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In this work, we deal with unsteady magnetohydrodynamic allowed convection inflow of blood with a carbon nanotubes model;
the single and multiwalled carbon nanotubes of human blood are used as a based fluid. Two numerical methods used to study this
model are the weighted average finite difference method and the nonstandard compact finite difference method.*e proportional
Caputo hybrid operator has been used to fractionalize the proposed model. Stability analysis has been construed by a kind of John
von Neumann stability analysis. Numerical results are presented in diverse graphs, which manifest that the method is successful in
solving the proposed model.

1. Introduction

Fractional calculus (FC) is a generalization of the integer-
order calculus. In fractional calculus, researchers try to solve
problems with α-order derivatives and integrals, where there
are several definitions for derivatives of order α [1, 2]. *e
most common derivatives are the Riemann-Liouville [3],
Caputo [3], Caputo–Fabrizio [4], and the proportional
Caputo hybrid [5] formulations. In scopes of fluid dynamic
and engineering, most nanofluids waft issues are typically
nonlinear character, and it is believed that the fractional-
order methods are the best suited models to act for such
studies comparatively different conventional methods [6].

Oberlin et al. [7] were the first to initiate the carbon
nanotubes (CNTs) as nanoparticles in 1976. CNTs are one of
the nanomaterials that are vastly used in such parts in the last
years. *ey have got more attention because of their unri-
valled advantages [8]. CNTs have extraordinary conductivity
which helps them to form a network of conductive tubes.
CNTs have also been used for thermal defence as thermal
boundary materials. In 1995, a novel magnificence of
warmth transferring fluids that may be engineered via
placing metal nanoparticles in conventional heat transfer

fluids became initiated by Choi [9]. With the expansion of
nanotechnology, many nanomaterials were developed and
utilized in the industry. Khan et al. [10] discussed the slip
waft of Eyring-Powell nanoliquid film containing graphene
nanoparticles. 3D nanofluid waft with heat and mass
transferring analysis is over a linear straight floor with
convective boundary conditions.

Khalid et al. [11] investigated a case of effects of MHD
human blood going with the flow in porosity of the waist
CNTs and thermal evaluation. *e case is stated and solved
for an analytical solution by the usage of the Laplace
transform method. Khan [12] investigated the Atanga-
na–Baleanu fractional derivative to blood flow in nanofluids
possessing without local and without singular kernels, and it
was utilized to blood of nanofluid. Meyer et al. [13] discussed
the convective warmth transferring fecundity experimen-
tally of watery deferrals for the multiple-walled CNTs
(MWCNTs) flowing horizontal straight tube.

Wang et al. [14, 15] have paid vital interest to the CNTs
with various consequences together with heat transfer,
thermal conductivity, thermal radiation, the porosity of the
medium, and so forth. Qureshi et al. [16] discussed a
fractional model for the concentration system of blood
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ethanol with real data application, where they used the
Atangana–Baleanu–Caputo and the Caputo–Fabrizio frac-
tional operators. Saqib et al. [17] solved the fractional de-
rivative nonsingular and local kernel to enhance heat
transfer in CNTnanofluid over a sloping plate, and the exact
solution expressed analytically for velocity and temperature
profiles by the Laplace transformation technique.

Kalita et al. [18] studied a few applications for a vertical
tube of CNTs and the porosity of the medium (human
blood) flow in the appearance of thermal irradiation and
chemical response of first order. Inside this tube, single-
walled CNT (SWCNT) and MWCNT were replaced with
blood as a based fluid.

*e flow problem and its time-fractional form are given
in Section 2. Preliminaries of the fractional derivatives
definitions are given in Section 3. Moreover, the nonstan-
dard finite difference method (NSFDM) and the nonstan-
dard compact finite difference method (NSCFDM) are given
in Section 4. We developed the weighted average non-
standard compact finite difference method (WANSCFDM)
for the nanofluid CNTs equations in Section 5. Stability
analyses of these schemes are given in Section 6. Numerical

solutions for the nanofluid CNTs equations are graphically
reported in Section 7. Finally, the conclusions are given in
Section 8.

2. The Flow Problem and Its Fractional Form

Consider the unstable transportation inflow of human blood
CNT-based nanofluid through a columnar platelet with
isothermal heat Tinf (ambient heat). *e nanofluid is sup-
posed to be with electric carrying with a regular magnetic
domain B with intensity B0 utilized in the way vertical to the
laminar [11]. *e half-space laminar is included in the
porosity of the medium satiated with human blood as base
nanofluids containing both SWCNT and MWCNT. Let the
based fluid and CNTs be in thermal balance, and no slip
happens between them; at first, at time t � 0, the nanofluid
and the lamina are stable with constant heat Tinf. As in [11],
after a small interval of time t> 0, the plate vibrates with
V � U0H(t)cos(Qt), and the ambient field of temperature
of the plate Tinf rises to Tw. *e temperature and velocity
fields equations are
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with the following boundary and initial conditions:

u(ξ, 0) � 0, θ(ξ, 0) � 0, ∀ξ > 0,

u(0, t) � H(t)cos(Qt), θ(0, t) � 1, for t≥ 0,

u(l, t) � 0, θ(l, t) � 0,∀t> 0,
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where ϕr, (r � 1, 2, . . . , 5) are the constant terms:

2 *e Scientific World Journal



ϕ1 � (1 − ϕ)
2.5

(1 − ϕ) + ϕ
ρc

ρf

 ,

ϕ2 � 1 +(1 − ϕ)
3ϕ σc/σf − 1 

σc/σf + 2  − ϕ σc/σf − 1 

⎧⎨

⎩

⎫⎬

⎭,

ϕ3 �
(1 − ϕ) + ϕ(ρβ)c/(ρβ)f

(1 − ϕ) + ϕ(ρ)c/(ρ)f

 ,

ϕ4 � (1 − ϕ) + ϕ
ρCp 

c

ρCp 
f

, ϕ5 �
knf

kf

,

knf � kf

1 − ϕ + 2ϕ kc/kc − kf ln kc + kf/2kf 

1 − ϕ + 2ϕ kf/kc − kf ln kc + kf/2kf 

⎧⎨

⎩

⎫⎬

⎭.

(5)

*e time-fractional forms of equations (1) and (2) are
given:
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where CPCD
α
t (ξ, t) is the constant proportional Caputo time-

fractional operator [19], for the same boundary and initial
condition (3), where A, C, F, and L are the constants:
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*e following analytical solutions are a special case for
the temperature and velocity fields by taking Qt � 0 which
agree with the impulsive motion of the plate [11],
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(9)

*e parameters that appeared in the model are given in
Table 1.

*e function erfc is a complementary error function; it
is widely used in statistical computations, for instance, where
it is also known as the standard normal cumulative prob-
ability. *e complementary error function is defined as [20]

erfcf(t) � 1 − erff(t). (10)

3. Basic Preliminaries

We are going to reminiscence several important definitions
for fractional derivatives. Caputo’s fractional-order

derivative for 0< α< 1 and Γ be the Euler gamma function of
a differentiable function f(t) and is defined as follows [3]:

C
0 D

α
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1
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t

0
(f
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− α

dτ . (11)

*e Riemann-Liouville integral, where α> 0 and f(t) is
an integrable function, is defined by [3] as
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f(τ)dτ . (12)

*e hybrid fractional operator is a new fractional op-
erator that is defined by combining the proportional
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definition, Caputo, and Riemann-Liouville definitions
(Baleanu et al. [19]):
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where K0(α), K1(α) are the constants ([21]) defined with
respect to time and depending only on the parameter α. As
in [19], consider the kernels as follows:
K0(α) � αS(1− α), K1(α) � (1 − α)Sα, where S is the constant;
in our model, it refers to the value of time in the numerical
solutions.

4. Numerical Methods

4.1. NSFDM. In this part, we introduce several comments
related to the NSFDM, first proposed by Mickens [22]. *e
derivative term of the forward method du/dt is substituted
by u(t + k) − u(t)/k, where k � Δt is the step size and
k⟶ 0; in the Mickens schemes, this term is substituted by
u(t + k) − u(t)/ϕ(k), where ϕ(k) is a continuous function of
step size k, where the function φ(k) satisfies the following
conditions:

ϕ(k) � k + O k
2

 , 0<ϕ(k)< 1, k⟶ 0. (14)

In the centered method, the derivative term d2u/dξ2 is
substituted by u(ξ + h) − 2u(ξ) + u(ξ − h)/(h)2, where h �

Δξ is the step size; in the schemes of Mickens, this term is
substitute by u(ξ + h) − 2u(ξ) + u(ξ − h)/(ψ(h))2, where
ψ(h) � h + O(h2). Let Z and N are the two positive integers,
the mesh points have the coordinates ξi+1 � ξi + h, (i �

0, 1, . . . , N) and tj+1 � tj + k, (j � 0, 1, . . . , Z), and the
values of the solution u(ξ, t) on these grid points are
u(ξi, tj) ≡ u

j
i , where h � l/N and k � T/Z. *e forward

NSFD formula for the first order of the time and the centered
NSFD formula for the second order of space will be
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for more details ([14]).

4.2. NSCFDM. *e expansion of Taylor is considered a very
helpful tool for the derivation of higher-order approxima-
tion to derivatives of all orders. Our advantage in this work is

Table 1: Parameters are mentioned in the model.

Parameter Description
u Dimensionless velocity
θ Dimensionless temperature
t Dimensionless time
ξ Dimensionless special variable
ϕ Solid volume fraction of the nanofluid (0 ≤ ϕ < 1)
vnf Constant kinematic viscosity
Q Frequency of oscillation of the plate
U0 *e characteristics velocity
H(t) *e unit step function
c Casson fluid parameter
M Magnetic parameter
K Permeability parameter
Pr Prandtl number
Gr Grashof number
ρf Density of the based fluid
ρc Density of the solid nanoparticle CNTs
(Cp)f Heat capacitance of the based fluid
(Cp)c Heat capacitance of the solid nanoparticles CNTs
knf *ermal conductivity of the nanofluids
kf *ermal conductivity of the based fluid
kc *ermal conductivity of the solid nanoparticles
σf *e electrical conductivity of the based fluid
βf *ermal expansion coefficient of the based fluid
βc *ermal expansion coefficient of the solid nanoparticles CNTs
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to use the higher-order nonstandard finite difference for-
mula for the spatial discretization of the problems, so as to
create an estimate based on the step size 2ψ(h) through the
Taylor series expansion ([2]),
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A better approximation can be gained by combining
these two assessments using the process called Richardson
extrapolation.We will deduce that the fourth-order centered
nonstandard finite difference scheme for the second de-
rivative will be
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5. WANSCFDM

Now, we will use the WANSCFD scheme to obtain the
discretization formulas for the temperature and velocity
equations. For getting the discretization formulas of

equations (4) and (5), we need to substitute the WANSCFD
method of the centered formula for space (20) into equations
(6) and (7), where ω is the weighting factor:
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Equations (13) and (14) are the WANSCFD schemes for
the temperature and velocity fields. At the case of ω � 1, we
have the forward Euler fractional quadrature scheme, and if
we put ω � 1/2, we get Crank-Nicholson fractional quad-
rature scheme, but at ω � 0, the scheme is called totally
implicit, which have been studied, e.g., in [23].

Our aim in the current study is to introduce numerical
solutions of time-order fractional for equations (6) and (7)
with the new derivative operator (hybrid operator) (Baleanu
et al. [24]), which is discretized as follows:
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Here, CPC stands for constant proportional Caputo
derivative [5]. *e discretization of time-order fractional for
the Riemann-Liouville operator is given by
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*e fraction [tj/k] means the integer part of tj/k and the
parameter p represents the order of approximation which
are dependent on the choice of W

(1− α)
k . *e above expression

is not the only one because there are different expressions of
the weights W

(α)
k [25].*e coefficients W

(α)
k can be evaluated

by the recursive formula:
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where 0< α< 1; by substituting equations (25), (26), and (28)
into equations (21) and (22), we will get the time-order

fractional discretization of hybrid derivative for temperature
and velocity equations:
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where T
j
i is the truncating error. More details for dis-

cretization in fractional calculus can be found in previous
studies such as [24, 25].

6. Stability Analysis

To check the stability of schemes (29) and (30), we applying a
kind of the Jon von Neumann method [22, 24] by con-
sidering systems (4) and (5) can be written in the following
form:
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and the above system (31) can be formed using the
WANSCFD method as follows:
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are the constants, where k � 1, 2, . . . , m − 1. Applying the
von Neumann stability analysis by assuming that
X

j
i � χjeniqk into system (33), where n �

���
− 1

√
and q ∈ R,

divide the deduced equation by χjeniqk and put every

χj+1/χj � η. By using the Euler formulas
enϑ � cos(ϑ) + nsin(ϑ) and e− nϑ � cos(ϑ) − nsin(ϑ) and
making some necessary arrangements, we will have that

η �
2Z1 cos(2qk) + 2Z2 cos(qk) + Z3 − f

m− 1
k�1 χ

− k
zk + s

m− 1
k�1 W

(1− α)
k χ− k

2A1 cos(2qk) + 2A2 cos(qk) + A3 − f
m− 1
k�1 χ

− k
zk

. (35)

*e mode will be stable as long as ‖η‖≤ 1.

*e Scientific World Journal 7



7. Results and Discussion

To clarify the performance of the proposed method for
solving the suggested model, we will study the effects of
various flow parameters (α, ϕ, c, M, K, Pr, and Gr) that are
distinguished in multifigures identifying the temperature
and velocity profiles for blood.*e influences of all the above
parameters are displayed for human blood (SWCNTs and
MWCNTs); the Pr is taken 21 and 25, respectively.

(i) *e desirable results in Figure 1 show the behavior
of the stable and unstable solutions for the velocity
field (22) of CNTs using the WANSCFDM

(ii) *e results in Figure 2 can be carried out from
different values for ϕ into temperature, and ve-
locity profiles (22) and (23) are reported for
SWCNTs and MWCNTs; it is obtained from the
time-fractional type and WANSCFD schemes
discussed above at α � 0.5.

(iii) Figures 3 and 4 show the effect of the solid
volume fraction ϕq, (q � 0, 0.2, 0.4), c � 1,
Pr � 25, K � 1, M � 0.5, and Gr � 0 at t � 0.6 on
SWCNTs and MWCNTs velocity and tempera-
ture profiles when α � 0.5. It is observed that for
SWCNT and MWCNT, there is an inverse re-
lationship between velocity profile and ϕ, where
if ϕ increases, the velocity of nanofluids de-
creases, where the changes in the velocity of

nanofluids play an important part in the pro-
cedures comprising heating and cooling.

(iv) Figure 5 shows the actions of the magnetic number
on the velocity for both single wall and multiwall
CNT, where it is a nondimensional number of the
constant magnetic field that is the cause of Lorentz
force that obverses the nanofluid velocity and
resists motion, with the increasing M and the
velocity decreasing in both cases.

(v) Figure 6 shows the effect of c on the velocity
profile, where increasing in c causes the decrease in
the movement of CNTs because of the lessening in
the density of the momentum frontier layers. It is
spotted that there is a reverse relation between c

and velocity for SWCNTs and MWCNTs, where c

increases and velocity decreases.
(vi) Figures 7 and 8 show the numerical solutions at

different values of α, where the temperature and
velocity in SWCNTs and MWCNTs are disad-
vantages for increasing in values of α of blood

(vii) Table 2 presents the errors (the error� the exact
solution− the approximate solution) and CPU time
when using the WANSCFDM andWASCFDM for
SWCNTat α � 0.8 and c � 1 and at a small value of
ϕ � 0.01

(viii) Table 3 presents the errors when using the
WANSCFDM and WANSFDM in case of
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Figure 1: Behavior of the stable and unstable solutions for the velocity field of CNTs using the WANSCFDM.
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MWCNTat α � 0.8 and c � 1 and at a small value
of ϕ � 0.01

(ix) Tables 4 and 5 provide the numerical results for the
WASCFDM and WANSCFDM at different values

of ω, such that sometimes in using the WASCFD
M, we get best results from the Crank-Nicholson
fractional scheme at ω � 0.5, but for the WANS
CFD method, we get the best results from the
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Figure 3: Velocity distribution of SWCNTs and MWCNTs when t� 1, Pr � 25, Gr � 0, M � 0.5, K � 1, c � 1, α � 0.5, and ω � 0.
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implicit fractional scheme at ω � 0. *e functions
of time and space difference are as follows: φ(k) �

0.001(1 − exp(− k)), ψ(h) � 0.5(sinh(h/ 2)).
(x) Table 6 provides the maximum error between the

numerical solution obtained using the
WANSCFDM and the exact solution using

different values of N, M with ω � 0 and provides
the convergence order of our scheme. Observed
orders of convergence for t component is com-
puted using log(eM/e2M)/log(2), where eM and
e2M are the maximum errors when the problems
are solved with M and 2M grid points [26].
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Figure 5: Velocity distribution of SWCNTs and MWCNTs when t� 0.6, Pr � 21, Gr � 0.7, ϕ � 0.5, K � 1, α � 0.5, ω � 0, and c � 0.1.
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Figure 4: Temperature distribution of SWCNTs and MWCNTs when t� 1, Pr � 25, Gr � 0, M � 0.5, K � 1, α � 0.5, ω � 0, and c � 1.
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Figure 7: Velocity distribution at a different value of α when t� 0.6, Pr � 21, Gr � 0.7, ϕ � 0.5, K� 1, ω � 0, and M� 4.
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Table 2:*e errors and CPU time for theWANSCFDM andWANSFDM for SWCNTs when ω � 0, ϕ � 0.01,Gr � 0, Pr � 25, t � 0.9,K� 1,
M� 0.5, c � 1, and α � 0.8.

ξ WANSCFDM CPU time for WANSCFDM (s) WASCFDM CPU time for WASCFDM (s)
2 2.197 × 10− 5 117.42 9.377 × 10− 3 141.92
2.4 5.614 × 10− 6 125.24 5.095 × 10− 3 151.38
2.8 1.161 × 10− 6 133.07 2.733 × 10− 3 160.84
3.2 2.193 × 10− 7 140.90 1.397 × 10− 3 170.30
3.6 3.3422 × 10− 8 148.73 2.211 × 10− 4 179.76
4 6.853 × 10− 16 156.56 1.971 × 10− 14 189.22

Table 3: *e errors of the WANSCFDM and WANSFDM for
MWCNTs when ω � 0, ϕ � 0.01, Gr � 0, Pr � 25, t � 0.9, K� 1,
M� 0.5, c � 1, and α � 0.8.

ξ WANSCFDM WANSFDM
2 3.4250 × 10− 5 2.5440 × 10− 2

2.4 1.1162 × 10− 5 1.6140 × 10− 2

2.8 2.5435 × 10− 6 9.8587 × 10− 3

3.2 5.0052 × 10− 7 5.5662 × 10− 3

3.6 9.0993 × 10− 8 2.4624 × 10− 3

4 7.2880 × 10− 16 1.2795 × 10− 12

Table 4:*e error of theWASCFDmethod when ϕ � 0.02, Gr � 0,
Pr � 21, t � 0.6, K� 2, M� 0.5, c � 1, and α � 0.9.

ξ ω � 0 ω � 0.5 ω � 1
2 2.9944 × 10− 3 3.0617 × 10− 3 7.3117 × 10− 2

2.4 1.8007 × 10− 3 1.8345 × 10− 3 2.9043 × 10− 2

2.8 9.9935 × 10− 4 1.0104 × 10− 3 2.4336 × 10− 2

3.2 5.1208 × 10− 4 5.0655 × 10− 4 1.5660 × 10− 2

3.6 2.1095 × 10− 4 2.0303 × 10− 4 3.0798 × 10− 2

4 2.8200 × 10− 7 2.8200 × 10− 7 1.3834 × 10− 5

Table 5: *e error of the WANSCFD method when ϕ � 0.02,
Gr � 0, Pr � 25, t � 1, K� 1, M� 0.5, c � 1, and α � 0.9.

ξ ω � 0 ω � 0.5 ω � 1
1.4 5.9641 × 10− 5 4.4824 × 10− 6 6.8929 × 10− 3

1.8 7.8977 × 10− 5 8.9393 × 10− 5 2.2885 × 10− 3

2.2 2.9028 × 10− 5 3.0682 × 10− 5 7.1471 × 10− 3

2.6 7.1437 × 10− 6 7.3531 × 10− 6 2.1694 × 10− 4

3 1.4854 × 10− 6 1.5038 × 10− 6 6.5119 × 10− 5

3.4 2.8676 × 10− 7 2.8799 × 10− 7 1.9461 × 10− 5

3.8 4.4572 × 10− 8 4.4688 × 10− 8 5.7848 × 10− 6

4.2 1.5867 × 10− 17 1.4310 × 10− 17 1.7049 × 10− 6

Table 6: *e e maximum errors and the convergence order for
SWCNTs using WANSCFD at ω � 0.

ξ N� 20, M� 20 N� 20, M� 40 Order
0.6 2.32 09 ×10− 3 6.4443 ×10− 4 1.84
1.2 8.8077 ×10− 3 3.8068 ×10− 3 1.21
1.8 1.2862 ×10− 2 9.5632 ×10− 3 0.42
2.4 1.5655 ×10− 2 7.5276 ×10− 3 1.05
3 0.18286 4.2939 ×10− 2 2.09
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8. Conclusions

*e proportional Caputo hybrid operator is used to frac-
tionalize the model of the nanofluid flow of human blood
CNTs over a vertical plate. *e effects of the magnetic area
and the porosity medium are taken into consideration. *e
numerical results for temperature and velocity fields are
calculated by the method of WANSCFD. Numerical results
are presented in diverse graphs and mentioned with physical
reasonings, and all computations had been run with the use
of Matlab programming. *e main findings extracted are as
follows [27–29]:

(i) *e velocity of nanofluid decreases with the in-
crease in ϕ, magnetic parameter, and permeability
parameter

(ii) *ere is an inverse relationship between the volume
fraction parameter, magnetic parameter, and
Casson fluid parameter

(iii) *e Casson nanofluid flow has the same influence
on temperature and velocity profiles for both single
and multiwalled CNTs

(iv) CPC fractional derivative model can be qualified to
solve the biological properties than the integer
order model

(v) *e numerical methods, highly accurate WANSFD,
WASCFD, and WANSCFD, are used to study the
presented model as shown in tables, so we can
conclude by comparative results that the
WANSCFDM was more accurate.

(vi) *e stability analysis of the proposedWANSCFDM
is construed by a kind of the standard John von
Neumann stability analysis technique

(vii) *e numerical solutions in this study are in good
agreement with the exact solutions
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