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(is study aimed to evaluate land use/land cover changes (1987–2017), prediction (2032–2047), and identify the drivers of Majang
Forest Biosphere Reserves. Landsat image (TM, ETM+, and OLI-TIRS) and socioeconomy data were used for the LU/LC analysis
and its drivers of change. (e supervised classification was also employed to classify LU/LC. (e CA-Markov model was used to
predict future LU/LC change using IDRISI software. Data were collected from 240 households from eight kebeles in two districts
to identify LU/LC change drivers. Five LU/LC classes were identified: forestland, farmland, grassland, settlement, and waterbody.
Farmland and settlement increased by 17.4% and 3.4%, respectively; while, forestland and grassland were reduced by 77.8% and
1.4%, respectively, from 1987 to 2017. (e predicted results indicated that farmland and settlement increased by 26.3% and 6.4%,
respectively, while forestland and grassland decreased by 66.5% and 0.8%, respectively, from 2032 to 2047. Eventually, agricultural
expansion, population growth, shifting cultivation, fuel wood extraction, and fire risk were identified as the main drivers of LU/LC
change. Generally, substantial LU/LC changes were observed and will continue in the future. Hence, land use plan should be
proposed to sustain resource of Majang Forest Biosphere Reserves, and local communities’ livelihood improvement strategies are
required to halt land conversion.

1. Introduction

Land cover and land use represent the assimilating elements
of the resource base. Land use describes activities, ar-
rangements, and inputs often associated with people that
take place on the land and represent the current use of
property such as residential homes, shopping centres, row
crops, tree nurseries, state parks, and reservoirs. Land cover
describes the natural and anthropogenic features that can be
observed on the Earth’s surface, i.e., forests, tidal wetlands,
developed/built areas, grasslands, and water [1–3]. Land use/
land cover (LULC) change is perhaps the most important
concern in many regions of the world [4–7]. It is recognized
that dramatic LULC change can significantly impact

regional climate, ecosystem stability, water balance, stream
silt up, socioeconomic practices, and biodiversity [8–14]. As
the pressure of the LULC change is increasing in many
places, understandings of current and future LULC changes
and patterns are a critical issue and seek timely analysis
[8, 9, 15]. LU/LC change is significantly increasing and
primarily activated by natural phenomena and anthropo-
genic activities [10, 11]. To collect information and time
serious LU/LU change, ground surveys and satellite sensors
can be utilized [12].

Prediction of LU/LC using time serious data is important
for the future management plan of LULC [13], and it is
regularly employed for a diverse suitability measure as a
proxy of human influence on land change processes. A
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Markov model is one in which the future state of a system
can be predicted purely based on the proximately preceding
state. Predicting future change is achieved by creating a
transition probability matrix of LULC change from period
one to period two [14]. Multispectral satellite images and the
CA-Markov chain model were used by the researcher to
predict the LULC change in different regions [16–18]. It also
computed states between different land uses and quantified
the transition rate between different land uses [19]. (e
factors in which driving forces of LULC change were
combined to provide the estimation of future scenarios [20].

In Ethiopia, LULC changes are a persistent event where
agricultural activities and settlements are dominated in the
rural landscapes. Recent studies indicated that land use/land
cover change is increasing; predominantly, expansion of
agricultural land at the expense of natural forest was ob-
served in different parts of Ethiopia [8, 13, 15, 21–31]. For
instance, Kindu et al. [8] reported that about 66.2% of
woodland converted to farmland in Munessa-Shashemene
of Oromia, Ethiopia. However, nearly 27% increase of forest
cover was gained as results of community afforestation and
rehabilitation activities on degraded hilly lands in Chemoga
watershed within the Blue Nile, Ethiopia [32, 33].

Moreover, LULC changes analysis has been conducted to
identify driving forces of the changes in different parts of
Ethiopia [13, 27, 34–37]. For example, a study from Afar
region identified more than fifteen LULC changes driving
factors such as migration triggered by drought, land tenure,
and government policy changes [34]. (e study from the
central rift valley revealed that population growth, a decline
in agricultural productivity, land tenure change, and erratic
rainfall are the major drivers of LULC changes in the study
area [37]. Likewise, driving factors of LULC changes are
diverse in different places or regions. Hence, driving factors
of LULC changes of certain ecosystems or places should be
addressed and investigated locally based on the agroecology
and socioeconomic condition of the area.

Analysis and prediction of LULC changes have signifi-
cant roles in the understanding of earth-atmosphere in-
teraction, forest fragmentation, biodiversity loss, and future
management plans [9, 38–41]. Also, inspection and analysis
of LULC have greatly increased in providing the most ac-
curate evaluation of the world’s forest, grassland, and ag-
ricultural resources regarding their spread status and health
[42]. However, studies concerning LULC changes, drivers,
and prediction have not been performed in Majang Zone, a
place where the UNSECO registered forest biosphere reserve
was established recently. (e objectives of this study are to
analyse LU/LC changes over the last three decades
1987–2017, predict future LU/LC change from 2017 to 2047,
and identify LU/LC changes drivers of the Majang Forest
Biosphere Reserve (MFBR).

2. Materials and Methods

2.1. Description of the Study Area. (is study was conducted
in Majang Forest Biosphere Reserve (MFBR) which is found
in the Majang Zone, Gambella National Regional State of
Ethiopia. It is unique biogeography and shares a border with

Illubabor Zone of Oromia Regional State and Sheka and
Bench-Maji zones of the Southern Nations, Nationalities,
and People (SNNP). It covers a total area of 233,254 ha of
forest, woodland, agricultural land, rural settlement, and
towns (Figure 1). MFBR is located between 07°08′-07°23′
latitude and 035°04′-035°19′ longitude, and the area has an
altitude range of 562–2444m [1].

(e climate of the zone is generally characterized by a
hot and humid type, which is marked on most rainfall maps
of Ethiopia as being the wettest part of the country (Fig-
ure 2).(e annual average rainfall is 1774, andmeans annual
minimum and maximum monthly temperature ranges be-
tween 13.9°C and 31.8°C in Tinishu Meti Metrological
Station (Figure 2(a)).(e annual average rainfall is 2053, and
mean annual minimum and maximum monthly tempera-
ture ranges between 11.8°C and 29.7°C in Ermichi Metro-
logical Station (Figure 2(b)).(emaximum average monthly
temperature is in February (29.8°C and 31.8°C) while the
minimum is in January (11.9°C and 13.9°C), in Ermichi and
Tinishu Meti, respectively. (e maximum rainfall is between
April and October and low rainfall from November to
March (NMSA, 2019) (Figure 2).

(e major vegetation types of the forest biosphere re-
serves are Montana evergreen forest, lowland semievergreen
forest, and riparian vegetation (WBISPP, 2000). Besides, the
vegetation of this area has different categories in terms of life
forms such as a high natural forest, woodlands, bushlands,
and grasslands which are the major vegetation types in the
forest biosphere reserves, and it is categorized under moist
Afromontane forest among four Ethiopian biome categories
(MEFCC, 2017).

2.2. Data Acquisition and Processing. Freely available sat-
ellite imagery (Landsat-5 TM (1987), Landsat-7 ETM+
(2002), and Landsat-8 OLI-TIRS (2017)) was downloaded
from the USGS website https://earthexplorer.usgs.gov/ of
Earth explorer. (ese data were projected to Universal
Transverse Mercator (UTM) with a datum of the World
Geodetic System 84 (WGS84), projection system zone 36N
(Table 1). Dataset selection was fixed in the dry season when
a clear sky period occurs in which the lowest or zeromonthly
cloud cover is achieved.

Atmospheric correction (FLAASH module), geometric
correction, mosaicking, and masking were performed dur-
ing preprocessing using ENVI version 5.3 before classifying
the images [35, 36]. Atmospheric correction and geometric
correction were used to avoid sensor noise, haze, adjustment
of data loss, and missing line because of solar position and
satellite calibration [43].

Prior to image classifications, ground reference points
(GRP) were collected through direct field observation to
verify classified images with land use/cover type. (e total
numbers of GRP collected in the study area were 250, with
50 GRP for each LU/LC type using a global positioning
system (GPS). Pixel-based supervised image classification
with the maximum likelihood classification (MLC) algo-
rithm [19, 20, 37] was carried out for image classification of
the study periods. In supervised classification, region of
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interest (ROI) was applied as a signature for each land use
class. A total of 300 ROI signatory was made with the
maximum number of ROI in forestland (90) and the
minimum number in waterbody (30).

Based on the existing feature of LULC in the study area
landscape, the Coordination of Information on the Envi-
ronment (CORINE) LULC classification system was used to
classify the LULC classes [44]. (erefore, we classified LULC
into five classes: forestland, farmland, grassland, settlement,
and waterbody. (e LULC classes together with their de-
scription are presented in Table 2. ENVI 5.3 and Arc GIS
10.4.1 softwares were used to image classification.

(e accuracy assessments were accomplished for clas-
sified images of 1987, 2002, and 2017 by applying a mini-
mum of 40 random points created as per class with stratified
random sampling, for which the corresponding reference
classes of each LULC class were collected by field visit

[46, 47]. (en, the accuracy assessments were computed
using a confusion matrix (ground truth ROI). (erefore, the
results of the accuracy assessment of the classified image
showed an accuracy of 85.5%, 86%, and 87.3%, and Kappa
statistics were in the range of 0.81–0.83% for the years 1987,
2002, and 2017, respectively (Table 3).

2.3. Suitability LU/LC and Input Data Preparation. (e
classified maps were reclassified considering the priority of
suitability for each LULC class, and each reclassifies map was
weighted and overlayed by including factors such as distance
to road, slope, and altitude in Arc GIS. (e constraints are a
condition that limits the expansion of LULC classes. (e
factors give a degree of suitability for an area to be changed.
(e constraints and factors considered were distance to
road, elevation, and slope suitable areas for conversion to
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Figure 1: Location of the study area.
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each class. (e constraints are articulated in the Boolean
maps where the suitable areas were set a value of 1, while the
area not suitable was set a value of 0 [48]. (e factors were

changed to binary format from 0 to 255, in which 255 is
highly suitable and 0 is not suitable using IDRISI version
17.0 for further processing.
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Figure 2: Mean annual temperature and rainfall recorded in (a) Tinishu Meti (1987–2017) and (b) Ermichi (1987–2017) Metrological
stations.

Table 1: Satellite images used for LULC change analysis and their characteristics.

Satellite image Path/Row Sensor Resolution (m) No. of bands Date of acquisition Cloud cover

Landsat-5 170/55 TM 30 7 01/22/1987 0
171/55 TM 30 7 01/31/1987 0

Landsat-7 170/55 ETM+ 30 8 12/28/2002 0
171/55 ETM+ 30 8 12/19/2002 0

Landsat-8 170/55 OLI-TIRS 30 11 01/08/2017 0
171/55 OLI-TIRS 30 11 01/15/2017 0

Table 2: Description of the LULC classification system.

LULC Description
Forestland Land covered with trees reaching 5m in height, 0.5 ha in area, and a canopy cover of >10%.
Farmland Areas covered with annual and perennial crops
Settlement (ese areas both in urban and small rural residential places including trees in individual garden and big and small size roads
Grassland Areas dominantly covered with grasses and shrubs
Waterbody Waterbody: area which holds water (lakes), rivers, and marshy land
Source: [45].

Table 3: Accuracy assessment of 1987, 2002, and 2017 classified images.

Land use/land cover
1987 2002 2017

Producer accuracy User accuracy Producer accuracy User accuracy Producer accuracy User accuracy
Forestland 86.3 92 87.8 90.2 89 91.9
Farmland 86.7 85.68 89.33 82.2 90 85.78
Grassland 71.6 84.5 75 80.9 80.5 79.9
Settlement 80.7 89 81.6 85.9 83.4 81.7
Waterbody 79.6 81 84.4 83.8 85.7 82
Overall accuracy (%) 85.4 86 87.3
Kappa coefficient 0.81 0.82 0.83
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(e suitability maps (forestland, farmland, grassland,
settlement, and waterbody) were derived using the Decision
Wizard module in IDRISI (Figure 3). First, the constraints
were standardized into Boolean maps, and then, the fuzzy
function combined with the weighted linear combination
(WLC) was used to process the standard factors. (e factors
were stretched from 0 to 255 with fuzzy function (sigmoi-
dal), by monotonically increased control point. (e weights
of the factors resulted from the AHP function in the WLC
module. (en, the transition suitability maps of all classes
weremade in theMCEmodule using the constraints, factors,
and weights. Finally, the suitability and factors images were
used as an input in the Markov change prediction model.

2.4. Simulation of LULCChange Using the CA-Markov Chain
Model (CA-MCM). A CA-Markov model is applied to use
both special and temporal LULC changes modelling [49, 50].
(e CA-Markov model combines cellular automata and
Markov chain to predict the characteristics and trends of
LULC change over time, provide a better understanding of
the factors that drive forest changes, and generate future
land use/land cover scenarios to support the design of policy
responses [22, 51, 52]. Moreover, this model is commonly
used to illustrate the dynamics of LULC, forest cover, set-
tlement expansion, plant growth, and modelling of water-
shed management. It is also significant to land use policy
design and planning for sustainable land use development
[53]. (erefore, it is essential to study the chronological
LULCC to understand the relations between humans and the
environment from a long-term view [51].

To predict future LULC changes for the study site,
IDRISI software version 17 (CA-Markov model) was used.
While doing so, the following specific processes were fol-
lowed: (a) LU/LC maps for the years 1987 and 2017 were
used to obtain the transition probabilities image [52, 54]. (b)
Considering the CA-Markov model approach, the LULC for
the year 2017 was simulated using the transition probabil-
ities of the year 1987–2002. (c) (e transition suitability
image was computed using constraints and factors in the
multicriteria evaluation (MCE) module [55–57]. (d) Finally,
the LULC for the year 2032 and 2047 were projected using
the transition probabilities images, base map, and transition
suitability image (Figure 4).

2.4.1. CA-Markov Chain Model (CA-MCM) Approach.
(e CA-Markov model is the integration of cellular
automata and transition probability matrix created by the
cross-tabulation of two dissimilar images [58]. (is inte-
gration of the CA-Markov model offers a strong method in
spatial and temporal dynamic modelling [58, 59]. In other
words, the CA-Markov chain can simulate and predict any
transitions among any number of categories [60, 61]. CA is a
dynamic procedure model that is frequently used in a spatial
model for predicting future land use/land cover change
[61–63]. (e important properties of CA are that they show
the spatial and dynamic process and that is why they have
been broadly used in land use/land cover simulation [61].

(e CA model is shown in the following equation (1)
[53, 64, 65].

S (t, t + 1) � f(S(t), N), (1)

where S (t + 1) is the system status at the time of (t, t + 1),
functioned by the state probability of any time (N).

(e Markov chain model is often used in LULC mon-
itoring, ecological modelling, simulation changes, trends of
the LULC, and to predict the extent of the land use change
and the stability of future land development in the area of
concern [50, 62, 65]. (e Markov chain model pronounces
the LULC change from one time to another to predict future
change [66, 67]. Equation (1) explains the calculation of the
prediction of LULC changes (Markov chain model):

S(t, t + 1) � Pij × S(t), (2)

where S (t) is the system status at the time of t, S (t + 1) is the
system status at the time of t + 1; Pij is the transition
probability matrix in a state which is calculated as follows
[19, 66]:

� Pij

�����

����� �

P1, 1 P1, 2 P1, N

P1, 1 P2, 2 P2, N

· · · · · · · · ·

PN, 1 PN, 2 PN, N

�������������������

�������������������

, (3)

0 ≤Pij ≤ 1􏼐 􏼑, (4)

where P is the transition probability; Pij stands for the
probability of transforming from present state i to another
state j in succeeding time; PN is the state probability of any
time. (e high transition has probabilities near (1) and the
low transition will have a probability near (0) [66]. Markov
Chain concludes precisely how much land would be esti-
mated to change from the latest date to the predicted date.
(e transition probabilities file is the result of this process,
which is a matrix that registers the probability that each land
use/land cover class will change to every other class [68].

2.4.2. CA-Markov Model Validation Approach. (e use of
kappa indexes for the calculation determines the overall
achievement rate, and it delivers an understanding of the real
factors in the strength or weakness of the results. When 75%
≤Kappa <100, the result maps are in a high level of
agreement; if 50% ≤Kappa ≤75%, the result maps are in a
medium level of agreement; and if Kappa ≤50, the result
maps are in a poor agreement [69, 70]. (erefore, to know
the accuracy of the CA-Markov model in simulating future
LULC conditions, the model was confirmed [55] after
simulating the 2017 LULC situations using the 1987 and
2002 classified images. Kappa index of agreement (KIA) [71]
such as Kappa for no information (Kno), Kappa for location
(Klocation), and Kappa for standard (Kstandard) [55, 71]
evaluated the agreements of the two maps (actual and
simulated 2017) using the CROSSTAB Module in IDRISI.
Besides, comparisons of the simulated and the actual area of
each LULC class were also performed using the validate
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module. Hence, the kappa index is acceptable; the land use
and land cover in 2032 and 2047 can be predicted. (e
following equations express the statistics for the kappa
variations according to Omar et al. [55]:

Kno �
(M(m)N(n))

P(p) − N(n)
,

Klocation �
(M(m)N(n))

P(p) − N(n)
,

Kstandard �
(M(m)N(n))

P(p) − N(n)
,

(5)

where no information is defined by N (n), medium grid cell-
level information by M (m), and perfect grid cell-level in-
formation across the landscape by P (p).

2.4.3. Land Use/Land Cover Change Analysis. Following the
classification of images (1987, 2002, and 2017) and pre-
diction of the 2032 and 2047 situation, change statistics were
computed through comparisons among the successive pe-
riods [13, 47, 71–74]. (e conversion matrix of the past 30
years periods (1989–2017) was made to differentiate the
changes of each land-use type [25, 34, 46, 72]. Furthermore,
the percentage of change and rate of change was also
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Figure 3: (e suitability maps and input data: forestland (a), farmland (b), grassland (c), settlement (d), and waterbody (e) are suitability
maps. Elevation (f), slope (g), and road (h) are the input data.
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computed using equations (3) and (4), respectively
[13, 29, 72, 75].

RC
ha
year

􏼠 􏼡 �
X − Y

Z
􏼒 􏼓,

%of change �
X − Y

Y
􏼒 􏼓∗ 100,

(6)

where RC is the rate of change, X is the area of LULC (ha) in
the recent year, Y is the area of LULC (ha) in the past year,
and Z is the time interval between X and Y in years.

2.5. Source of Data for LULC Change Drivers. A field survey
was conducted to explore the socioeconomic data for
showing the driver of LU/LC change based on the survey
qualitative tools such as focus group discussion (FGD), key
informant interview (KII), and household (HH) survey
including field observation and document review. (e ul-
timate purpose of the field survey was to collect quantitative
data to help better understand, explain, and interpret the
LULC change drivers [76–79] using semistructured ques-
tionnaires (close and open-ended). (e data were generated
from both primary and secondary sources. To do so, eight
kebeles were purposively selected from two districts, Godere
and Mengeshi, namely, Ashani, Baya, Fejeji, Newe, Akashi,
Dunchaye, Gonchi, and Gelesha.

Household (HH) survey was conducted in eight kebeles
of Godere and Mengeshi districts (four kebeles per district)
from 10 March to May 2019. (ese kebeles were selected,
based on the level of forest resources dependency com-
munities. So, a total of 240 HHs were randomly selected and
interviewed [80]. (e questionnaires were envisioned to
capture drivers of LULC changes perception, socioeconomic
features of HHs, and related information [27]. Furthermore,

FGD (head of agricultural office, natural resource expert,
elders, women, model farmers, kebeles administrative
chairman, and representatives of NGO working in the
woredas) and KII (elders, leaders, and women) were con-
ducted in all the selected kebeles for detailed analyses of
LULC change drivers (Table 4). During the interviews and
discussion, the main attentions were to get adequate in-
formation about the past and present trends of LULC change
and identify the main driving causes of LULC change. (e
farmers were asked to explain what parts of the landscape
were changed, describe the consequences of the changes in
their livelihood, surroundings, and environment, and how
their socioeconomic activity contributes to the land-use
change.

2.5.1. Data Analysis of Household Survey. All the collected
data from the respondents were subjected to descriptive
statistics using SPPS version 20 software. Averages, per-
centages, and frequency descriptive statistics were used to
describe HHs’ socioeconomic characteristics, a ranking of
LULC change drivers along with presenting in tables and
graphs.

3. Results

3.1. Status of LandUse/Land Covers. Five LULC classes were
identified in the study area for the specified period
1987–2017 (Figure 5). In 1987, the forestland accounts for
84.4% followed by farmland (13.2%), grassland (1.5%), and
settlement and waterbody that cover 0.9% and 0.06% which
shows minimal coverage of the Majang Forest Biosphere
Reserve (Table 5). In 2002, forestland cover about 80.8% is
followed by farmland (15.8%), while settlement, grassland,
and waterbody accounted for 2%, 1.3%, and 0.06%,
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Figure 4: A schematic representation of the study adopted from Yirsawet al. [17].
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Table 4: (e number of participants in the HH, FGD, and KII in all kebeles.

Kebele Total population Total HH Selected HH Selected FGD Selected KII
Ashani1 1,758 464 22 8 3
Baya1 1,565 422 20 8 3
Fejeji1 1,721 469 22 8 3
Newe1 1,358 360 17 8 3
Akashi2 6,170 1655 77 8 3
Dunchaye2 2,554 685 32 8 3
Gonchi2 1,556 428 20 8 3
Gelesha2 2,376 651 30 8 3
Total 19,561 5,134 240 64 24
Note. 1Mengeshi and 2Godere districts.
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Figure 5: LULC of 1987, 2002, and 2017 in MFBR.
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respectively. Forestland was declined to 77.8% in 2017,
whereas farmland, settlement, and grassland increased by
17.4%, 3.4%, and 1.4%, respectively, but waterbody showed
no significant changes with that of 1987 and 2002 (Table 5).

In all study periods, farmland and settlement signifi-
cantly increase as the expense of forestland and grassland
coverage, in which the forestland and grassland were de-
creased by 19,6761.6 to 18,1504.9 and 3,509.2 to 3,192.2 from
1987 to 2017 (Table 5).

3.2. LULC Conversions Analysis: 1987–2002 and 2002–2017.
(e land use/land cover change was performed by taking the
initial year in 1985. (ree LULC conversions were detected,
i.e., between 1987 and 2002, 2002 and 2017, and 1987 and
2017. (e land use/land cover conversions results revealed
that a substantial loss and gains of LULC were inspected in
the first (1987–2002), second (2002–2017), and third study
periods. For instance, forestland was converted to other
LULC classes during the first, second, and third study pe-
riods by about 556.5 ha (4.4%), 460.6 ha (3.8%), and
1017.1 ha (8.4%), respectively. Also, grassland was reduced
by about 28.6 ha (13.6%) and 21.1 ha (9.5%) in the first and
third study periods, respectively, while it increases by 7.5 ha
3.6% in the third study period. On the contrary, farmlands
and settlements were expanded by 408.3 ha (16.6%), 243.2 ha
(9%), and 651.5 ha (24.1%) and 179.6 ha (56.7%), 208.1 ha
(39.8%), and 387.7 ha (73.9%) in the first, second, and third
study periods, respectively, while in waterbody, only 0.3 ha
converts to other land use in all study periods (Table 6).

(e conversions of LU/LC from one class to another
class were revealed in all study periods (Tables 7 and 8). (e
diagonals in the matrix from the tables are the persistence,
while the off-diagonals are the conversions from one cate-
gory to the others. Between 1987 and 2002 periods, 3732,
510, and 47 ha of farmland were converted from forestland,
settlement, and grassland, respectively, while farmland
gained from other LU/LC categories (Table 7). During this
period, some areas of settlement were also converted from
farmland (519 ha), forestland (458 ha), and grassland (10 ha).
Although, about 2764 ha, 510 ha, and 402 ha of the settle-
ment were also converted to forestland, farmland, and
grassland, respectively. Gains and losses in forestland and
grassland were also taken place in all study periods (Table 7).

Between, 2002 and 2017 periods, 4312 ha, 1773 ha,
1114 ha, and 6 ha of forestland were also converted to
farmland, grassland, settlement, and waterbody, respec-
tively. Similarly, forestland, grassland, and settlement were

also gained from other LU/LC categories (Table 8). In these
periods, a significant area of farmland was converted from
forestland (4312 ha), settlement (2418), and grassland
(206 ha). In reverse, there was also a considerable conversion
of farmland to other categories. A significant amount of
gains and losses in the settlement has also occurred in these
periods (Table 8).

3.3. Future Land Use/Land Cover Change

3.3.1. Actual and Simulated LULC of MFBR for 2017.
Actual and simulated LULC of MFBR was developed for the
year 2017. Accordingly, the actual and simulated maps of the
year 2017 depicted soundly similarity in waterbody cover,
while slight differences were depicted in other LULC classes
(Figure 6).(e area coverage of the twomaps showed that all
land use/land cover classes have the best range of agreement
with a rate of difference lower than 10% (Table 9).

Regarding model validation, kappa index of agreement
(KIA) comparison was made between the actual and sim-
ulated LULC maps of 2017. (e validation of the model or
KIA statistics (Table 8) and the actual and predicted LULC
change of the 2017 period (Table 10) result showed a good
similarity between the actual and predicted maps of 2017.
(e overall kappa value is 87.3% which represents a strong
agreement between the two map categories. Such a vali-
dation process was evaluating the agreement of the twomaps
(predicted and actual) in terms of the number of pixels in
each LULU class and in term of their location of the pixels.

3.3.2. Predicted Land/Use Land Cover. (e projected land
use/land cover types of 2032 and 2047 were computed using
the CA-Markov model as presented in Figure 7, whilst their
area are given in Table 11. (e area of forestland and
grassland decreased from 72.4 in 2032 to 66.5 in 2047 and 1.2
in 2032 to 0.8 in 2047, respectively. A continuous increase in
farmland and settlement will be observed in 2032 (21.5%) to
2047 (26.3) and 2032 (4.9) to 2047 (6.4), respectively. On the
other hand, waterbody will depict almost a constant per-
centage in 2032 (0.05%) to 2047 (0.05%), while it will be
decreased in area coverage from 135 ha to 126 ha in 2032 and
2047, respectively. In addition, as compared to LULC
2017–2047 farmland and settlement increased by 8.9% and
3%, respectively, while forestland and grassland decreased by
11.3% and 0.6%, respectively. (e expansion of farmland
and settlement is expected to increase at the expense of
forestland and grassland.

Table 5: Area of LULC class from 1987 to 2017 periods in MFBR.

Land use/land cover
1987 2002 2017

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)
Forestland 196761.6 84.4 188413.7 80.8 181504.9 77.8
Farmland 30781.8 13.2 36906.4 15.8 40554.8 17.4
Grassland 3509.2 1.5 3079.6 1.3 3192.2 1.4
Settlement 2050.7 0.9 4744.3 2.0 7866.2 3.4
Waterbody 141.0 0.06 141.0 0.06 141.0 0.06
Total 233254 100% 233254 100% 233254 100%
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Table 6: Percentage and rate of changes occurred in MFBR from 1987 to 2017 periods.

LU/LC
PC RC (ha/year)

1987–2002 2002–2017 1987–2017 1987–2002 2002–2017 1987–2017
Forestland −4.4 −3.8 −8.4 −556.5 −460.6 −1017.1
Farmland 16.6 9.0 24.1 408.3 243.2 651.5
Grassland −13.6 3.6 −9.5 −28.6 7.5 −21.1
Settlement 56.7 39.8 73.9 179.6 208.1 387.7
Waterbody 0.0 0.0 0.0 0.0 −0.3 −0.3
Note. MFBR�Majang Forest Biosphere Reserve, PC� percentage of change, and RC� rate of change.

Table 7: Transition area matrix (ha) between 1987 and 2002 in MFBR.

1987 2002
Forestland Farmland Grassland Settlement Waterbody Total

Forestland 182378 3732 1800 458 3 188372
Farmland 9093 26486 786 519 0 36884
Grassland 2502 47 520 10 0 3079
Settlement 2764 510 402 1062 0 4739
Waterbody 3 0 0 0 138 141
Total 196740 30775 3509 2049 141 233254

Table 8: Transition area matrix (ha) between 2002 and 2017 in MFBR.

2002 2017
Forestland Farmland Grassland Settlement Waterbody Total

Forestland 174287 4312 1773 1114 6 181492
Farmland 8384 29956 829 1375 0 40544
Grassland 2237 206 455 293 0 3191
Settlement 3467 2418 21 1958 0 7864
Waterbody 2 0 0 0 134 136
Total 188377 36892 3078 4740 140 233254
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Figure 6: (e actual (a) and simulated (b) LULC maps of MFBR for 2017.
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Table 9: Statistical validation of the CA-Markov chain model.

Statistics Value (%)
Kstandard 85.3
Kno 81.2
Klocation 81.4
Klocationstrata 80.8
Overall K 87.3

Table 10: Comparison of actual and simulated LULC changes in 2017.

LULC class
Actual (2017) Simulated (2017) Changes

Area (ha) Area (%) Area (ha) Area (%) RC (ha) PC
Forestland 181504.9 77.8 180980.7 77.6 −524.2 −0.2
Farmland 40554.8 17.4 41014.7 17.5 459.9 0.2
Grassland 3192.2 1.4 3002.5 1.3 −189.7 −0.1
Settlement 7866.2 3.4 8120.6 3.5 254.4 0.1
Waterbody 141 0.06 141 0.06 −1 0
Total 233254 100% 233254 100
Note. PC� percentage of change, RC� rate of change.
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Figure 7: (e 2032 and 2047 predicted LULC of MFBR.

Table 11: LULC area change (ha) from 2017 to 2047of MFBR.

LULC class
2017 2032 2047 (2017–2047)

Area % Area % Area % RC (ha) PC
Forestland 181504.9 77.8 168800.7 72.4 155020.7 66.5 −26484.2 11.3
Farmland 40554.8 17.4 50151.8 21.5 61476.8 26.3 20922 8.9
Grassland 3192.2 1.4 2740.2 1.2 1788.5 0.8 −1403.7 0.6
Settlement 7866.2 3.4 11426.2 4.9 14840.2 6.4 6974 3
Waterbody 141 0.06 135 0.05 126 0.05 −15 0.01
Total 233254 100% 233254 100% 233254 100%
Note. MFBR�Majang Forest Biosphere Reserve, PC� percentage of change, and RC� rate of change.
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In addition, as the result shows in Figure 8, a reduction of
forestland cover from 84.4%, 80.78%, 77.8%, 72.4%, and
66.5%; grassland from 1.5%, 1.3%, 1.4%, 1.2%, and 0.8%; and
waterbody from 0.06% to 0.05% were examined through the
1987–2047 study period, respectively. While farmland and
settlement increased from13.2%, 15.82%, 17.4%, 21.5%, and
26.3% and 0.88%, 2.03%, 3.37%, 4.9%, and 6.4% at the
expense of forestland through the 1987–2047 study period
(Table 11).

(e conversion of LU/LC classes also has been taken
place between 2017 and 2045 predicted periods (Table 11).
For example, between predicted periods 2017 and 2047 of
forestland, grassland, and waterbody were reverted to
farmland and settlement during the predicted periods by
26484.2 ha (11.3%), 1403.7 ha (0.6%), and 15 ha (0.01%),
respectively. On the contrary, farmlands and settlements
were expanded by 20922 ha (8.9%) and 6974 ha (3%) in the
predicted periods, respectively.

3.4. Drivers of LULC Changes Based on Respondents View.
Based on the respondents’ survey results and field obser-
vation, multiple factors contributed to LULC changes in the
study area. However, there was the difference in each of the
factors to which the local community observed drivers of
LULC changes.(e survey and field observation showed that
forestland and grassland were converted to farmland and
settlements which are similar to LU/LC result. Regarding
identification of driving factors of LULC changes, out of
nine LULC change driving factors, the top four driving
factors mentioned by the respondents in the study area were
agriculture expansion (15.6%), human population growth
(15.5%), wood extraction (14.6%), and risk of fire (14%),
respectively (Table 12).

(e population growth was perceived as the second
driving factor causing LULC change. Based on 2007 Pop-
ulation Census of Ethiopia, the total population of Majang
Zone was 59,248 [81], and the population was estimated to
be 77,022 in 2014 and 82,268 in 2017. (us, increment of the
population between two census periods (2007 and 2014)
varied from 3% in Akashi kebele to 27% in Ashani and
Gonchi kebeles (Table 13). (e increase of population in the
study area demands land for agriculture, grazing land
firewood, and settlement which could influence future land
use/land cover.

Also, results from FGD and KII confirmed that pop-
ulation growth coupled with “resettlement of 1984/5” and
“villagization of 2011” policies resulted in an extraexpansion
of settlement and agricultural land at the expanses of forest
and grassland. Besides, the “Land to Tiller” of 1970s policy
including the absence of proper land use plans played a role
in conversion of forest and grassland to settlement and
farmland in the study area.

Based on the secondary data, the most recent phe-
nomenon causing widespread forest destruction in the study
area was an agricultural investment that began during 2003.
About 19,165.83 ha of land were provided to investors or
companies. For instance, Green Coffee, Verdanta, Marekose,

and Afero-Tseyone companies were provided 6500 ha,
3012 ha, 3000 ha, and 2000 ha of land, respectively, in the
study area (Table 14). It is inspected that land transfer to
investors is a common phenomenon that aggravates land
use/land cover changes. Also, the key informants reported
that “land transfer to investors” puts strong pressure on the
remaining forests to convert other LULC in the study area.

4. Discussion

4.1. LandUse/LandCoverChange. Computation of remotely
sensed data is the well-established field of study that aids in
articulating changes and patterns of land use/land covers in
temporal and spatial aspects. Land use/land cover change
analysis of the study area was run, and maps were generated
for the last three decades, 1987–2017. (e overall accuracies
were attained by Landsat TM (85.4%), ETM+ (86%), and
OLI-TIRS (87.3%) for the years 1987, 2002, and 2017 (Ta-
ble 3). (e values overall accuracy and kappa values above
80% indicate that the classification performance is satis-
factory [82]. (e results of this study are more or less related
to other local studies such as Landsat TM (86.9%), ETM+
(85.8%), and OLI-TIRS (88.8%); Landsat MSS (83.1%), TM
(85.8%), and ETM+ (88.7%); and Landsat MSS (85.5%),
ETM+ (83.15%), and ETM+ (87.73%) [30, 41].

A total of five LULC types were identified in the study
area in all study periods (1987–2017) (Figure 5); a forestland
accounted for the largest proportion of farmland, grassland,
settlement, and waterbody. Forestland and grassland were
decreased and mainly transformed into farmland and set-
tlement in all study periods (Table 6). (is is possibly due to
agricultural expansion as a result of human population
increment in the study site. (e finding of this research is
consistent with other studies carried out in different parts of
the country, for instance, Zeleke and Humi [21] in Dem-
becha area of northwest Ethiopia stated that 99% of the
forest cover was transformed into farmland between 1957
and 1995. Similarly, Kindu et al. [8] inMunessa-Shashemene
landscape of the Ethiopian highlands stated that almost
66.2% of woodland is converted to farmland. Many other
local LULC studies also indicated similar trends
[13, 29, 83, 84]. Also, a study in Baro river basin in
southwestern Ethiopia showed the conversion of forest land
to nonforestland between 1984 and 2010 mainly by the
expansion of farmland and settlement [85]. In contrary,
forestland was increased by 27% in Chemoga watershed in
the Blue Nile, which was the result of the community af-
forestation program in a degraded hilly area in the watershed
[86]. Moreover, land use/land cover conversions results
revealed that a substantial loss and gains of LULC were
inspected in the first and second study periods. For instance,
forestland was converted to other LULC classes, while
farmlands and settlements were gained from forestland and
grassland during the first and second study periods (Tables 7
and 8). (ese changes may affect the habitat of key species in
the area [87, 88]. Destruction of habitats and decrease in
their sizes may lead to restriction and decline of species
ecological niches.
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4.2. Future Land Use/Land Cover Change. (e CA-Markov
chain is a stochastic procedures model that pronounces the
possibility of change from one land use/land cover class into
another land use/land cover class using a transition prob-
ability matrix [89, 90]. (e most suitable model for pre-
dicting LULC change is the CA-Markov chain model [66].
(is model is appropriate if the changes and procedures in a
given landscape are challenging to describe. Regarding to
model validation of this study, kappa index of agreement
(KIA) comparison was made between the actual and sim-
ulated LULC map of 2017. (e validation of the model or
KIA statistics (Table 9) result showed a good similarity

between the actual and predicted map of 2017. (e actual
and simulated maps for year 2017 were depicted reasonably
similar for waterbody, while for the other LULC classes,
there were almost slight differences between simulated and
actual maps. However, considering the overall KIA was a
high level of agreement standards, and they were between
75% ≤kappa <100 [60, 70], which indicates the good
agreement between the actual and simulated LULC maps
[13, 48, 57, 71]. (erefore, the CA-Markov model is an
effective tool and is reliable to simulate, predict, and analyse
different changes of LULC in 2032 and 2047. With com-
parable kinds of agreement and disagreement result, [91]

Table 13: Population number and growth rate in the sample kebeles of Majang Zone.

Name of
kebele 2007 2014

(E)
Growth between 2007

and 2014
Change between 2007 and

2014 (%)
Growth rate (%) between

2007 and 2014
Doubling time after

2014
Ashani1 388 1758 1370 353 27 3
Baya1 381 1565 1184 311 24 3
Fejeji1 446 1721 1275 286 22 3
Newe1 307 1358 1051 342 26 3
Akashi2 4,269 6170 1901 45 3 20
Dunchaye2 1,536 2554 1018 66 5 14
Gelesha2 1,249 2376 1127 90 7 10
Gonchi2 345 1556 1211 351 27 3
Note. 1Mengeshi and 2Godere district. E, estimated.
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Figure 8: Trends of LULCC from 1985 to 2045 in MFBR.

Table 12: Land use/land cover change key drivers and ranking.

Drivers of LULC changes Percentage (%) Rank
Agriculture expansion 15.6 1
Population growth 15.5 2
Wood extraction (for charcoal, fuel wood, and construction) 14.6 3
Fire 14.0 4
Expansion of settlement 11.6 5
Infrastructure development 10.6 6
Lack of forest policies and laws 7.4 7
Limited capacities of the forest sector 6.4 8
Absence of land use planning 4.3 9
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showed that the CA-Markov model might be taken as an
effective model in prediction of LULC changes. (e pre-
diction of 2032 and 2047 result showed reduction of for-
estland, grassland, and waterbody cover, while farmland and
settlement were increased at the expense of forestland and
grassland in the predicted period (Figure 8), which is
consistence with other findings [13, 17, 92]. (e area extent
of the forestland cover is likely to be taken over by farmland
and settlement in the predicted period (Table 10), whichmay
be due to future anthropogenic activities (farmland and
settlement expansion) coupled with population increment in
the area.(ese prediction results might be used as a guide for
conservation planning in the area, assisting decision-makers
to improve land use management plans to balance devel-
opment and conservation.

4.3. Drivers of Land Use/Land Cover Changes. In general,
LULC change is the result of the comprehensive influences
of so many complex and various factors [93, 94]. Previous
studies have revealed that on a global scale, human-driven
land use/land cover change for most of the changes of land
surface. However, the key driving factors vary according to
the nature and magnitude of the area [95]. In this study, we
analysed multiple driving factors contributed to LULC
changes in the study area. Accordingly, the most important
drivers of LULC change in the study area were agriculture
expansion, population growth, wood extraction, and char-
coal and fire (Table 12). Most importantly, agricultural
expansion and population growth were more experienced as
compared to other driving factors. (is is similar with other
finding reports in Ethiopia [13, 27, 35, 36]. Moreover, the
driver plays a role in intensive loss of forestland to other land
uses in the study area due to brutal drought and famine that
affects the country, and the government implemented
resettlement and villagization in the study area to combat the
impacts of drought, which was aimed to move farmers from
northern into southwestern parts of the country [96]. For
instance, during the 1980s, at Gambella region (Godere,
Zuria and Abobo) were settled about 11,234 households with

land 15,600 ha, respectively [97]. FGD and KII also con-
firmed that population growth coupled with resettlement
(1984) and villagization (2010) in the study area that resulted
in further expansion of agricultural land as expanses of
forestland which was the main driving force of LULC change
in the area. For instance, increased population number is
observed in the sample kebele both in national count in 2007
and 2014 which was evident largely through the expansion of
farmlands at the expense of forestland cover [98, 99].
Likewise, a significant loss of the grasslands to other land use
was observed in the area as a result of the expansion of
agriculture and rapid population growth. Similar results
were reported in different parts of Ethiopia [13, 83, 96, 100].

5. Conclusion

Land use/land cover change (LULC) analyses are crucial for
a well-informed decision-making regarding proper land uses
planning policy. (is study identified five LULC classes such
as forestland, farmland, grassland, settlement, and water-
body in the study area, for the study periods of 1987–2017.
Based on the LULC changes, farmland and settlement in-
creased while forestland and grassland were reduced in the
study period of time (1987–2017). A broad-spectrum trend
was inspected as increment of farmland and settlement
areas; meanwhile, shrinkage of forestland, grassland, and
waterbody will continue in the near future, 2032–2047.
Eventually, based on the respondents ranking, the main
drivers of LULC changes were identified as agricultural
expansion, human population growth, shifting cultivation,
fuel wood extraction, and fire risk. Moreover, results from
focus group discussion (FGD) also confirmed that pop-
ulation growth coupled with resettlement and villagization
have resulted in further expansion of agricultural land as
expanses of forestland. Generally, substantial LULC changes
were observed and most likely continued onward until the
specified future period of this study. Hence, a rational land
use plan should be proposed in order to sustain livelihoods
of local communities, resources of MFBR, and the envi-
ronment. Likewise, the predicted model applied in this study
delivers basic information that the planner should consider
extensive driving factors of physical, social, and economic
associated with the complex use of land. Moreover, this
study also proposes a further study on the impacts brought
by LULC change, specifically climate and watershed hy-
drology; meanwhile, this study addressed only LULC
change, driving forces behind the changes, and future
prediction.
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Table 14: Leased land for private companies investment in Majang
Zone.

Company name Area (ha) Year of
licensed Lease period (years)

Green Coffee 6500 2015 50
Verdanta 3012 2015 50
Marekose 3000 2015 50
Afero-Tseyone 2000 2015 50
G/Medihen 1400 2014 50
Majang Agro-Industry 1000 2015 50
Shake Agro-Industry 763 2015 50
Ebdayetaye 488 2013 50
Tekalign 355 2015 50
Siraje Negaw 362 2003 50
Adenew Angelo 189.83 2006 50
Total 19,165.83
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Supplementary Materials

S1 Table. Attributes of sampled households in the study area
(N� 240), exploring overviews of respondent profiles, spe-
cifically socioeconomic attributes such as family size, oc-
cupation, size of landholdings, and education status are
essential in terms of identifying and understanding driving
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B. M. Campbell, “Land-use and land-cover dynamics in the
central rift valley of Ethiopia,” Environmental Management,
vol. 44, no. 4, pp. 683–694, 2009.

[38] J. M. Olson, G. Alagarswamy, J. A. Andresen et al., “Inte-
grating diverse methods to understand climate-land inter-
actions in East Africa,” Geoforum, vol. 39, no. 2, pp. 898–911,
2008.

[39] R. Mahmood, R. A. Pielke, K. G. Hubbard et al., “Impacts of
land use/land cover change on climate and future research
priorities,” Bulletin of the American Meteorological Society,
vol. 91, no. 1, pp. 37–46, 2010.

[40] T. Paz-Kagan, M. Shachak, E. Zaady, and A. Karnieli,
“Evaluation of ecosystem responses to land-use change using
soil quality and primary productivity in a semi-arid area,
Israel,” Agriculture, Ecosystems & Environment, vol. 193,
pp. 9–24, 2014.

[41] B. Fu, L. Chen, K. Ma, H. Zhou, and J. Wang, “(e rela-
tionships between land use and soil conditions in the hilly
area of the loess plateau in northern Shaanxi, China,”Catena,
vol. 39, no. 1, pp. 69–78, 2000.

[42] R. A. Pielke, A. Pitman, D. Niyogi et al., “Land use/land cover
changes and climate: modeling analysis and observational
evidence,” Wiley Interdisciplinary Reviews: Climate Change,
vol. 2, no. 6, pp. 828–850, 2011.

[43] A. I. Lyapustin, Y. Wang, I. Laszlo et al., “Multi-angle
implementation of atmospheric correction for MODIS
(MAIAC): 3. Atmospheric correction,” Remote Sensing of
Environment, vol. 127, pp. 385–393, 2012.

[44] J. Feranec, G. Hazeu, S. Christensen, and G. Jaffrain, “Corine
land cover change detection in Europe (case studies of the
Netherlands and Slovakia),” Land Use Policy, vol. 24, no. 1,
pp. 234–247, 2007.

[45] K. G. MacDicken, “Global forest resources assessment 2015:
what, why and how?” Forest Ecology and Management,
vol. 352, pp. 3–8, 2015.

[46] E. Teferi, S. Uhlenbrook, W. Bewket, J. Wenninger, and
B. Simane, “(e use of remote sensing to quantify wetland
loss in the Choke Mountain range, Upper Blue Nile basin,
Ethiopia,” Hydrology and Earth System Sciences, vol. 14,
no. 12, pp. 2415–2428, 2010.

[47] J. J. Schulz, L. Cayuela, C. Echeverria, J. Salas, and J. M. Rey
Benayas, “Monitoring land cover change of the dryland
forest landscape of Central Chile (1975–2008),” Applied
Geography, vol. 30, no. 3, pp. 436–447, 2010.

[48] V. N. Mishra, P. K. Rai, and K. Mohan, “Prediction of land
use changes based on land change modeler (lcm) using
remote sensing: a case study of Muzaffarpur (Bihar), India,”
Journal of the Geographical Institute’Jovan Cvijic’SASA,
vol. 64, no. 1, 2014.

[49] R. Regmi, S. Saha, and M. Balla, “Geospatial analysis of land
use land cover change modeling at Phewa lake watershed of
Nepal by using cellular automata markov model,” Interna-
tional Journal of Current Engineering and Technology, vol. 4,
pp. 2617–2627, 2014.

[50] Q. Weng, “Land use change analysis in the Zhujiang delta of
China using satellite remote sensing, GIS and stochastic
modelling,” Journal of Environmental Management, vol. 64,
no. 3, pp. 273–284, 2002.

[51] X. Yang, X.-Q. Zheng, and R. Chen, “A land use change
model: integrating landscape pattern indexes and Markov-
CA,” Ecological Modelling, vol. 283, pp. 1–7, 2014.

[52] P. Fitzsimmons and R. Getoor, “Homogeneous random
measures and strongly supermedian kernels of a Markov
process,” Electronic Journal of Probability, vol. 8, 2003.

[53] P. Ghosh, A. Mukhopadhyay, A. Chanda et al., “Application
of cellular automata and Markov-chain model in geospatial

16 (e Scientific World Journal



environmental modeling-a review,” Remote Sensing Appli-
cations: Society and Environment, vol. 5, pp. 64–77, 2017.

[54] A. Veldkamp and E. F. Lambin, Predicting Land-Use Change,
Elsevier, Amsterdam, Netherlands, 2001.

[55] N. Q. Omar, M. S. S. Ahamad, W. M. A. Wan Hussin,
N. Samat, and S. Z. Binti Ahmad, “Markov CA, multi re-
gression, and multiple decision making for modeling his-
torical changes in Kirkuk city, Iraq,” Journal of the Indian
Society of Remote Sensing, vol. 42, no. 1, pp. 165–178, 2014.

[56] J. Eastman, IDRISI Selva Manual, Clark Labs, Clark Uni-
versity, Worcester, MA, USA, Version 17.01, 2012.

[57] S. K. Singh, S. Mustak, P. K. Srivastava, S. Szabó, and
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