predicting the
perceived quality of PD vowel samples.

While GFCC was used in other studies to measure the
quality of Parkinsonian speech and had a good performance
[15, 26], this was not the case for estimating the perceived
quality for Parkinsonian sustained vowels. )e best per-
formance for GFCC objective metric after feature reduction
resulted in a 0.55 correlation coefficient between the

0 20 40 60 80 100
0

20

40

60

80

100

O
bj

ec
tiv

e s
co

re
s

Subjective scores

(a)

0

20

40

60

80

100

O
bj

ec
tiv

e s
co

re
s

0 20 40 60 80 100
Subjective scores

(b)

0

20

40

60

80

100

O
bj

ec
tiv

e s
co

re
s

0 20 40 60 80 100
Subjective scores

(c)

Figure 4: Subjective scores versus objective scores using the reduced combined linear regression (LR) metric. (a) shows the scatter plot for
the training data, (b) shows the scatter plot for the test data, and (c) depicts the scatter plot for the whole database.
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subjective and the objective scores. For the nonreduced full
set category, applying SVR to the combination of the 40
LCQA feature, HNR, and smoothed CPP was the best ob-
jective metric of this category with a correlation value of 0.77
for the test dataset. )e difference between the training and
the test dataset was the minimum, which meant that the
effect of overfitting is minimum. Applying PCA to the
features led to the enhancement of most of the objective
metrics. It is noted that using LR and SVR on the PCA
reduced combined metric yields to statistically similar re-
sults. Applying the feature reductionmethod to the objective
features yielded a great enhancement in the performance of
the objective metrics. Applying LR and SVR to the reduced
combined metric yielded statistically similar results. How-
ever, the metric with linear regression had a smaller dif-
ference between the training and the test datasets which
means it is less prone to overfitting. As a result, the reduced
composite metric with linear regression is considered to be
the best objective metric for estimating the quality of the
Parkinsonian sustained vowels.

In summary, a subset of acoustic measures including
HNR, LCQA, and RPDE exhibited a good correlation with
auditory-perceptual voice assessments of the overall quality
of sustained vowels produced by a group of Parkinson’s
patients. )e application of a regression model (LR and
SVR) incorporating a subset of these acoustic features
resulted in a statistically improved prediction of the per-
ceived quality of the Parkinsonian vowels. )e subjective
ratings used for benchmarking the objective models were
obtained from sustained vowels produced by PD patients
both on and off Levodopa medication. As such, the clinical
implications of the current study include the following: (a)
the derived model may serve as a surrogate for the subjective
assessment of the effect of the Levodopa medication on the
voice quality of Parkinsonian subjects. Since the evidence
shows that Levodopa improves the voice quality of Par-
kinsonian patients only when their premedication voice
quality is poor, the derived model can potentially play a
clinically relevant role in predicting the effectiveness of
Levodopamedication. (b)More generally, the derivedmodel
can potentially be applied for clinical assessment of the
perceived quality of Parkinsonian vowels, particularly for
monitoring vowel quality over the course of any therapeutic
intervention.

Before closing, a few limitations of our study must be
acknowledged.)e auditory-perceptual ratings used to train
and benchmark models were garnered from clinical grad-
uate students with little experience. Follow-up research
focusing on model performance with auditory-perceptual
ratings from experienced clinicians is necessary. While the
derived model is promising for objective, instrumental as-
sessment of Parkinsonian vowel quality, future research is
warranted to test its robustness and generalization capa-
bilities and to further improve its performance. One of the
aspects that need to be addressed is the limited size of the
collected dataset used in this investigation. )e size of the
dataset needs to be increased to ensure more reliability and
generalization capability of the proposed metrics. Another
area for future research is to develop and evaluate more

advanced and complicated machine learning algorithms
such as deep learning. Applying deep learning emphasizes
the need for a larger dataset that needs to be collected to
present a more reliable and precise metric to estimate the
sustained vowels’ quality. )e effect of gender on studied
acoustic variables is also of future research interest, espe-
cially on establishing the effectiveness of the derived model
in predicting male versus female PD patient vowel quality.
Finally, expanding the findings of this study to estimate the
quality of continuous speech (as opposed to sustained vowel)
will be of broad research interest.
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