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Future scientifc and technological evolution in many areas of applied mathematics and modern physics will necessarily depend
on dealing with complex systems. Such systems are complex in both their composition and behavior, namely, dealing with
complex dynamical systems using diferent types of Dufng equations, such as real Dufng equations and complex Dufng
equations. In this paper, we derive an analytical solution to a complex Dufng equation. We extend the
Krýlov–Bogoliúbov–Mitropólsky method for solving a coupled system of nonlinear oscillators and apply it to solve a generalized
form of a complex Dufng equation.

1. Introduction

Numerous scholars have efectively used the theory of linear
oscillations to analyze and model oscillatory devices.
However, nonlinear behavior can be found in a wide range
of real applications. Tus, scholars from several felds of
science explore nonlinear systems and try to model and
investigate these complicated systems in order to fnd so-
lutions and explanations to some mysterious problems,
whether in the manufacture of small and large machines or
electronic chips. Consequently, nonlinear oscillation is one
of the most popular and widely researched felds due to its
diverse applications in automobiles, sensing, microscale and
nanoscale, fuid and solid interaction, nonlinear oscillations
in plasma physics, bioengineering, and nonlinear oscilla-
tions in optics. Tere are many diferent and various
equations of motion that are used to model several nonlinear
oscillations in diferent physical and engineering systems.
Te Dufng-type equation is one of the most famous and
important equations that succeeded in explaining many
diferent oscillations in diferent engineering, physical sys-
tems, and statistical mechanics.

Te Dufng equation is a nonlinear second-order dif-
ferential equation that describes an oscillator with complex,
sometimes chaotic behavior. Te Dufng equation was
originally the result of Georg Dufng’s systematic study of
nonlinear oscillations. Te behavior of the solution of the
Dufng equation easily changes depending on the initial
value and the polynomial coefcients, and it is difcult to
predict its solution. To clarify the behavior of the solution,
research based mainly on numerical analysis with high-
precision calculations is conducted. Interest in the equa-
tion was later revived with the advent of chaos theory. Since
then, the system has come to be regarded as one of the
prototype systems in chaos theory, and related equations
continue to fnd applications today, e.g., to describe the
rolling of ships. Te Dufng equation reads

€x + δ _x + αx + βx
3

� c cosωt, (1)

where x(t) is the displacement at time t and the term
c cosωt represents a sinusoidal driving force.Te cubic term
describes an asymmetry in the restoring force of a spring that
softens or stifens as it is stretched. One of the most
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remarkable results of dynamical systems theory is the
ubiquitousness of chaotic behavior in nonlinear systems.
Deterministic chaos has been observed both inmathematical
models and in real physical systems. Although, from the
point of view of the applications, chaotic behavior can have
positive efects, improving, for example, mixing processes in
chemical reactions, in other situations, such behavior can
have harmful consequences, as is the case in diferent felds
of engineering: aerodynamics, electronic circuits, and
magnetic confnement of plasmas.

Some recent works on complex chaos have focused on
solving complex nonlinear diferential equations, complex
chaos control and synchronization, and so on. For example,
Cveticanin developed an approximate analytic approach for
solving strong nonlinear diferential equations of the
Dufng-type with a complex-valued function. Furthermore,
excellent agreement is found between the analytic and
numerical results.

In [1], authors considered the following complex Dufng
equation for modelling complex signal detection:

€z + k _z − z + εz|z|
2

� c exp (
���
−1

√
t), (2)

where z � x +
���
−1

√
y is a complex function, k, ε, and c≥ 0 are

the real parameters, and the dots are the time derivatives. Its
dynamical behavior was analyzed. Based on the proposed
(2), they constructed a complex chaotic oscillator detection
system to detect complex signals in noise. Tey investigated
the infuence of noise on the detection system and the
detection performance of the system for complex signals.

In their work [2], the authors considered a complex
Dufng system subjected to nonstationary random excita-
tion of the form

€z + 2ωξ _z + ω2
z + ϵz|z|

2
� αF(t), (3)

where z � z(t) is a complex function, α � 1 +
���
−1

√
, ω, ξ

represent the natural frequency and damping coefcient,
respectively, ϵ is the small perturbation parameter and
nonlinearity strength, and F(t) is a random function. Tis
equation with F(t) � 0 has connection to the complex
nonlinear Schrodinger equation which appears in many
important felds of physics. Authors in [2] investigated the
mean square response of a complex Dufng system sub-
jected to nonstationary random excitation using the Wie-
ner–Hermite expansion method combining the
perturbation technique.

In 2001, Mahmoud et al. [3] presented the following
complex Dufng equation:

€z − αz + εz|z|
2

� c exp (
���
−1

√
ωt). (4)

Based on the work in [3], Li et al. [4] studied the problem
of chaos control for a complex Dufng oscillation system. In
general, few works are devoted to the complex Dufng
equation.

In this paper, we will consider the following complex
Dufng equation:

€z + 2ε _z + αz + βz|z|
2

+ cz
3

� f1(t) +
���
−1

√
f2(t), z � z(t).

(5)

To our best knowledge, no work has been devoted to
seeking analytical solutions to the complex Dufng equa-
tion.Tis is precisely the main objective of the present paper.

2. Undamped and Unforced Complex Duffing
Equation

Let us consider the i.v.p.

€z + αz + βz|z|
2

+ cz
3

� 0, z(0) � x0 +
���
−1

√
y0 an d z′(0) � _x0 +

���
−1

√
_y0. (6)

Let

z(t) � x(t) +
���
−1

√
y(t). (7)

Ten,

x″(t) + x(t) α +(β − 3c)y(t)
2

􏼐 􏼑 +(β + c)x(t)
3

� 0,

y″(t) + y(t) α +(β − 3c)x(t)
2

􏼐 􏼑 +(β + c)y(t)
3

� 0.
(8)

Assume that x � x(t) and y � y(t) obey some Dufng
equations:

€x + px + qx
3

� 0, €y +ry + sy
3

� 0. (9)

Ten,

x(t) α − p +(β − 3c)y(t)
2

􏼐 􏼑 + x(t)
3
(β + c − q) � 0,

(α − r)y(t) + y(t)
3
(β + c − s) +(β − 3c)x(t)

2
y(t) � 0.

(10)

Equating to zero, the coefcients of x(t) and y(t) in (10)
give

p � α, q �
4β
3

, r � α, s �
4β
3
an d c �

β
3

. (11)

Tus,

€x + αx +
4β
3

x
3

� 0, x(0) � x0, x′(0) � _x0,

€y + αy +
4β
3

y
3

� 0, y(0) � y0, y′(0) � _y0.

(12)

On the other hand, the exact solution to the i.v.p.
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€u + Au + Bu
3

� 0, u(0) � u0 an d u′(0) � _u0 (13)

is expressed as

u(t) � u0cn(
��
ω

√
t, m)

+
_u0��
ω

√ sn(
��
ω

√
t, m)dn(

��
ω

√
t, m)/1 + b sn2(

��
ω

√
t, m),

(14)

where

b �
B(1 − 2m)u

2
0

2A
− m,

ω �
A

1 − 2m
,

m �
1
2

1 ±
A

����������������

A + Bu
2
0􏼐 􏼑

2
+ 2B _u

2
0

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(15)

3. Solution to the General Complex Duffing
Equation by Means of the
Krýlov–Bogoliúbov–Mitropólsky Method

Let us consider the i.v.p.

€z + 2ε _z + αz + βz|z|
2

+ cz
3

� f1(t) +
���
−1

√
f2(t), z(0) � z0 and z′(0) � _z0.

(16)

Here, α, β, and c are the real numbers. f1(t) and f2(t)

are the real-valued functions, and z(t) � x(t) +
���
−1

√
y(t).

Te system (16) may be written in the form

€x + αx + 2ε _x +(β − 3c)xy
2

+(β + c)x
3

− f1(t) � 0,

€y + αy + 2ε _y +(β − 3c)x
2
y +(β + c)y

3
− f2(t) � 0.

⎧⎨

⎩

(17)

Te initial conditions are

x(0) � x0, y(0) � y0, x′(0) � _x0, y′(0) � _y0. (18)

Let us consider the following p-problem:

€x + αx + p 2ε _x +(β − 3c)xy
2

+(β + c)x
3

− f1(t)􏽨 􏽩 � 0,

€y + αy + p 2ε _y +(β − 3c)x
2
y +(β + c)y

3
− f2(t)􏽨 􏽩 � 0.

⎧⎪⎨

⎪⎩

(19)

Te solution is assumed to be in the ansatz form

x(t) � a(t) cos (ψ(t)) + 􏽘
N

n�1
p

n
vn(a(t), b(t),ψ(t),Ψ(t)),

y(t) � b(t) cos (Ψ(t)) + 􏽘
N

n�1
p

n
wn(a(t), b(t),ψ(t),Ψ(t)),

a′(t) � 􏽘
N

n�1
p

n
An(a(t)),

ψ′(t) �
��
α

√
+ 􏽘

N

n�1
p

nφn(a(t)),

b′(t) � 􏽘
N

n�1
p

n
Bn(b(t)),

Ψ′(t) �
��
α

√
+ 􏽘

N

n�1
p

nϕn(b(t)).

(20)

We choose the solutions in order to avoid the presence of
the so-called secularity terms. Solving the odes gives

φ1(a) �
3(β + c) + 2b

2
(β − 3c)

8
��
α

√ a
2
, ϕ1(a) �

(5β − 3c)

8
��
α

√ a
2
,

A1(a) � −aε, B1(b) � −bε,

v1(a,ψ,Ψ) �
1

32α
a
3
(β + c)cos (3ψ) − 4ab

2
(β − 3c)cos (2Ψ)(2ψ sin(ψ) + cos(ψ)) + 32f1(t)􏼐 􏼑,

w1(b,ψ,Ψ) �
1

32α
−4a

2
b(β − 3c)cos (2ψ)(2Ψ sin(Ψ) + cos(Ψ)) + b

3
(β + c)cos (3Ψ) + 32f2(t)􏼐 􏼑,

_a � −aεp, _b � −bεp,

_ψ �
��
α

√
+

p

8
��
α

√ 3a
2β + 3a

2
c + 2b

2β − 6b
2
c􏼐 􏼑, _Ψ �

��
α

√
+

p

8
��
α

√ 2a
2β − 6a

2
c + 3b

2β + 3b
2
c􏼐 􏼑.

(21)

Te approximate analytical solution is obtained by let-
ting p � 1. It reads

Te Scientifc World Journal 3



x(t) � a cos(ψ) +
1

32α
a
3
(β + c)cos (3ψ) − 4ab

2
(β − 3c)cos (2Ψ)(2ψ sin(ψ) + cos(ψ)) + 32f1(t)􏼐 􏼑,

y(t) � b cos(Ψ) +
1

32α
−4a

2
b(β − 3c)cos (2ψ)(2Ψ sin(Ψ) + cos(Ψ)) + b

3
(β + c)cos (3Ψ) + 32f2(t)􏼐 􏼑.

(22)

Te expressions fora, b,ψ, an dΨ are

a � a(t) � c0 exp (−εt), b � b(t) � d0 exp (−εt),

ψ(t) �
1

8
��
α

√
exp (−εt)sinh (εt) 3c

2
0(β + c) + 2d

2
0(β − 3c)􏼐 􏼑

ε
+ 8αt⎛⎝ ⎞⎠ + c1,

Ψ(t) �
1

8
��
α

√
exp (−εt)sinh (εt) 2c

2
0(β − 3c) + 3d

2
0(β + c)􏼐 􏼑

ε
+ 8αt⎛⎝ ⎞⎠ + d1.

(23)

Te constants c0, c1, d0, and d1 are obtained from the
initial conditions.

Te obtained solution is valid for α> 0. Let α< 0 for the
sake of simplicity; we will consider only the case when c � 0.
Let us change α to −α. We are given that

€z + 2ε _z − αz + βz|z|
2

� f1(t) +
���
−1

√
f2(t), z(0) � z0an d z′(0) � _z0. (24)

In the case when ε � 0 and f1(t) � f2(t) ≡ 0, direct
calculations show that the following function will be the
exact solution to €z − αz + εz|z|2 � 0:

z(t) � c0dn

���������

ε c
2
0 + d

2
0􏼐 􏼑

2

􏽳

t + c1|
2 α − εc20 − εd2

0􏼐 􏼑

ε c
2
0 + d

2
0􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠

+
���
−1

√
d0dn

���������

ε c
2
0 + d

2
0􏼐 􏼑

2

􏽳

t + d1|
2 α − εc20 − εd2

0􏼐 􏼑

ε c
2
0 + d

2
0􏼐 􏼑

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(25)

Te constants c0, c1, d0, and d1 are determined from the
initial conditions:

z(0) � x0 +
���
−1

√
y0 an d z′(0) � _x0 +

���
−1

√
_y0. (26)

Let us solve the general case. Assume the solution in the
ansatz form:

z(t) � r + x(t) +
���
−1

√
y(t), r

2
�
α
β

. (27)

Ten,

€x + 2αx + 2ε _x + 3βrx
2

+ βry
2

+ βx
3

+ βxy
2

� f1(t),

€y + 2ε _y + 2βrxy + βx
2
y + βy

3
� f2(t).

(28)

We may solve the above system using the KBM method.
To this end, we consider the following p-problem:

€x + 2αx + p 2ε _x + 3βrx
2

+ βry
2

+ βx
3

+ βxy
2

− f1(t)􏽨 􏽩 � 0,

€y + y + p −y + 2ε _y + 2βrxy + βx
2
y + βy

3
− f2(t)􏽨 􏽩 � 0.

(29)

Proceeding in the same way as we did in the frst part, we
obtain the following frst-order approximation:
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x(t) �
e

− 3εt

64α

βc
3
0 cos (3ψ) − 4βc0d

2
0 cos (2ϕ)(2ψ sin(ψ) + cos(ψ))

+16βre
εt

c
2
0(cos (2ψ) − 3) − 2d

2
0cos

2
(ϕ)􏼐 􏼑 + 64αc0e

2εt cos(ψ)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ +

1
2α

f1(t),

y(t) �
1
32

d0e
− 3εt

−8βc0(ϕ sin(ϕ) + cos(ϕ)) c0 cos (2ψ) + 4re
εt cos(ψ)􏼐 􏼑

+βd
2
0 cos (3ϕ) + 32e

2εt cos(ϕ)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ + f2(t).

(30)

Here,

ψ � ψ(t) �
e

− 2εt

32
��
α

√
ε

4ε 8
��
α

√
c1e

2εt
+

�
2

√
t βd

2
0 + 8αe

2εt
􏼐 􏼑􏼐 􏼑 + 3

�
2

√
βc

2
0 e

2εt
− 1􏼐 􏼑􏼐 􏼑,

ϕ � ϕ(t) �
1
16

4βc
2
0te

− 2εt
+
βd

2
1 3 − 3e

− 2εt
􏼐 􏼑

ε
+ 16d1 + 8t⎛⎝ ⎞⎠.

(31)

Te constants c0, c1, d0, and d1 are determined from the
initial conditions:

z(0) � x0 +
���
−1

√
y0 an d z′(0) � _x0 +

���
−1

√
_y0. (32)

4. Applications

Let us check the accuracy of the obtained results in concrete
examples.

Example 1. Let

z″(t) + 3z(t) + 0.04z′(t) + z(t)|z(t)|
2

+ 0.2 z(t)
∗

( 􏼁
3

� F(t),

F(t) ≔ � 0.1cn(0.1t|0.9) +(0. + 0.1i)sn(0.1t|0.9).

z(0) � 0∧z′(0) � 0.

(33)

See Figures 1–3.

Example 2. Let

z
.

+ 2z + 0.2 _z + z|z|
2

+ 0.2z
3

� 0.1 cos (0.2t)

− i cos (0.1t)∧z(0)

� 0∧z′(0) � 0.

(34)

Te approximate analytical solution reads

zapprox(t) � x(t) + iy(t), (35)

where

x � e
− 0.3t cos( (2 Ψ( )(6.23E − 6ψ sin (ψ) + 3.15E − 6 cos (ψ)􏼑

−2.4E − 6 cos (3 ψ( 􏼁 − 0.0501254e
− 0.1t cos ψ( 􏼁 + 0.05 cos (0.2t􏼑

y � e
− 0.3t

( cos (2 ψ( 􏼁(−6.3E − 6Ψ sin Ψ( ) − 3.15E − 6 cos Ψ( )􏼑

+2. − 4E − 6 cos (3 Ψ( ) + 0.0501254e
− 0.1t cos Ψ( ) − 0.05 cos (0.1t􏼑

ψ � 1.41421t − 0.00488578e
− 0.2t

− 0.0656304.

Ψ � 1.41421t − 0.00488578e
− 0.2t

− 0.0656304.

(36)
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 (z
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–0.04
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Figure 1: Real part compared with the Runge–Kutta numerical solution.
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 (t
))
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Figure 2: Imaginary part compared with the Runge–Kutta numerical solution.
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Figure 3: Absolute value compared with the Runge–Kutta numerical solution.
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Figure 4: Real part compared with the Runge–Kutta numerical solution.
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Figure 5: Imaginary part compared with the Runge–Kutta numerical solution.
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Figure 6: Absolute value |z| compared with the Runge–Kutta numerical solution.
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See Figures 4–6.

5. Conclusions

Te nonlinear complex Dufng oscillators and many related
oscillators, including the unforced undamped complex
Dufng oscillator (CDO), the unforced damped CDO, and
the forced damped CDO, have been analyzed using the
ansatz method in order to fnd some approximations. For
the unforced undamped CDO, the exact solution of the
standard Dufng oscillator (DO) with the ansatz method
was used for deriving an analytical approximation in terms
of the Jacobi elliptic function. Also, the unforced damped
CDO has been analyzed using the ansatz method, and with
the help of the approximation of the unforced damped DO,
an approximation in the form of a trigonometric form was
obtained. Moreover, the forced damped CDO has been
examined via the Krýlov–Bogoliúbov–Mitropólsky method
(KBM), and a new analytical approximation in the form of
a trigonometric formula has been derived. We demonstrated
the way we may use the KBM in order to solve coupled
systems of nonlinear oscillators. Other works related to
nonlinear oscillators may be found in [5–13].
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