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Background. After several waves of spread of the COVID-19 pandemic, countries around the world are struggling to regain their
economies by slowly lifting mobility restrictions and social distance measures applied during the crisis. Meanwhile, recent studies
provide compelling evidence on how contact distancing, the use of face masks, and handwashing habits can reduce the risk of
SARS-CoV-2 transmission. In this context, we investigated the effect that these personal protection habits can have in preventing
new waves of contagion. Methods. We extended an agent-based COVID-19 epidemic model in a simulated community to
incorporate the mechanisms of these aforementioned personal care habits and measure their incidence in person-to-person
transmission. A full factorial experiment design was performed to illustrate the extent to which the interplay between these
personal habits is effective in mitigating the spread of disease. A global sensitivity analysis was performed on the parameters that
control these habits to further validate the results. Results. We found that observing physical distance is the dominant habit in
reducing disease transmission, although adopting either or both of the other two habits is necessary to some extent to suppress a
new outbreak entirely. When physical distance is not observed, adherence to the use of masks or handwashing has a significant
decrease in infections and mortality, but the epidemic still unfolds. We also found that in all scenarios, the combined effect of
adhering to the three habits is more powerful than adopting them separately. Conclusions. Our findings suggest that a broad
adherence of the population to voluntary self-care habits would help contain unfold of new outbreaks..e purpose of our model is
illustrative and contributes to ratify the importance of urging citizens to adopt the amalgam of personal care habits as a primary
collective protection measure to prevent communities from returning to confinements, while immunisation is carried out in late
stages of the pandemic.

1. Introduction

Countries around the world are facing the extraordinary
challenge of recovering the economy after the crisis caused by
the COVID-19 pandemic [1–3]. .e crisis had a negative
impact on the social, economic, and psychological conditions
of the population due to the application of nonpharmaceutical
interventions (NPI) aimed at restricting the mobility of
people, thus reducing the risk of contagion by direct contact,
e.g., total lockdown, home quarantine, isolation of confirmed
cases, and closure of conglomerate facilities [4–7].

During the first year of the pandemic, the only measure
to contain the spread of the disease was the periodic

application of these NPIs; however, the disease has spread in
most countries of the world with an oscillatory dynamics
resembling a wave; the rise of a high peak of infections is
followed by mandatory restrictions of mobility for the
population, leading to a fall on the number of infections and
on governments to lift restrictions, which in turn allows
social interactions to increase, causing the infection curve to
rise again. At the time of writing, many countries in Europe
and America are struggling with second and third waves of
contagion [8, 9] and even a fourth wave has affected some
Asian countries, such as Hong Kong [10].

In this context, extending the duration of the interme-
diate periods of low contagion within each wave would be
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essential to achieve a continuous recovery of the economies
and health services of the countries. .e unprecedented
rapid development of the COVID-19 vaccines [11], less than
a year after the discovery of the SARS-CoV-2 genome se-
quence [12], raised hopes for rapid mass immunisation to
slow down the transmission of the virus. However, imple-
menting billions of doses vaccination has proven to be a
great challenge [13] due to supply shortages [14], financial
and political difficulties in allocation for poor countries [15],
and the antivaccination attitude within the general pop-
ulation [16, 17], among other reasons.

Other areas of uncertainty persist, such as the efficacy of
dose administration within vaccination implementation
plans [14], duration of vaccine immunity [18], dynamics of
antibody production against the new pathogen [19], and the
potential for reinfection by new strains of the virus [20–22].
Consequently, the surge of new waves of contagion is likely
to occur still in this late phase of the pandemic response,
where person-to-person transmission, particularly in
crowded meetings or in poorly ventilated spaces, would
represent the main causes of risk [23–25].

Consequently, individual protection measures taken
voluntarily by citizens, such as maintaining physical prox-
imity distance, wearing facial protective equipment, and
washing hands regularly, would be extremely important to
minimise the risk of person-to-person contact, avoiding not
only the spread of the disease but also the need to send
communities back into confinement.

Now, compared to the socioeconomic cost inflicted by
government-mandated NPIs, it can be argued that personal
protection measures are apparently inexpensive (or at least
easy to implement) and yet highly effective in preventing the
spread of SARS-CoV-2 [26]. One study showed that washing
hands 6–10 times a day reduces personal risk of infection by
approximately 34% compared to people who wash hands less
often [27]. Other studies have previously linked hand hy-
giene as an effective countermeasure against similar respi-
ratory infectious diseases such as influenza [28, 29].

Similarly, since airborne transmission has been identi-
fied as the main route for the spread of SARS-CoV-2 [30],
the habit of wearing a mask that was once ruled out as
innocuous by theWorld Organization for Health [31] is now
recommended as a mandatory personal habit that serves as a
barrier to filter the enveloped droplet release mechanism of
this respiratory virus [30, 32].

.e beneficial filtering effect both inwards and outwards
of masks made from different fabric materials has been
documented [33]. Some studies found a reduced risk of
infection for healthy mask users; but in addition, if infection
occurs anyway, the masks reduce the amount of virus
particles the susceptible person was exposed to, presumably
leading to a mild or asymptomatic infection [34]. As a result,
universal masking could be useful as a complementary
mechanism to immunisation at the community level [35]
while vaccination implementation plans develop.

Another observational study reported on the successful
protection of a community by wearing face masks while

attending a hair salon where two hairstylists (who also wore
face protection) were subsequently diagnosed with COVID-
19 and developed symptoms; none of these clients were
infected with the disease [36]. A retrospective study of
secondary infections in homes revealed that the use of masks
by the index case and family contacts before the onset of the
patient’s symptoms produced a significant reduction in the
risk of transmission [37].

Although there is still insufficient evidence to estimate
the exact proportion of risk reduction provided by mask
protection, a general trend of mitigating the epidemic has
been noted in several countries after the majority of the
community adopted this measure [38, 39]. Similar studies on
the combination of measures involving physical contact
distancing, a mask, and eye protection point to its effec-
tiveness in preventing person-to-person transmission of
SARS-CoV-2 [26]. It has been suggested that in community
settings, masks appeared to be effective with and without
hand hygiene or even more protective if both were taken
together [40].

In light of this background, our study focuses on the
following question. To what extent can personal protection
habits be effective in containing the spread of COVID-19
contagion, in the absence of any other NPI or treatment,
when examined within a controlled simulated environment?
To address this question, we designed experiments on a
simulation model of COVID-19 contagion dynamics. We
note that several mathematical models have been developed
for this purpose, mainly on the basis of the classic epide-
miological compartment model SEIR (susceptible-exposed-
infected-removed) of transmission of diseases from person
to person [41]. Many of these models incorporate extended
compartments designed for particular characteristics of this
disease [4–6, 42–46], in an attempt to evaluate the effects of
its epidemics.

For example, the SARIIqSq model of [44] defines
compartments for quarantined and infected isolated sus-
ceptible individuals; the model was calibrated using data
from the pandemic in India, and imposing social distance
was found to be crucial in controlling the outbreak. Another
mechanistic model, SAIUQR [45], proposes compartments
for reported, unreported, and quarantined symptomatic
patients, and after calibration with data from some regions
of India, it found that quarantine also plays an important
role for transmission mitigation. A related model, SAIU [46]
with susceptible, asymptomatic, reported, and unreported
symptomatic compartments, found that the reproduction
number R0 can be controlled by reducing the rate of disease
transmission. When this indicator falls to values below one
(R0< 1), the transmission decreases, which makes the epi-
demic finally disappear [47].

Other approaches use statistical time series models to
forecast the number of positive COVID-19 cases. For ex-
ample, the studies of [48, 49] concluded that these types of
models (ARIMA, Holt’s linear exponential smoothing
methods, and autoregressive distributed delay) were useful
to characterise the dynamics of the epidemic in eight major
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Western countries, finding that they are consisting with the
predictions of traditional SEIR models.

An alternative approach to simulate the dynamics of
contagion is agent-based models (ABM), which simulate
microscopic rules of simultaneous spatial interactions be-
tween a population of agents allowing to replicate the
complex dynamics of a wider variety of containment
measures (e.g., [42, 43, 50–55]). We build upon an ABM
simulation tool previously developed by our team to study
the effects of several NPIs on a modified SIRE +CARDS
epidemiological model [53]. In this study, we expand the
model to account for the personal protection habits men-
tioned above. As our findings indicate, mitigation effects
emerge indeed when the majority of the population adheres
to these protection measures.

We note that the purpose of the resulting computational
model is illustrative [56] and contributes to ratify the im-
portance of reaching the entire community to spread the
message about the collective benefits of the mass adoption of
personal care against COVID-19, as a complement of NPIs
and vaccination campaigns.

2. Methods and Tools

We extended the agent-based model of COVID-19 epi-
demics of [57], which proposes a SIRE +CARDS epidemic
model considering four states: susceptible, infectious, re-
covered, and extinct. Infectious is actually viewed as a
macrostate that includes confirmed, asymptomatic, risky,
fatal, and serious conditions. .e model simulates an arti-
ficial community of agents that represent people living
within a simulated enclosure or territory, where contagion
develops as a consequence of space-time interactions that
occur during their daily routines. In addition, there are a
number of optional NPIs available to enforce on the
community, including lockdowns, quarantines, mass testing,
and zonal isolation. For specific details of the agent-based
design, epidemic model, transition events, and NPI dy-
namics, we refer the reader to [57].

.e model was modified to account for individual
voluntary protection measures related to personal health
habits, that is, physical distance, the use of face masks, and
regular handwashing. Consequently, each agent was
designed with three different personal habit traits: social
distancer (SD), mask user (MU), and hand washer (HW).
.e actual choice of traits for an arbitrary agent at the
beginning of the simulation is controlled by three ad-
justable parameters that represent the willingness of the
total population to adopt them, in a proportion between 0
and 100%.

Now, the incidence of these personal habits on the risk of
contagion during person-to-person contact was modelled as
follows. First, social distancing agents tend to divert their
trajectory to avoid a close encounter with other surrounding
agents. .e actual occurrence of contact events would de-
pend on the random spatial interactions that the agents have
when they move around the environment during their daily
activities, as the simulation unfolds.

Second, after considering the evidence suggesting the
efficacy of face masks in preventing the transmission of
SARS-CoV-2 [26, 30, 32, 33, 35–39], we define four possible
contact configurations during a single contagion event in-
volving a susceptible agent and an infectious agent, along
with their associated risks of transmission: if neither agent
wears a mask, the probability of contagion would be 90%; if
the susceptible agent wears a mask but the infectious agent
does not, the probability of infection would be 50%; if the
infectious agent wears a mask but the susceptible agent does
not, the probability of contagion would be 30%; and the last
case corresponds to both agents wearing masks, with a
probability of contagion of 10%.

.ird, and again taking into account recent studies
suggesting the benefits of handwashing in the prevention of
diseases caused by coronaviruses [27, 28], we define an
additional reduction in the risk of contagion by a 30% factor
if the susceptible agent involved in any of the contagion
events described above happens to be a hand washer (e.g., in
the case where the infectious agent wears masks but the
susceptible does not, the risk decreases from 30% to 9%).

Given that the purpose of our study is to evaluate the
effect that these habits may have in mitigating the epidemic,
we decided to suspend the application of any of the other
NPIs available in the model and experiment with simula-
tions where the population adheres to the habits of SD, MU,
and HW to some extent. For each of these traits, we define
willingness parameters modelling scenarios where no one
observes the habit (0%), approximately half of the pop-
ulation adopts it (50%), or everyone adheres to it (100%)..e
different permutations of the tuple of proportions (SD%,
MU%, and HW%) produce twenty-seven scenarios starting
with the organic “do nothing” scenario (0%, 0%, 0%) up to
the ideal “everybody adheres to” scenario (100%, 100%,
100%) plus the in between permutations (0%, 0%, 50%), (0%,
0%, 100%), and (0%, 50%, 0%).

Besides, our analysis will consider the following epi-
demic indicators:

(1) Mortality. .is measure is the cumulative count of
deaths in the population. Notice that in our model,
all deaths are due to COVID-19, and no births or
immigrations are taken into account during the
simulation timeline. .us, this indicator determines
the mortality rate.

(2) Cases. .is measure is the cumulative count of in-
fections in the population. Since the population
evolves within a controlled environment where both
symptomatic and asymptomatic patients can be
traced, this would be in fact the actual number of
cases due to the disease. .is indicator is associated
to the infection fatality rate (IFR).

(3) Confirmed cases. .is measure is the cumulative
count of confirmed infection cases. Given that in
our simulations, we do not allow the application of
massive test interventions, and these cases corre-
spond to symptomatic patients whose disease
worsens to severe or fatal states that require hospital
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care, where upon admission, are reported as di-
agnosed. .is indicator is associated to the case
fatality rate (CFR) which is usually an over-
estimated representative of incidence rate (i.e., CFR
and IFR).

(4) Recovered. .is measure is the cumulative count of
agents that have recovered from illness. .e model
assumes that upon recovery, immunity to disease is
acquired and reinfection will not occur. .erefore,
this indicator is related to the survival rate and the
herd immunity rate.

.e derived model was developed in the NetLogo
programming language version 6.1.0; the source-code and
user documentation have been released openly at http://
modelingcommons.org/browse/one_model/6423..ere, the
model can be run online or downloaded for local execution.

3. Simulation Results

.e settings for the experiments, including properties for the
simulated community, disease, NPIs, and running param-
eters, are given in Table 1 (note that for the sake of com-
pleteness, we included settings for authority-enforced NPIs,
although they were disabled during the simulations). A
single simulation begins at 00 hours on day 0 and lasts until
00 hours on day 60. At 12 hours on day 0, an outbreak is
simulated that causes the infection of 5% of the population.
From that moment on, the simulation unfolds according to
the rules designed for the model and the random local
interactions that occur during the movement of the agents.

3.1. Effect in “Flattening the Curve”. Figures 1–3 show an
illustration of the SIRE curves obtained in a single repre-
sentative execution for each of the 27 scenarios. First of all,
Figure 1 shows that the majority of the curves when no
physical distancing is adopted (SD� 0%) exhibit the typical
development of an uncontrolled epidemic, that is, an ex-
ponential growth of the infectious curve (red) reaching an
early peak in the first third of the simulation. Only in
scenarios where all agents wear mask protection
(MU� 100%) and half or more of the agent population wash
their hands regularly (HW� 50% or 100%), the infectious
curve developed a flattened shape that indicates a mitigation
on the speed of contagion.

On the other hand, Figure 2 shows that a 50% increase
in agents who adhere to social distance (SD � 50%) has a
notable effect on mitigating the infectious curve. Even
when no other habit is adopted (MU � 0% and HW � 0%),
the peak is reduced and moved towards the middle of the
simulation timeline. When some other habit is adopted
(MU � 50% or HW � 50%), the curve flattens more
drastically. Furthermore, when more than 50% of the
population adopts the use of masks or washes their hands
or both (MU � 100% or HW � 100%), the transmission of
the infection is suppressed, even from the early stages of
the simulation.

Last, Figure 3 shows that all scenarios where everybody
adheres tomaintain physical distance (SD� 100%) and abide

by the other habits to some extent (MU> 0% and HW> 0%)
produce the suppression of contagion. Here, even when no
one wears masks or washes their hands (MU� 0% and
HW� 0%), the infectious curve clearly flattens out and shifts
towards the end of the simulation.

3.2. Effect on the Epidemic Indicators. For each of the 27
scenarios, we performed 30 repetitions. .en, at the end of
the simulation run (day 60), we collected average statistics
from the aforementioned epidemic indicators. We focus the
analysis of these results on evaluating the effect of variations
in the estimated ratios of the population that adopts personal
care habits, that is, we compare the results of the epidemic
indicators for a series of (SD, MU, and HW) variations. To
do this, we define three scenarios as a baseline: in the first, no
one adopts any habit (0%, 0%, 0%); in the second, half of the
population complies with the physical distance but does not
wear a mask or wash their hands (50%, 0%, 0%); finally, the
third baseline scenario assumes that everyone observes the
physical distance, but again, no one wears masks or washes
their hands (100%, 0%, 0%). .e differences in behaviour
between the reference scenarios and the variations were
evaluated using the Mann–Whitney U statistical test
(Supplementary Materials).

Next, we present plots with the results of the epidemic
indicators of interest. Some periodic patterns are seen when
examining groups of three boxes from left to right (a box
with a higher average, followed by a box in the middle and a
box with a lower average); such patterns are simply an
artifact of the order of presentation of the parameters in the
permutation tuple (SD, MU, and HW); we observe that
when plotting the permutations in different orders, similar
ladder patterns are obtained (with cycles of every three
scenarios).

3.3. Mortality. .e behaviour of this epidemic indicator in
all simulated scenarios is shown in Figure 4. .e left panel
shows scenarios where no one observes physical distancing
(SD� 0%). No significant differences were found in the first
5 scenarios with respect to the (0%, 0%, 0%) baseline
(number of deaths around 65, that is, 16% of the pop-
ulation). Only the last three scenarios in that panel, where
everyone wears face masks (MU� 100%), showed a signif-
icant decrease in the number of deaths, with the steepest
drop to almost a half when everyone also washed their hands
(HW� 100%).

.e middle panel shows scenarios where half the pop-
ulation adheres to physical distancing (SD� 50%). Within
each group of 3 cells, a trend of deaths decreasing as the
percentage of HW increases can be seen. In any case, the
number of deaths in all scenarios drops significantly com-
pared to the reference scenario (50%, 0%, 0%) for this panel.
As expected, the last group of three scenarios obtained the
lowest values, nearly less than 10 deaths (that is, 2.5% of the
population).

.e right panel shows scenarios where the entire
population observes physical distancing (SD � 100%). A
similar pattern can be observed to the results of the central
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panel, since compared to the baseline scenario (100%, 0%,
0%); all other scenarios exhibited a significant reduction in
mortality, including the last six with death ratios lower than
2.5% of the population. .ese results are corroborated by the
black extinct curve of the SIRE graphs of Figure 3, which is seen
rising very low or even not rising at all.

3.4. Cases. .e behaviour of this epidemic indicator in all
simulated scenarios is shown in Figure 5. .e three panels
are organised as before: SD� 0%, scenarios are plotted in the
left panel, SD� 50%, scenarios in the middle panel, and
SD� 100%, scenarios in the right panel. Regarding the left
panel, a significant drop in the number of cases is clearly
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Figure 1: Representative SIRE curves for scenarios with SD� 0% and different combinations of MU and HW proportions (green,
susceptible; red, infectious; blue, recovered; black, extinct).

Table 1: Settings used in the simulation tool to perform the experiments.

Parameter Description Value
City and population settings
Population size Total number of simulated people (agents) 400
Zones Number of residential zones 9
Days Period of observation days (simulation length) 60 days
% high risk % of population with comorbidities 30%
Hospital beds Total number of hospital beds available 12
ICU beds Total number of ICU beds available 2
Ambulances zone Number of ambulances (sentinels) per zone 1

Disease settings
Average duration Average day period to recover from illness 18 days
% asymptomatic % of patients showing no or mild symptoms 50%

NPI settings (authority enforced, not used)
Total lockdown Enforce stay-at-home order for the entire population Off
% permits % of mobility permits when lockdown is activated Not used
Case isolation Confirmed cases are isolated at home Off
Home quarantine Housemates of confirmed cases are also isolated Off
Zone enforcing Restraint mobility of agents within zones only Off
Pick zone Zone id number Not used
Sentinel testing Enable mass testing by ambulance sentinels Off
Zonal Restraint mobility of sentinels within zones Off

NPI settings (personal habits)
Social distancing Maintain a minimum physical distance with others (SD) On
% willing Estimated % of population willing to comply with SD (0, 50, 100)
% mask users Estimated % of population willing to use masks (MU) (0, 50, 100)
% hand washers Estimated % of population willing to wash hands (HW) (0, 50, 100)

.e Scientific World Journal 5



seen in the scenarios (0%, 100%, 50%) and (0%, 100%,
100%), in about 350 and 270 cases, respectively; the dif-
ference is not noticeable with respect to the other scenarios
where the number of cases is close to the entire population
(about 400 agents). .e central panel displays a significant
decrease in the number of cases for all scenarios. .e largest
drop is observed between the scenario (50%, 50%, 50%) and
the scenario (50%, 50%, 100%), to around half of the cases
(from 250 to 120).

Last, the right panel shows a pattern similar to the
middle panel, although more notable; compared to the
baseline (100%, 0%, 0%), for this panel, the other sce-
narios exhibited a significant reduction in cases,
approaching 25 cases in the last four scenarios (6.25% of
the population). .ese low rates are explained by the fact
that, as shown by Figures 2 and 3, the red infectious curve
in some of these scenarios flattens out, and, therefore, the
contagion is in the stage of initial growth when the
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Figure 2: Representative SIRE curves for scenarios with SD� 50% and different combinations of MU and HW proportions (green,
susceptible; red, infectious; blue, recovered; black, extinct).
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Figure 3: Representative SIRE curves for scenarios with SD� 100% and different combinations of MU and HW proportions (green,
susceptible; red, infectious; blue, recovered; black, extinct).
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indicator was collected at the end of the simulated
timeline (day 60); moreover, in some other cases, the
curve was completely suppressed.

3.5. Confirmed Cases. .e behaviour of this epidemic in-
dicator in all simulated scenarios is shown in Figure 6. A
similar pattern with the mortality plots of Figure 4 can be
seen in all three panels. In contrast to mortality, the value

of confirmed cases is higher than deaths (see the three
baseline scenarios that come close to around 90 confirmed
cases on average). .e results of confirmed cases are much
lower compared to the results of real cases because in these
simulations, we do not apply massive tests, voluntary
isolation, or home quarantine; therefore, the diagnosed
cases correspond only to those admitted (and reported as
cases) in the hospital due to complications with the
disease.
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Scenarios are labelled according to the willingness of agents to adhere to personal health habits such as social distance, mask user, or hands
washer (SD%, MU%, and HW%). Baseline scenarios were defined varying the proportion of social distancers in the population assuming no
agents adopt using masks or washing hands. In each panel, the baseline scenario is coloured blue (left, 0%-0%-0%; middle, 50%-0%-0%;
right, 100%-0%-0%). Scenarios with statistical significant difference compared to their corresponding panel baseline (blue) are coloured
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.is dynamics matches the CFR overestimation of the
IFR, mentioned before. For instance, comparing the (0%,
0%, 0%) scenarios in Figure 5 vs. Figure 6, we got IFR� 17%
(68/400) vs. CFR� 72% (68/95); another example occurs in
(100%, 0%, 0%) where IFR� 12% (47/400) vs. CFR� 55%
(47/85).

3.6. Recovered. .e behaviour of this epidemic indicator in
all simulated scenarios is shown in Figure 7. Here again,
similar patterns appeared. In the left panel (SD� 0%), only
the scenarios (0%, 100%, 50%) and (0%, 100%, 100%)
showed a significant decrease in the recovered agents
compared to the baseline scenario, dropping from around
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Figure 6: Confirmed cases results. Box plots represent average and standard deviation of the cumulative count of only those cases reported
as diagnosed. Scenarios are labelled according to the willingness of agents to adhere to personal health habits such as social distance, mask
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(blue) are coloured green (p value <0:05); otherwise, they are coloured red.
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Figure 7: Recovered results. Box plots represent average and standard deviation of the cumulative count of agents that recovered from
disease. Scenarios are labelled according to the willingness of agents to adhere to personal health habits such as social distance, mask user, or
hands washer (SD%, MU%, and HW%). Baseline scenarios were defined varying the proportion of social distancers in the population
assuming no agents adopt using masks or washing hands. In each panel, the baseline scenario is coloured blue (left, 0%-0%-0%; middle,
50%-0%-0%; right, 100%-0%-0%). Scenarios with statistical significant difference compared to their corresponding panel baseline (blue) are
coloured green (p value <0:05); otherwise, they are coloured red.
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340 to 300 and 200, respectively. Furthermore, in the central
(SD� 50%) and right (SD� 100%) panels, significant re-
ductions are observed in all scenarios compared to the
baselines, with even more pronounced falls in the scenarios
where half or more of the population adopt either or both of
the other twomeasures (MU andHW), reaching values of up
to approximately only 20 agents (that is, 5% of the pop-
ulation). .e decrease in the recovered agents arises as a
consequence of the mitigating or suppressing effects of these
personal protection habits, which implies that fewer infec-
tions occurred, as observed in the SIRE curves shown in
Figures 2 and 3.

4. Sensitivity Analysis

A global sensitivity analysis was conducted to identify
how the uncertainty about the model parameters asso-
ciated with personal protection habits, that is, the per-
centage of agents willing to comply with physical distance

(SD), the use of a mask (MU), and handwashing (HW),
influences the variability of the outcome of the epidemic
indicators collected at the end of a simulation, that is, the
number of deaths, cases, confirmed cases, and recovered
cases. For this purpose, we used the Sobol–Saltelli method
[58, 59] to quantify measures of main (individual) and
total (combined) order effects..e range of variation of the
parameters was established between 0% and 100%, and the
number of initial trials of the Sobol sequence was estab-
lished at 200, which for 3 variables produce a total of 1000
samples of combinations uniformly distributed in the
parameter space. .e sensitivity indices were calculated
using Python software libraries [60, 61].

We run simulations for each of the 1000 parameter
combinations. .e results of the outcome variables in
these simulations are shown in the pairwise scatter plots
of Figure 8. Positive correlations emerge between cases,
confirmed cases, and deaths, as expected; an increase in
the number of infections produces a higher number of
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hospitalisations and, consequently, a higher mortality
rate; likewise, more patients would eventually recover.
Furthermore, the correlation between deaths and re-
covered can be explained conditioned on the growth of
cases; more deaths occur when there are more infections,
which in turn implies that more agents will eventually
recover.

On the other hand, the frequency histograms on the
diagonal of the grid show skewed distributions of the results
towards the lowest values, which suggests that most com-
binations of parameters produce a total effect that favours
the mitigation of epidemics, in terms of infected agents.
Another relevant observation is that only for the variable
cases, several simulations reached an extreme contagion
scenario where the entire population was infected, repre-
sented by the bar farthest to the right of the histogram (the
third highest, in fact).

We also examined the possible linear relationships
between the input parameters and the result variables in

the 1000 simulations; these are shown in the scatter plots
of Figure 9. All the pairwise associations between each
personal habit parameter (SD, MU, and HW) and each
epidemic indicator obtained a negative linear correlation.
However, the strongest correlations are found between SD
and each outcome variable, highlighting the dominant
role physical distancing plays in reducing disease
transmission.

.e correlation between MU and the outcome vari-
ables is weak (almost half that of SD), while HW shows an
even weaker association (almost a quarter of SD), sug-
gesting that the mass adoption of mask use alone or
handwashing alone would have a positive effect in re-
ducing contagion but would probably be insufficient to
stop the unfold of the epidemics. As a side note, the
negative correlation with the variable recovered could be
due to the decrease in infected agents that will eventually
recover, rather than these habits having some effects on
the deterioration in the progression of the disease. On the
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contrary, the negative correlation with the rest of the
variables is explained because these habits help reduce the
number of transmissions between agents.

Last, we report the Sobol sensitivity indices for the SD,
MU, and HW parameters as shown in Figure 10. .e results
corroborate some of the aforementioned observations. It is
evident that physical distance (SD) is the most critical factor
affecting the variance of each outcome variable, whether it is
considered alone (first order effect, S1� 0.7) or even more
dramatic when interacting with two other habits (total order
effect, ST� 0.8). Regarding the use of a mask (MU), it has a
notable but small first order effect, which is more advan-
tageous when interacting with the other two habits. Re-
garding handwashing, its first order effect on all variables is
negligible; however, when interacting with the other two
habits, the effect on the outcome variables becomes sig-
nificant (parameters with sensitivity indices greater than
0.05 are considered significant [62]).

.ese findings imply that the habits of wearing masks
and washing hands must be strongly linked to the will-
ingness to maintain social distance; otherwise, its effect in
helping to control epidemics would be marginal. .ey also
indicate that persuading the community to adopt all three
personal protection habits simultaneously is in fact a more
powerful measure to reduce the impact of epidemics than
developing adherence to just one of them.

5. Concluding Remarks

We have illustrated the interplay between maintaining
physical distance, wearing face masks, and regular hand-
washing, with an agent-based model of the spread of the
epidemic in an artificial community. Our results indicate
that the almost universal adoption of one of these three
habits alone would not be enough to mitigate the surge of
new waves of contagion. Maintaining physical distance
between agents plays a dominant role in reducing risk.
However, a more powerful impact can be achieved if the
community simultaneously adheres to the other two habits
to some extent. .ese findings are in line with other ABM
studies that highlight the positive effect of combining these
measures in lieu of restricting population mobility to mit-
igate the pandemic [50, 63–65].

Reaching out to the community to persuade them to 100%
adopt these habits can be difficult due to many factors related to
personal beliefs, socioeconomic conditions, and collective idi-
osyncrasies. .erefore, public health education campaigns
would play a key role in reinforcing collective awareness of the
risks of virus transmission in the late phase of the response to the
pandemic, when new waves of contagion are likely to emerge.
Emphasising how these measures can help prevent these risks to
avoid returning to lockdowns [66] would be important, even
during the current implementation of vaccination plans, since in
many countries, herd immunity may take longer to achieve due
to delays in the acquisition or administration of the vaccine or
due to the uncertainties about the period necessary to develop
cellular immunity and the duration of antibodies to protect
against reinfection after inoculation.

.erefore, it is important that authorities clearly commu-
nicate the evidence, uncertainties, risks, and particularities of
these personal protection strategies, without creating the feeling
of false dilemmas [67] while aiming to persuade the public for a
greater adoption. Along these lines, the role of the media in
communicating the prevalence of the coronavirus has previ-
ously been related to an impact on the decline of the disease [68].

Finally, extending the agent-based model to take into
account additional realistic characteristics of the SARS-
CoV-2 contagion, including infections through contami-
nated surfaces, population structure, spatial stratification,
contact networks, antibodies generation, and other sources
of heterogeneity between individuals, pose interesting
challenges from a computational perspective [69]. Fur-
thermore, from a modelling point of view, the question of
habit formation constitutes a compelling line of research, as
it ultimately depends on how people react and adhere to
them, whichmight vary between segments of the population;
hence, designing mechanisms allowing the emergence of
willingness, as a consequence of changes in individual be-
liefs, media exposing, and fluctuations in the popular
consciousness, is also appealing.

Data Availability

.e model used in this study was developed in the NetLogo
programming language version 6.1.0; the source-code has
been released openly and can be run online or downloaded
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for local execution at http://modelingcommons.org/browse/
one_model/6423. A user guide of the simulation tool is also
openly available at http://modelingcommons.org/file/
download/6423?file_id=3772.
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Supplementary Materials

Mortality hypothesis tests for differences. Heatmaps rep-
resent counts and p values obtained by the Mann–Whitney
U statistical test for permutations (SD%, MU%, and HW%)
with varying proportions of social physical distance, mask
using, and handwashing adoption by the population. Blue,
baseline scenario; red, accept; green, reject. Cases hypothesis
tests for differences. Heatmaps represent counts and p values
obtained by the Mann–Whitney U statistical test for per-
mutations (SD%, MU%, and HW%) with varying propor-
tions of social physical distance, mask using, and
handwashing adoption by the population. Blue, baseline
scenario; red, accept; green, reject. Confirmed cases hy-
pothesis tests for differences. Heatmaps represent counts
and p values obtained by the Mann–Whitney U statistical
test for permutations (SD%, MU%, and HW%) with varying
proportions of social physical distance, mask using, and
handwashing adoption by the population. Blue, baseline
scenario; red, accept; green: reject. Recovered hypothesis
tests for differences. Heatmaps represent counts and p values
obtained by the Mann–Whitney U statistical test for per-
mutations (SD%, MU%, and HW%) with varying propor-
tions of social physical distance, mask using, and
handwashing adoption by the population. Blue, baseline
scenario; red, accept; green, reject. (Supplementary
Materials)
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Colombia,” 2020.

[44] K. Sarkar, S. Khajanchi, and J. J. Nieto, “Modelin g and
forecasting the COVID-19 pandemic in India,” Chaos, Soli-
tons & Fractals, vol. 139, Article ID 110049, 2020.

[45] S. Khajanchi and K. Sarkar, “Forecasting the daily and cu-
mulative number of cases for the COVID-19 pandemic in
India,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 30, no. 7, Article ID 071101, 2020.

[46] P. Samui, J. Mondal, and S. Khajanchi, “A mathematical
model for COVID-19 transmission dynamics with a case
study of India,” Chaos, Solitons & Fractals, vol. 140, Article ID
110173, 2020.

[47] S. Khajanchi, S. Bera, and T. K. Roy, “Mathematical analysis of
the global dynamics of a HTLV-I infectionmodel, considering
the role of cytotoxic T-lymphocytes,” Mathematics and
Computers in Simulation, vol. 180, pp. 354–378, 2021.

[48] H. Yonar, A. Yonar, M. Tekindal, andM. Tekindal, “Modeling
and forecasting for the number of cases of the COVID-19
pandemic with the curve estimation models, the box-jenkins
and exponential smoothing methods,” EJMO, vol. 4, no. 2,
pp. 160–165, 2020.

[49] M. A. Tekindal, H. Yonar, A. Yonar et al., “Analyzing
COVID-19 outbreak for Turkey and eight country with
curve estimation models, box-jenkins (ARIMA), Brown
linear exponential smoothing method, autoregressive dis-
tributed lag (ARDL) and SEIR models,” Eurasian Journal of
Veterinary Sciences, pp. 142–155, 2020.

[50] P. C. L. Silva, P. V. C. Batista, H. S. Lima, M. A. Alves,
F. G. Guimarães, and R. C. P. Silva, “COVID-ABS: an agent-
based model of COVID-19 epidemic to simulate health and
economic effects of social distancing interventions,” Chaos,
Solitons & Fractals, vol. 139, Article ID 110088, 2020.
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