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Improvement in the accuracy of the postclassification of land use and land cover (LULC) is important to fulfil the need for the
rapid mapping of LULC that can describe the changing conditions of phenomena resulting from interactions between humans
and the environment. (is study proposes the majority of segment-based filtering (MaSegFil) as an approach that can be used for
spatial filters of supervised digital classification results.(ree digital classification approaches, namely, maximum likelihood (ML),
random forest (RF), and the support vector machine (SVM), were applied to test the improvement in the accuracy of LULC
postclassification using the MaSegFil approach, based on annual cloud-free Landsat 8 satellite imagery data from 2019.(e results
of the accuracy assessment for the ML, RF, and SVM classifications before implementing the MaSegFil approach were 73.6%,
77.7%, and 77.5%, respectively. In addition, after using this approach, which was able to reduce pixel noise from the results of the
ML, RF, and SVM classifications, there were increases in the accuracy of 81.7%, 85.2%, and 84.3%, respectively. Furthermore, the
method that has the best accuracy RF classifier was applied to several national priority watershed locations in Indonesia. (e
results show that the use of the MaSegFil approach implemented on these watersheds to classify LULC had a variation in overall
accuracy ranging from 83.28% to 89.76% and an accuracy improvement of 6.41% to 15.83%.

1. Introduction

Land use and land cover (LULC) is a key driver of envi-
ronmental change and can describe the conditions of
changing phenomena resulting from human interaction
with the environment [1]. It is important information that
has implications for the sustainable use of resources in
watershed management activities, as it generally reflects
irreparable degradation or loss of land and water resources
[2]. (e utilisation of land, space, and resources for settle-
ment, agriculture, tourism, industry, and transportation will
continue to increase for some time to come [3, 4]. Remote
sensing data can be used for the analysis, monitoring,
mapping, and classification of LULC information. Its
availability provides a choice of resolution variations
(spectral, spatial, radiometric, and temporal) to detect land

changes on the earth’s surface, by comparing current
multitemporal conditions with those of previous years [5–8].

(e object classification of LULC on the earth’s surface
based on remote sensing data can be processed with two
digital classification methods, namely, supervised and un-
supervised classification [9]. (e supervised version involves
the classification of objects based on training sample input
from object classes that appear on satellite images, which are
then run using an algorithm to generate LULC information.
(ese are maximum likelihood [10–14], minimum distance
[15], convolutional neural networks [16], decision tree [17],
random forest [18–20], support vector machine [21, 22], and
K-nearest neighbor [23, 24]. On the other hand, unsuper-
vised classification involves data processing that can be
conducted based on cluster pixel values in a satellite image
(spectral, temporal, and spatial information) into value
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classes, which are run using a clustering algorithm; these are
iterative self-organizing data analysis [3, 25] and K-means
clustering [26, 27].

(ere are several limitations and problems with digital
classification results; for example, pixel noise can affect the
spatial accuracy and quality of LULC information. In the
postclassification stage, LULC can be produced using a
spatial filter to reduce this noise and to obtain better results.
(ese include the mean, standard median, adaptive wiener,
Gaussian, adaptive median filters [28–30], majority filter
[31, 32], and object filter based on the topology and feature
approach [33]. With the use of spatial filters, pixel noise is
sometimes still left. To overcome such an obstacle, majority
segment-based filtering (MaSegFil) is proposed in this study
as a spatial filter stage in the postclassification, used to
classify objects on the earth’s surface based on the digital
classification results. (e purpose of using the MaSegFil
approach is to reduce pixel noise from these results and to
obtain better information on object classification results.

In this study, we first analyse whether incorporating the
MaSegFil approach at the postclassification stage improves
the accuracy of the digital classification and reduces the
resulting pixel noise. Furthermore, accuracy assessment
based on reference data is used to compare the post-
classification results before and after the implementation of
the MaSegFil approach. (e principles of this approach are
that (a) the area boundary of the class of objects on the
earth’s surface seen in the satellite image data will be sep-
arated by patterns based on the segment mean shift process
(segmentation process); (b) the results of the digital clas-
sification that has been made are used as inputs to fill in the
attribute class of objects in each area segment that has been
separated, based on its segmentation pattern; (c) the ex-
traction of the attribute value of the digital classification
results in each area segment (object segmentation results) is
made by taking the majority value, or the most dominant
object, and using it as the spatial filter in the area based on
the zonal statistics spatial analyst calculation with the type
majority; and (d) the final results of the calculation are used
as the output of object classification at the postclassification
stage.

1.1. StudyArea. To be able to understand and implement the
proposed approach method, we chose to study areas in the
Citarum, Ciliwung, and Cisadane watersheds, which are part
of the 15 national priority watersheds in Indonesia, located
in the provinces of Banten, Jakarta, andWest Java, Indonesia
(on Java island) (Figure 1(a)). (e study area has a wide
variety of LULC classes that can be used as samples, rep-
resenting some of the objects that will be classified based on
the remote sensing satellite imagery. Furthermore, the
proposed method was also applied to several other locations,
including the 12 national priority watersheds in Indonesia,
which represent the characteristic variations of LULC and
are located on the islands of Sumatra (Asahan Toba, Siak,
Musi, and Sekampung), Java (Serayu, Bengawan Solo, and
Brantas), Kalimantan (Kapuas), Sulawesi (Saddang,

Jeneberang, and Limboto), andWest Nusa Tenggara (Moyo)
(Figure 1(b)).

2. Methods

(e proposed method used in this study is presented in
Figure 2, comprising several sections consisting of data
availability, LULC classification, postclassification, accuracy
assessment, and comparison of classification performance
results.

2.1.DataAvailability. Objects on the earth’s surface covered
by clouds are a major problem in the use of optical image
data. (is can be overcome by creating cloud-free satellite
imagery data annually. In this study, data processing was
performed using the Google Earth Engine (GEE) platform.
(e input data were obtained from the USGS Landsat 8
Surface Reflectance Tier 1 data collection. (is dataset
comprises the atmospherically corrected surface reflectance
from the Landsat 8 OLI/TIRS sensors, which is based on the
Landsat EcosystemDisturbance Adaptive Processing System
(LaSRC). (e various stages of the process consist of cloud,
shadow, water, and snow mask, which are produced using
CFMASK [34–36]. Information and detailed technical ex-
planations can be accessed at https://developers.google.com/
earth-engine/datasets/catalog/
LANDSAT_LC08_C01_T1_SR. Filter dates are needed to
determine the date range selection to get the annual Landsat
8 in 2019. In this case, the filter dates were limited to between
1 January and 31 December 2019. Furthermore, high-res-
olution imagery mosaic SPOT 6/7 from 2019, which can be
obtained from the Remote Sensing Technology and Data
Center, LAPAN, was used as an input training sample and
reference data for assessing the accuracy of the LULC
classification results produced by the study.

2.2. LULC Classification Approach. In this study, we used
digital classification to reproduce the LULC information.
(e classification approaches included maximum likelihood
(ML), random forest (RF), and support vector machine
(SVM) classifiers. Furthermore, LULC classification
resulting from the digital classifications was evaluated by
assessing the accuracy based on the reference data. (is was
done to determine the optimal classification approach to
classifying LULC in the study area. Eleven LULC classes
were employed, which refer to the National Standardization
Agency for Indonesia [37]; detailed related information is
presented in Table 1.

A training sample and reference maps were produced
referring to the annual mosaic image data of SPOT 6/7 2019
images obtained from the Remote Sensing and Technology
Data Center, LAPAN. Arrangement of the Grid Feature
Index (GIF) with a size of 2 km× 2 km was made to de-
termine the training sample and reference data more sys-
tematically, based on visual interpretation. Furthermore, the
centre point of each GIF block, which had been buffered
with a distance of 200m to obtain the polygon area, was used
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as a location for the training samples and also as a reference
for LULC classes in the study area (Figure 3).

2.3. Maximum Likelihood (ML) Classifier. (e ML classifier
is a digitally supervised classification approach that applies
the Gaussian threshold in several class signatures to assign
every pixel class. (e approach assumes that the probability
of the model class distribution is multivariate normal. In
detail, the maximum likelihood classifier formulation is
presented in equations (1) and (2) [1, 2, 7, 38–40]:

Gi(x) � ln p ωi(  −
1
2
ln Σi


 −

1
2

x − mi(  

−1

i

x − mi( . (1)

(erefore,

x ∈ ωi, if gi(x)>gj(x) for all j≠ i, (2)

where Gi(x) is the discriminant function in the ML algo-
rithm; ωi is the class (where i � 1, . . . , n); and M is the total
number of classes. x is a pixel in the n-dimensional vector
(where n is the number of bands on the satellite image is
used). p(ωi) is the true class opportunities, in ωi for pixel
positions x; |Σi| is the decisive determinant of the covariance
matrix of data in the ωi class; Σi is the inverse covariance
matrix of the data in the ωi class; and mi is a vector average.

2.4. Random Forest (RF) Classifier. (e RF classifier is a
digitally supervised classification approach, consisting of a
combination of tree classifiers. Each classifier is created
using a random vector sampled independently of the input
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Figure 1: (e 15 national priority watersheds in Indonesia: (a) test case study areas in the Citarum, Ciliwung, and Cisadane watersheds; (b)
another priority watershed location for the implementation of the method proposed.
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Figure 2: Study flowchart.

Table 1: Class for the LULC classification used in this study, referring to the National Standardization Agency for Indonesia [37].

ID LULC class Description

1 Primary dryland
forest

Forests that grow on dry land habitats, which can be lowland forest, hills, mountains, high plains, or tropical
forests that have not experienced human intervention.

2 Secondary dryland
forest

Forests that grow on dry land habitats, which can be lowland forest, hills, mountains, high plains, or tropical
forests that have undergone human intervention.

3 Wetland forest Forests that grow in wetland habitats, such as swamps (brackish, peat). Wetland areas have lowland
characteristics that extend along the coast, low elevation, and are influenced by tides and other seawater.

4 Fields Areas used for agricultural activities with the type of crops in the dry land.

5 Rice fields Agricultural areas and waterlogged or given water with irrigation technology, rain, valleys, or tides
characterised by a pattern of ridges, with the planting of short-lived Canaan food (rice).

6 Settlements Areas of land used as a residential environment and places for activities that support life.
7 Open fields Open land without cover that is natural, seminatural, or artificial.

8 Plantations Land used for agricultural activities without replacement crop for two years. Harvests usually take place after a
year or more.

9 Shrubs Dryland areas that have been overgrown with a variety of heterogeneous and homogeneous natural vegetation
with sparse to dense density. (e area is naturally dominated by low vegetation.

10 Fishponds Land for fishing or salting activities that appear with a bund pattern around the coast.
11 Water bodies All types of water areas, such as seas, rivers, lakes, or reservoirs.
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Figure 3: Determination of training samples and reference map of the study area: (a, c) annual mosaic of SPOT 6/7 images in 2019; (b)
compilation of the Grid Feature Index (GIF) with dimensions of 2 km× 2 km is carried out to determine training samples and LULC.
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vector. Furthermore, each tree cast will provide calculations
on the most dominant class unit to classify certain classes
corresponding to the input vector. In detail, the RF classifier
formulation is presented as follows [18–20, 36, 41–43]:

h x, θk( , k � 1, 2, . . . , (3)

where h is the result of the random forest classification; x is
the input sample; and θk is the random vector sample as a
class in the random forest classification.

2.5. Support Vector Machine (SVM) Classifier. (e SVM
classifier is also a digitally supervised classification approach
that is based on the principle of structural risk minimisation
and statistical learning to determine the location of
boundaries in order to obtain an optimal class separation. It
is usually used for pattern classification and nonlinear re-
gression. To be linearly separable, SVM will select a linear
decision boundary that leaves the largest margin as the sum
of the distances to the hyperplane from the closest point
between the two classes. If there are two nonlinear classes,
the SVM classifier approach tries to find a hyperplane that
maximises margins and minimises a quantity proportional
to the number of misclassification errors. In detail, the SVM
classifier formulation for linearly inseparable data to find the
separating hyperplane is presented as follows [21, 44, 45]:

x ∈ R
I⟶ ϕ(x) ∈ R

H
, (4)

where x is the input data in the input space I into a high
dimension space H and ϕ(x) is the kernel function.

2.6. 7e Majority Segment-Based Filtering (MaSegFil)
Approach. In this study, the MaSegFil approach is proposed
as a spatial filter stage in the postclassification of the digital
classification results used to classify objects on the earth’s
surface. In this case, ML, RF, and SVM classifiers are used for
the LULC classification. (e purpose of using MaSegFil is to
reduce pixel noise or error from the digital classification
results and to obtain better information on the object
classification results. (e principles of using the MaSegFil
approach are that (a) the area boundary of the class of objects
on the earth’s surface seen in the satellite image data will be
separated by pattern based on the segment mean shift
process (segmentation process), (b) the results of the digital
classification classifications that have been carried out are
used as input to fill in the attribute class of objects in each
area segment that has been separated based on its seg-
mentation pattern, (c) the extraction of the attribute value of
the digital classification results in each area segment (object
segmentation result) is done by taking the majority value or
the most dominant object and used as the spatial filter in the
area based on the zonal statistics spatial analyst calculation
with the type majority, and (d) the final result of the cal-
culation is used as the output of classifying objects at the
postclassification stage. In detail, the illustration stages of the
MaSegFil approach proposed in this study are presented in
Figure 4.

2.7.AccuracyAssessment andComparisonof theClassification
Performance Results. Accuracy assessment was made to
evaluate the results of the digital classifications generated
from the ML, RF, and SVM classifiers, together with the
optimisation results from using the MaSegFil approach for
the postclassification stage as a spatial filter, as proposed in
this study. A confusion matrix was used to evaluate the
accuracy assessment procedure, which took into account
user accuracy, producer accuracy, kappa, and overall ac-
curacy [36, 42, 45–47].

3. Results

ML, RF, and SVM classifiers were used as an approach to
classify LULC classes, 11 of which were used in the study
(Table 1). (e training sample and reference map were
produced referring to the annual mosaic image data of SPOT
6/7 from 2019, with a GIF arrangement with a size of
2 km× 2 km. Furthermore, the centre point of each GIF
block was buffered with a distance of 200m to obtain the
polygon area and was used as a location for the training
samples and also as a reference for the LULC classes in the
study area (Figure 3). Finally, the MaSegFil approach
(Figure 4) was used in a spatial filter stage in the post-
classification of the digital classification results that are
implemented in the LULC classification results from theML,
RF, and SVM classifiers.

3.1. LULC Classification Based on the ML Classifier. (e
results of the LULC classification based on the ML classifier
are presented in Figure 5, while a comparison before and
after the MaSegFil approach stage is presented in
Figures 5(a) and 5(b). Table 2 shows the results of the ac-
curacy assessment of the LULC classification based on the
ML classifier without the MaSegFil approach. In addition,
the results of the accuracy assessment of the LULC classi-
fication based on the ML classifier with the MaSegFil ap-
proach are shown in Table 3.

3.2. LULC Classification Based on the RF Classifier. (e re-
sults of the LULC classification based on the RF classifier are
presented in Figure 6, and a comparison of the LULC
classification based on the RF classifier before and after the
MaSegFil approach stage is presented in Figures 6(a) and
6(b). Table 4 shows the results of the accuracy assessment of
the LULC classification based on the RF classifier without
the MaSegFil approach. Moreover, the results of the accu-
racy assessment of the LULC classification based on the RF
classifier with the MaSegFil approach can be seen in Table 5.

3.3. LULC Classification Based on the SVM Classifier. (e
results of the LULC classification based on the SVM classifier
are presented in Figure 7. In addition, a comparison of the
LULC classification based on the SVM machine classifier
before and after the MaSegFil approach stage is shown in
Figures 7(a) and 7(b). Table 6 shows the results of the ac-
curacy assessment of the LULC classification based on the
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SVM classifier without the MaSegFil approach. In addition,
the results of the accuracy assessment of the LULC classi-
fication based on the SVM classifier with the MaSegFil
approach are presented in Table 7.

4. Discussion

In this study, we have improved the accuracy of the LULC
classification based on the mosaic cloud-free Landsat 8
satellite imagery that can be obtained from GEE, and its

popular method for filling gaps in cloudy images using
median metrics or the temporal aggregation method [36].
ML, RF, and SVM, which have been widely used for image
classification [36, 39, 40, 42, 43], were employed as methods
to classify LULC in the study area. We chose the Citarum,
Ciliwung, and Cisadane watersheds as test case study areas
to be able to understand and implement the proposed
method; these areas are included in the 15 national priority
watersheds in Indonesia. (e accuracy of the assessment
results based on reference data from the use of the three
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Figure 5: Result of the LULC classification based on the ML classifier: (a, c) process stages without the MaSegFil approach; (b, d) process
stages with the MaSegFil approach.

Table 2: Results of the accuracy assessment for the LULC classification based on the ML classifier without the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 105 22 2 0 0 2 0 0 0 0 0 131 0.802 0.000
C_1 32 199 27 0 0 10 0 0 1 0 0 269 0.740 0.000
C_2 24 19 64 0 0 4 25 21 19 0 0 176 0.364 0.000
C_3 11 0 1 5 0 0 37 1 24 0 0 79 0.063 0.000
C_4 3 5 1 0 3 0 1 11 0 2 0 26 0.115 0.000
C_5 27 49 22 0 0 33 2 1 6 0 0 140 0.236 0.000
C_6 12 0 2 0 0 0 551 6 12 0 0 583 0.945 0.000
C_7 1 0 2 0 0 0 31 357 6 1 0 398 0.897 0.000
C_8 13 0 12 0 0 1 25 8 145 0 0 204 0.711 0.000
C_9 0 0 0 0 0 0 0 4 0 59 5 68 0.868 0.000
C_10 0 0 0 0 0 0 0 0 0 8 45 53 0.849 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.461 0.677 0.481 1.000 1.000 0.660 0.820 0.873 0.681 0.843 0.900 0.000 0.736 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.684
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.
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Table 3: Result of the accuracy assessment for the LULC classification based on the ML classifier with the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 109 1 0 0 0 1 0 0 0 0 0 111 0.982 0.000
C_1 30 261 28 0 0 9 0 0 0 0 0 328 0.796 0.000
C_2 23 4 79 0 0 2 23 21 4 0 0 156 0.506 0.000
C_3 14 0 1 4 0 0 21 1 20 0 0 61 0.066 0.000
C_4 0 2 3 0 3 0 0 4 0 2 0 14 0.214 0.000
C_5 28 26 13 0 0 38 0 1 4 0 0 110 0.345 0.000
C_6 10 0 4 1 0 0 589 10 0 0 0 614 0.959 0.000
C_7 4 0 0 0 0 0 18 365 1 3 0 391 0.934 0.000
C_8 10 0 5 0 0 0 20 5 184 0 0 224 0.821 0.000
C_9 0 0 0 0 0 0 1 2 0 60 4 67 0.896 0.000
C_10 0 0 0 0 0 0 0 0 0 5 46 51 0.902 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.478 0.888 0.594 0.800 1.000 0.760 0.876 0.892 0.864 0.857 0.920 0.000 0.817 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.779
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.
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Figure 6: Continued.

(e Scientific World Journal 9



methods shows that the overall accuracy and kappa values
for the ML classifier for the LULC classification in the study
area were 73.60% and 0.684; for RF, they were 77.70% and
0.731; and for SVM, they were 77.5% and 0.730. Spatially, the
classification results are shown in Figures 5(a)–5(c), 6(a)–
6(c), and 7(a)–7(c). (e accuracy of the assessment results
for RF and SVM is similar; it has been reported by Rana and
Venkata Suryanarayana [45] and Phan et al. [36] that RF and
SVM are the latest developments in the computational as-
pect of image classification and can minimise errors in

classification, making them superior to parametric classifiers
such as ML.

(e results of the LULC classification using the three
classifiers still contain pixel noise, which affects the accuracy
and quality of LULC information [28, 31–33]. To overcome
this obstacle, the MaSegFil approach was proposed as a
spatial filter stage in the postclassification, which is used to
classify objects on the earth’s surface based on digital
classification results. (e results of the assessment accuracy
calculations based on reference data from the use of the
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Figure 6: Results of the LULC classification based on the RF classifier: (a, c) process stages without the MaSegFil approach; (b, d) process
stages with the MaSegFil approach.

Table 4: Result of the accuracy assessment for the LULC classification based on the RF classifier without the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 102 18 2 0 0 0 0 0 0 0 0 122 0.836 0.000
C_1 40 198 21 0 0 7 1 0 0 0 0 267 0.742 0.000
C_2 30 33 93 0 0 3 24 17 24 0 0 224 0.415 0.000
C_3 4 0 1 4 0 0 14 0 0 0 0 23 0.174 0.000
C_4 1 0 0 0 3 0 0 0 0 1 0 5 0.600 0.000
C_5 16 45 9 0 0 40 1 0 2 0 0 113 0.354 0.000
C_6 13 0 1 1 0 0 569 12 9 0 0 605 0.940 0.000
C_7 1 0 3 0 0 0 23 360 6 1 1 395 0.911 0.000
C_8 21 0 3 0 0 0 38 10 172 0 0 244 0.705 0.000
C_9 0 0 0 0 0 0 2 10 0 66 3 81 0.815 0.000
C_10 0 0 0 0 0 0 0 0 0 2 46 48 0.958 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.447 0.673 0.699 0.800 1.000 0.800 0.847 0.880 0.808 0.943 0.920 0.000 0.777 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.731
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.
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Table 5: Results of the accuracy assessment for the LULC classification based on the RF classifier with the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 108 0 1 0 0 1 0 0 0 0 0 110 0.982 0.000
C_1 27 268 21 0 0 8 0 0 0 0 0 324 0.827 0.000
C_2 31 9 99 0 0 2 24 17 4 0 0 186 0.532 0.000
C_3 3 0 0 4 0 0 4 0 0 0 0 11 0.364 0.000
C_4 0 0 0 0 3 0 0 0 0 0 0 3 1.000 0.000
C_5 24 17 4 0 0 39 0 0 0 0 0 84 0.464 0.000
C_6 14 0 2 1 0 0 599 9 0 0 0 625 0.958 0.000
C_7 3 0 1 0 0 0 14 374 0 4 0 396 0.944 0.000
C_8 17 0 5 0 0 0 29 7 209 0 0 267 0.783 0.000
C_9 1 0 0 0 0 0 2 2 0 65 5 75 0.867 0.000
C_10 0 0 0 0 0 0 0 0 0 1 45 46 0.978 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.474 0.912 0.744 0.800 1.000 0.780 0.891 0.914 0.981 0.929 0.900 0.000 0.852 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.821
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.

a1
Citarum

Cisadane
Ciliwung

1
2

3
4

5

6

Explanation:
(1) Angke pesanggrahan
(2) Krukut
(3) Sunter
(4) Buaran
(5) Bekasi

106°30′0″E 107°0′0″E

7°
0′

0″
S

6°
30

′0
″

S
6°

0′
0″

S

7°
0′

0″
S

6°
30

′0
″

S
6°

0′
0″

S

108°0′0″E107°30′0″E

106°30′0″E 107°0′0″E 108°0′0″E107°30′0″E

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body

0 510 20 30 40
Km

N

(a)

Citarum

Cisadane
Ciliwung

1
2

3
4

5

6

Explanation:
(1) Angke pesanggrahan
(2) Krukut
(3) Sunter
(4) Buaran
(5) Bekasi

b1

0 510 20 30 40
Km

N

106°30′0″E 107°0′0″E
7°

0′
0″

S
6°

30
′0
″

S
6°

0′
0″

S

7°
0′

0″
S

6°
30

′0
″

S
6°

0′
0″

S

108°0′0″E107°30′0″E

106°30′0″E 107°0′0″E 108°0′0″E107°30′0″E

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body

(b)

Figure 7: Continued.
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MaSegFil approach in the three methods show that the
overall accuracy and kappa values for the ML, RF, and SVM
classifiers are 81.70% and 0.779, 85.20% and 0.821, and
84.30% and 0.810, respectively. (e results from using the
MaSegFil approach as a spatial filter stage in the post-
classification are shown in Figures 5(b)–5(d), 6(b)–6(d), and
7(b)–7(d).

(e highest overall accuracy in relation to the Ciliwung,
Citarum, and Cisadane watersheds without using the
MaSegFil approach was obtained using the RF classifier, with

an overall accuracy of 77.7% and kappa of 0.731, slightly
different from the use of the SVM classifier, which had an
overall accuracy of 77.5% and kappa of 0.730. (e MaSegFil
approach utilises segments formed in the segmentation
process as the boundary of a class area. When several LULC
classes appear in a segment, the most dominant class within
it will become the class for the segment area, and the classes
that are not dominant will be eliminated or replaced by the
most dominant one. (is principle is useful because the
classification results will usually form small noise classes in a
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Figure 7: Result of the LULC classification based on the SVM classifier: (a, c) process stages without the MaSegFil approach; (b, d) process
stages with the MaSegFil approach.

Table 6: Result of the accuracy assessment for the LULC classification based on the SVM classifier without the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 101 14 1 0 0 1 0 0 0 0 0 117 0.863 0.000
C_1 39 227 25 0 0 9 0 0 1 0 0 301 0.754 0.000
C_2 29 25 82 0 0 4 28 23 19 0 0 210 0.390 0.000
C_3 6 0 1 4 0 0 24 0 3 0 0 38 0.105 0.000
C_4 3 0 0 0 3 0 1 3 0 1 0 11 0.273 0.000
C_5 17 28 9 0 0 36 1 4 4 0 0 99 0.364 0.000
C_6 10 0 1 1 0 0 555 6 8 0 0 581 0.955 0.000
C_7 1 0 3 0 0 0 26 360 7 1 1 399 0.902 0.000
C_8 22 0 11 0 0 0 37 8 171 0 0 249 0.687 0.000
C_9 0 0 0 0 0 0 0 5 0 66 5 76 0.868 0.000
C_10 0 0 0 0 0 0 0 0 0 2 44 46 0.957 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.443 0.772 0.617 0.800 1.000 0.720 0.826 0.880 0.803 0.943 0.880 0.000 0.775 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.730
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.
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Table 7: Results of the accuracy assessment for the LULC classification based on the SVM classifier with the MaSegFil approach.

LULC class C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User accuracy Kappa
C_0 108 0 0 0 0 1 0 0 0 0 0 109 0.991 0.000
C_1 36 277 27 0 0 14 0 0 0 0 0 354 0.782 0.000
C_2 26 5 90 0 0 3 21 19 3 0 0 167 0.539 0.000
C_3 7 0 0 4 0 0 13 0 0 0 0 24 0.167 0.000
C_4 0 0 0 0 3 0 0 1 0 0 0 4 0.750 0.000
C_5 19 12 7 0 0 32 0 1 0 0 0 71 0.451 0.000
C_6 10 0 3 1 0 0 590 8 0 0 0 612 0.964 0.000
C_7 4 0 1 0 0 0 18 370 0 4 0 397 0.932 0.000
C_8 18 0 5 0 0 0 29 8 210 0 0 270 0.778 0.000
C_9 0 0 0 0 0 0 1 2 0 65 5 73 0.890 0.000
C_10 0 0 0 0 0 0 0 0 0 1 45 46 0.978 0.000
Total 228 294 133 5 3 50 672 409 213 70 50 2127 0.000 0.000
Procedure accuracy 0.474 0.942 0.677 0.800 1.000 0.640 0.878 0.905 0.986 0.929 0.900 0.000 0.843 0.000
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.810
C_0: primary dryland forest; C_1: secondary dryland forest; C_2: fields; C_3: open field; C_4: wetland forest; C_5: plantation; C_6: settlement; C_7: rice fields;
C_8: shrubs; C_9: fishpond; C_10: water body.
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homogeneous class, so it is necessary to eliminate the noise
to improve the accuracy. (e MaSegFil applied shows im-
proved overall accuracy in all three classifier methods,
ranging from 6.8% to 8.1%. (e most significant

improvement in accuracy occurred using the ML classifier,
which rose from 73.6% to 81.7%. At the same time, the
highest overall accuracy after implementing the MaSegFil
approach occurred when using the RF classifier, at 85.2%.
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Figure 8: Results of the LULC classification based on the RF classifier: (a, d) Asahan Toba watershed; (b, e) Jeneberang watershed; (c, f )
Limboto watershed; process stage without the MaSegFil approach (a–c); process stage with the MaSegFil approach (d–f).

14 (e Scientific World Journal



Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

109°0′0″E 110°0′0″E 111°0′0″E 112°0′0″E 113°0′0″E 114°0′0″E

109°0′0″E 110°0′0″E 111°0′0″E 112°0′0″E 113°0′0″E 114°0′0″E
1°

30
′0
″

S

1°
30

′0
″

S
0°

30
′0
″

S
0°

30
′0
″

N
1°

30
′0
″

N
2°

30
′0
″

N

0°
30

′0
″

S0
°0
′0
″

2°
0′

0″
N

1°
0′

0″
N

0 30 60 120 180 240
Km

(a)

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

119°0′0″E 119°30′0″E 120°0′0″E

119°0′0″E 119°30′0″E 120°0′0″E

3°
30

′0
″

S
3°

0′
0″

S

3°
30

′0
″

S
3°

0′
0″

S

0 30 60 120 180 240
Km

(b)

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

100°30′0″E 101°0′0″E 101°30′0″E 102°0′0″E

100°30′0″E 101°0′0″E 101°30′0″E 102°0′0″E

1°
30

′0
″

N
1°

0′
0″

N
0°

30
′0
″

N
0°

0′
0″

1°
30

′0
″

N
1°

0′
0″

N
0°

30
′0
″

N
0°

0′
0″

Km
0 5 10 20 30 40

(c)

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

109°0′0″E 110°0′0″E 111°0′0″E 112°0′0″E 113°0′0″E 114°0′0″E

109°0′0″E 110°0′0″E 111°0′0″E 112°0′0″E 113°0′0″E 114°0′0″E

1°
30

′0
″

S

1°
30

′0
″

S
0°

30
′0
″

S
0°

30
′0
″

N
1°

30
′0
″

N
2°

30
′0
″

N

0°
30

′0
″

S0
°0
′0
″

2°
0′

0″
N

1°
0′

0″
N

0 30 60 120 180 240
Km

(d)

Figure 9: Continued.

(e Scientific World Journal 15



Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

119°0′0″E 119°30′0″E 120°0′0″E

119°0′0″E 119°30′0″E 120°0′0″E

3°
30

′0
″

S
3°

0′
0″

S

3°
30

′0
″

S
3°

0′
0″

S

0 30 60 120 180 240
Km

(e)

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

100°30′0″E 101°0′0″E 101°30′0″E 102°0′0″E

100°30′0″E 101°0′0″E 101°30′0″E 102°0′0″E

1°
30

′0
″

N
1°

0′
0″

N
0°

30
′0
″

N
0°

0′
0″

1°
30

′0
″

N
1°

0′
0″

N
0°

30
′0
″

N
0°

0′
0″

Km
0 5 10 20 30 40

(f )

Figure 9: Results of the LULC classification based on the RF classifier: (a, d) Kapuas watershed; (b, e) Saddang watershed; (c, f ) Siak
watershed; process stage without the MaSegFil approach (a–c); process stage with the MaSegFil approach (d–f).

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

0 12.525 50 75 100
Km

8°
30

′0
″

S
8°

0′
0″

S
7°

30
′0
″

S
7°

0′
0″

S
6°

30
′0
″

S

8°
30

′0
″

S
8°

0′
0″

S
7°

30
′0
″

S
7°

0′
0″

S
6°

30
′0
″

S

110°0′0″E 111°0′0″E 111°30′0″E 112°0′0″E 112°30′0″E

110°0′0″E 111°0′0″E 111°30′0″E 112°0′0″E 112°30′0″E

(a)

Primary dryland forest
Secondary dryland forest
Wetland forest
Fields
Open field
Plantation

Settlement
Rice fields
Shrubs
Fishpond
Water body
Watershed boundary

0 12.525 50 75 100
Km

8°
0′

0″
S

7°
30

′0
″

S

8°
0′

0″
S

7°
30

′0
″

S

111°30′0″E 112°0′0″E 112°30′0″E 113°0′0″E

111°30′0″E 112°0′0″E 112°30′0″E 113°0′0″E

(b)

Figure 10: Continued.
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(e user accuracy of all classes using all classification
methods improved, but the producer accuracy did not
improve in all cases, with the accuracy of several classes
decreasing.

For more comprehensive applications, the method that
has the best accuracy RF classifier was applied to several
national priority watershed locations in Indonesia, with a
comparison made of conditions before and after the spatial
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Figure 10: Results of the LULC classification based on the RF classifier: (a, d) Bengawan Solo watershed; (b, e) Brantas watershed; (c, f )
Moyo watershed; process stage without the MaSegFil approach (a–c); process stage with the MaSegFil approach (d–f).
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Figure 11: Continued.
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filter process was conducted using the MaSegFil approach
(Figures 8–11). Based on Table 8 and Figure 12, the results
show that the use of the MaSegFil approach in the priority
watersheds to classify LULC had a variation in overall ac-
curacy ranging from 83.28% to 89.76% and an improvement
in accuracy from 6.41% to 15.83%.

In this study, mosaic cloud-free Landsat 8 satellite im-
agery data were used for the input data to perform the

classification. (e data applied the median pixel value based
on the filter date data as input. (e quality and the accuracy
will be different if the data used are from single date Landsat
8 data. (e use of a single Landsat 8 image is not always
possible because several watersheds need more than one
path to cover all of their areas, which is not the case in one
single date image. Seasonal variations are not considered for
the input data, as this would be more challenging because of
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Figure 11: Results of the LULC classification based on the RF classifier: (a, d) Musi watershed; (b, e) Serayu watershed; (c, f ) Sekampung
watershed; process stage without the MaSegFil approach (a–c); process stage with the MaSegFil approach (d–f).

Table 8: Results of the LULC classification accuracy assessment based on the RF classifier before and after using the MaSegFil approach.

Watershed
Before MaSegFil After MaSegFil Quality improvement

Overall accuracy (%) Kappa Overall accuracy (%) Kappa Overall accuracy (%) Kappa
Citarum, Ciliwung, Cisadane 77.50 0.731 85.20 0.821 7.70 0.090
Asahan Toba 79.66 0.785 89.53 0.879 9.87 0.094
Jeneberang 77.31 0.765 86.41 0.854 9.10 0.089
Limboto 79.14 0.777 86.80 0.814 7.66 0.037
Kapuas 72.78 0.722 88.61 0.866 15.83 0.144
Saddang 78.19 0.750 89.65 0.889 11.46 0.139
Siak 72.35 0.794 83.28 0.808 10.93 0.014
Bengawan Solo 79.93 0.786 87.76 0.865 7.83 0.079
Brantas 79.96 0.780 89.76 0.885 9.80 0.104
Moyo 75.66 0.706 87.02 0.860 11.36 0.154
Musi 79.35 0.792 85.76 0.844 6.41 0.052
Serayu 79.96 0.780 86.76 0.855 6.80 0.074
Sekampung 77.49 0.762 87.05 0.865 9.56 0.103
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the varying LULC classes in different conditions. Other
optical sensors have yet to be tested, but hypothetically the
method would also improve classification accuracy.

5. Conclusion

Improvement in the accuracy of the postclassification of
LULC is important in order to meet the need for the rapid
mapping of such information. (is study has proposed the
MaSegFil approach, which can be used for spatial filters of
supervised digital classification results. (ree digital classi-
fication approaches (ML, RF, and SVM) were applied to test
the improvement in the accuracy of LULC postclassification
using the MaSegFil approach. (e use of a single Landsat 8
image is not always possible because several watersheds need
more than one path to cover all of their areas, which cannot
be obtained from one single date image. Mosaic cloud-free
Landsat 8 satellite imagery data were used for the input data
to make the classification. (e data applied the median pixel
value based on the filter date data used as input for the LULC
classification in the study area. Assessment of the accuracy
based on the reference data was made to compare the
postclassification results before and after the addition of the
MaSegFil approach. (e results show that, before applying
the MaSegFil approach, the results of the ML, RF, and SVM
classifications obtained accuracy were 73.6%, 77.7%, and
77.5%, respectively. However, the MaSegFil approach can
reduce pixel noise from theML, RF, and SVM classifications,
with an increase in accuracy of 81.7%, 85.2%, and 84.3%,
respectively. Furthermore, the method that has the best

accuracy RF classifier was applied to several national priority
watershed locations in Indonesia, with a comparison of
conditions before and after the spatial filter process was
applied using the MaSegFil approach. (e results show that
the use of the MaSegFil approach implemented on several
national priority watersheds in Indonesia to classify LULC
had a variation in overall accuracy ranging from 83.28% to
89.76% and an improvement in accuracy from 6.41% to
15.83%. (e results of the study can be used to support the
acceleration of medium-scale mapping at 1 : 50,000–1 :
100,000, which currently is often performed manually by
digitizing on-screen.(e development and application of the
next method become input for future research in the use of
other optical image data that have a higher spatial resolution,
such as Sentinel-2, SPOT 6/7, or Pleiades.
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