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The Duffing oscillator of a system with strong quadratic damping is considered. We give an elementary approximate analytical
solution to this oscillator in terms of exponential and trigonometric functions. We compare the analytical approximant with the
Runge-Kutta numerical solution. We also solve the oscillator by menas of He’s homotopy method and the famous Kry-
lov-Bogoliubov-Mitropolsky method. The approximant allows estimating the points at which the solution crosses the

horizontal axis.

1. Introduction

In the standard textbooks, usually the systems with linear
damping are considered. Due to their simplicity and the ex-
istence of an exact analytical solution, the problem is discussed
in details. Unfortunately, in reality, the systems and damping
are usually not linear. In recent times, a number of articles have
appeared in the literature which deal with the phenomenon of a
linear oscillator subject to a quadratic damping force [1-7].
Most elementary textbooks deal with viscous damping for the
obvious reason that it involves a linear dependance on the
velocity of the oscillator and presents the simplest situation
where an exact analytical treatment is possible. In general, this
involves the analysis of a second-order ordinary differential
equation (ODE) of the Liénard type, namely,

X+ fx)x+g(x)=0. (1)

Nonlinear equations of motion such as this are seldom
addressed in intermediate instruction in classical dynamics;
this one is problematic because it cannot be solved in terms
of elementary functions. The principal feature associated

with quadratic damping is a discontinuous jump of the
damping force in the equation of motion whenever the
velocity vanishes such that the frictional force always op-
poses the motion. In this paper, we will consider the fol-
lowing quadratically damped Dufling oscillator (f (x) = ¢|x|
and g(x) = ax + Bx°):

% +ex|x| +ax+px’ =0, x(0)=x,andx’ (0) = %,. (2)

The quadratically damped oscillator (2) is never critically
damped or overdamped, and that to first order in the
damping constant, the oscillation frequency is identical to
the natural frequency. In the abscence of damping, we obtain
the Duffing equation

X +ax+ ﬁx3 =0, x(0)=x,andx' (0) = x,. (3)

Equation (3) admits the exact analytical solution [8].
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A =(a+pxl) +2pxl#0.

2. Solution Procedure

In what follows, we will assume that if x = x (¢) is a solution
to the i.v.p. (2), then
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tEg;x(ﬂ::O. (6)

Our aim is to give an approximate analytical solution to
the i.v.p. (2). The residual function R = R(¢) is defined as

follows:
R(t) = % +ex]x] + ax + px’ = & + O0ex” + ax + fx°, 0= +1.

(7)

2.1. First Approach. The ansatz is assumed as

x(t) = cpe ™ cos( Vot + cos_1<ﬁ) ) (8)

Co

We have

1 _ _
R(t) ==, cos(B)e p'(4oc + 3ﬁc§e Py 4pt - 4w)

4

1 1
+ Zﬂcg cos (30)e” " + 56(2)68 cos(26)(p2 - w)e_zpt (9)

1
+cldep/wsin (20)e” " + Ecg&(pz + w)e_z’” +2copVwsin(B)e ', 8= +1.

2

Since for small ¢, e~ %" = 1, we will choose the value of w

so that
4o + 3ﬁc(2, +4p” — 4w = 0. (10)

Then,

(11)

3
w=(x+Zﬂc§+p2.

The value of ¢, is found from the initial condition
x'(0) = x,, and it reads

= *

In the case when § — 0, we define

=t

The number p is a free parameter that is chosen in order
to minimize the residual error.

2.2. Second Approach

2.2.1. He’s Homotopy Method. We will approximate the
expression ex|x| by means of the formula

eX|X| = rgx + 1% 41,5, |X|<M, (14)

3ﬁx§ —da—4p’ £ \/16(& + pz)2 + 3ﬁ(8x§(0¢ + 3p2) + 3ﬁx3 +32px0x, + 169&3)

(12)
68
where
. . (V3 -3)M
xé(a + 2p2) + 2pxgx, + xé (13) ro = T3ve g
a+p’ '
V2/3(8+/3 -9)
r=———"g¢, (15)
3IM
4+/2/3(24/3 - 3)
ry = 3 e
3M
The homotopy equation is defined as
H(x,p)=x +0cx+p[r0x+r1x3+r23&5+ﬁx3]. (16)

Following He’s approach [9-16], we assume the solution
in the ansatz form
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x(t) = exp (—upt) (ry cos(wt + B) + py, (wt + B)), wherew = \/a + pw;.

Let T = wt + B. Then,

—2\/§r0(8r0 +5a°rir, + 6argr, — 16y)sin(‘r) +

1 4r0(3r3/3 - 4w1)cos(r) +
H(x,p)=1—6 525 3/2_3 3 pto
(Sa rors + 4o rorl)sin(ST) +4ryB cos(371) -
045/21'(5)1’2 sin(57) + 16ay, (1) + 1604)/”1 (7).

We define Then,

3,2
(19)

1
U= I (Sro + S(xzrgrz + 60cr§r1).

H(x,p) = (SaS/ngrz + 4a3/2r3r1)sin(3r) + 41'(3)[3 cos (37)

- 0(5/21’87‘2 sin (57) + 16ay, (7) + 16“)/”1 (0.

Solving the ode H (x, p) = 0 for y, = y, (1) gives

12r3ﬁ cos (37) + 3a3/2r3(5(xr§r2 + 4r1)sin(3r) - ocS/ngrz sin (57)

384«

)/1(7):

The first-order homotopy approximation will then be

384a sin 3w (t)) — a5/2r3r2 sin (5w (t))

3 1
w(t) = \/(X+—Zﬁr(2)t +B, x(t) = exp<_E (81’0 + 60”,11,(2) n 50627’21’g)t).

1 12r(3)ﬂ cos(3w(t)) + 3&3/21'3(5&1’51'2 + 4r1)
rocos(wO) + , Where

(17)

(18)

(20)

(21)

(22)

The constants 7, and r, are determined from the initial  The Krylov-Bogoliubov-Mitropolsky Method (KBM) is a

conditions technique to give an approximate analytical solution to the
weakly nonlinear second-order equation
50 =% (23) :
x (0) = X, du du
0 ?+w0u=£f M’E . (24)
2.3. Third Approach When ¢ = 0, the solution of (24) may be expressed as
u =a cos(w, +0), (25)

2.3.1. The Krylov-Bogoliubov-Mitropolsky Method (KBM).



where a and 0 are constants. For the case when € > 0 is small,
Krylov and Bogoliubov (1947) assumed that the solution is
still given by (25) but with time-varying a and 6 and subject
to the condition

du

ym (26)

= —awysin ¢, ¢ = wyt + 0.

In the general case, the solution is assumed in the ansatz
form

N
u=acosy+ Z 'u,(a, ) + O(sN”),

n=1

(27)
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where each u,, is a periodic function of y with a period 27
and a and y are assumed to vary with time according to

da &, +
d—?:n;s An(a)+O(£N 1),

(28)
dy

N
-t Z &y, (a) + O(£N+1).
n=1

In order to uniquely determine A, and y,, we require
that no u, contains cos y. Let N = 3. Then,

du . .
priaa sin(y) +(w0u1)v, —ay, sin(y) + A, cos(w))e

+(A1u1’u + wolly y, + Yy, — ay, sin(y) + A, cos (1//))82

. 3
+(A2u1,u + Aty g + Wollsy + Yoty + Yyt — ayssin(y) + Ay cos(w))s e,

d*u .
e = —awé cos (y) +(wé”1,w - 2ay,w, cos (y) — 2A, w, sm(l//))s
2 . .
2A1Wgly gy + 29 Wolhy yy, + Wolhy,yy, + SIN(Y) (maA ¥, — 24,9, —2A,w,)+ . (29)
+ €
cos(l//)(AlA1 - a(21//2a)0 + 1//?))
i 2
AjAjuy , + Aluy g, + 2A11//1u1w + 2A1wou2w + 2A2w0u1,av,+
. 2 2
AWty y + 29,00Uy gy + 2V @0U; gy + YUy WUz gyt 3
+ e+ -
sin () (—adA, ¥, —aA v, — 24y, - 2A,y, - 2A;0))+
cos(l//)(—Za%wo —2ay,y, + A)A, + A1A2)
Here, Let us consider the i.v.p.
¥ =y (b),
ou,
2,y W)
*u,
Uy yy = —
2yy av/2
(30)
oy,
Lay = o , etc.
X 4+rgX+7 % +7,% +ax+px =0, x(0) = xp,x' (0) = %, for0<t<T. (31)
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The values for ry, r,, and r, are given by (15). Using
KBM, we obtain the following odes for determining a = a (t)

and v = y (1)

o1 3£(ﬁso - 2a251) 5 e(—195ﬁ250 —96a’Bs; — 99°a’ %557 — 320a’s, + 16020(3825352) 5
a=—-¢sya+ a + 5 a
2 16a 1024«
£(1898%s, + 1170’} + 7200° Bs, + 3700’ sgsy5,) ,  &5,(1701B° + 17820°€’s] + 21700°es,5, )
- a’ - a
8192« 73728
29875a'e’s,s5 11 346250°¢’s) 13
- a - a”.
196608 589824
(32)
. Ba—é&s) 3ﬁ(80¢ - 8253) »  —158% = 57aPe’sys; + 9’ st + 40a’e7s,s, 4
= + o ¢t 372 a
8/ 64a 2560
3(41[33 — 223’ Be’s] — 3100 Be’sy s, + 4000c5£25152) p (33)
+ a
8192a”>
a3/25252(—471ﬁ51 + 2200a252) 8 13091045/2&:253 10
24576 196608
oo (B -3Mm
0 Ve
2/3(8v3 -9
, eV -9) »
3IM
4v2/3(2v3 -3 .
) = ( \ﬁ— ), where M = max |x(t)].
3IM 0<t<T

The expression for the KBM solution is

x =x(t) =a cos(y)

30720 - 2016a’af” + 1251a" B’ — 576aBe’s; + 23040 > 595, ~

a’ 3456(120(2/3525051 + 2592a20c4825f - 477(140(3/3525% - 4756a4oc3/3825052+ cos (3y)

40800140c5£25152 + 321a6oc4ﬁezsls2 + 2000a60c6szs§ +1300a°a’ szs§

983044’

884736afs, — 1741824a° s, + 1179648’ s, + 884736a"a’ s, —

943488a*af’s, — 221184’ ¢”s;s, + 5806084’ sys:+

a’e| 383616a'a’e’s] + 1474560a’a’s, + 1787904a’ a’ s, — 257184a°a’*s,~ |sin (3y)

552960a’a e sys, + 2572800a" a* 55,5, + 1939680a°a’e* 55, +

2790400a°a’e*sys5 + 2912400a°a’e’s, 53 + 1226125a' o s
377487360
. —144ﬁ3 + 3024(x3ﬁ£25f + 2672¢x3ﬁ825052 —38400°¢’s, s,
a cos (7y)
+7548a2(x4/3825152 - 5200a2¢x6ezs§ +285a%a’ szsi

4718592a°
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L [ 14408, +1728a’¢’s] + 30720’ Bs, — 1362a’ af’s, + 90400’ sysy5,
a'e 65 sin(7y)

+16530a°a’e’s}s, + 9200a”a’e’sys; + 30065a" a’e’s, 55 + 15900a’a’e’s)

47185924

(cz9oc£252(2268ﬁs1 — 400, + 2477a20cﬁ52))c0s €1

7864320
—4508” + 954a°€”s" + 7844’55, + 3417aa’e’s s, 3
a’es, sin (9y) (35)
N + 2580a40c582$§
4718592/
(1177a11a2/3525§)cos(11w) ((/'111067/2835;(356451 + 4915a2(x52))sin(11q/)
- 47185920 - 113246208
(1175a13a9/283s;)sin(131//)
792723456 '

The odes (32) and (33) may be solved numerically.  solutions, we may limit ourselves to the following approx-

However, since we are interested in obtaining analytical  imate solutions:

2447
\/4r0er°t + 3ocr1A2(er°t - 1)
(36)

2( rot
w:w(t):\/at-l_B_L rt+10g er0t+w )
2077, \° 4r,

1
x(t):coe‘/”cos(f(m cos_l<?>), f)=0. (37)

a=a(t) =

where the values for ry, 1, and r, are given by (15). The
0

constants A and B are determined from the initial

conditions. We have

2.4. Fourth Approach. We assume the ansatz

1
R(t) = 250 exp (=3pt)

(462‘”04 +3coB + 4 p* — 4" f! (t)z)cos(e) +

2c,e” Sep® + co cos (36) + 2¢,e Se f' (t)* + 2¢,e” e cos(ZG)(p2 -f (t)z) + s (38)
4™ (2pf' (t) - f" (£))sin (6) + 4coe™ ep f' (t)sin (26)
0= +1
We will choose the function f = f(t) so that
(39)

4 a +3coB + 4e pt — 4 f1 (1) =0, f'(t)>0.
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Then,
f (&) =F(t)-F(0),
\/4(oc + pz) +3Bcie
F(t) =
2 ﬁcop\/(4(oc +p?)e IBcy ) + 3 (40)
4(0c+p2)62pt S 2\ja+pie”
\/Bco ——————+3 -2\a+p €sinh | —=——— ] |.
Beo V3 /Beo
The value of ¢, is found from the initial condition
x' (0) = x,, and it reads
3Bx; — 4o —4p° + \j16p4 +8p” (4 + 9Bxg ) + (40 + 3ﬁx§)2 + 96Bpxyx, + 48B%] (41)

==

In the case when § — 0, we define

2 2 . .2

1 xo(a+3 + 4pxoxy + 2X,

o=+ \[ x(2)+ 0( P) /;00 o) (42)
2 lac+ 7|

3. Analysis and Discussion

In this section, we will compare the accuracy of the solution
methods using the different approaches described in the
previous section.

6B

Example 1. Let us consider the i.v.p.

X +0.248]% +x+2x° =0, x(0)=0,x"(0)=01 (43)
The approximate analytical solution using the first ap-
proach (see formula (8)) for p = 0.007191 is

—0.007191¢

Xapprox (t) = 0.0992665¢ sin (1.00739¢). (44)

It is shown in Figure 1.
The solution obtained by means of He’s homotopy
method (see Figure 2) equals

—0.0000427888 sin (3.00025 (t + 7.85294)) — 3.49¢ —

- 0.0089515¢
Xpe(B) =€

6 sin (5.00041 (t + 7.85294)) — 0.0999944 cos (1.00008 (t + 7.85294)) . (45)

—1.03e — 6 cos(3.00025 (t + 7.85294)) — 6.9¢ — 8 cos(5.00041 (t + 7.85294))

Using the KBM, we obtained the following solution
(Figure 3):
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~1.89144 log(0.850343 — 1.¢> %)+

6.736e — 9 sin( ) +(1.32e - 6 — 1.43e — 6"

(4.2634 + 5.942121) — 4.99347¢

—sin(-1.13486 log(0.850343 — 1.e>**%%") 1 (2.55804 + 3.56527i) — 2.99608¢ )

(46)

~1.13486 log(0.850343 — 1.¢> %)+
(1' le — 6200345092t _ g5, 7)cos )

(2.55804 + 3.56527i) — 2.99608¢

(0.00844854 — 0.0198709¢%00345092¢ . 0.011684130'00690184t),

cos(—0.378287 log(0.850343 — 1.e"****%*) + (0.85268 + 1.18842i) — 0.998695¢ )
V0.0922354¢" %7 — 0.0784317(0.850343 — e°-°°345°92f)2

xgpwm (1) =

Now, using the fourth approach, we get the solution (see
Figure 4)

Xtrig (£) = —0.0992665¢ 007"

69.541V4.00021 + 0.0591231¢ "%

_ . 47
4.8811e0'0°719t\/202.97760'0143& +3 \/4.00021 +0.0591231e” % sinh~'(8.22551¢**7™) “47)

sin
0.01478 + 1.e*014%

+249.895

Example 2. Let us consider the i.v.p. The approximate analytical solution for p = 0.0084 using

the fourth h i
X +0.2%]%| +x+10x> =0, x(0)=0, x' (0)=0.1. (48) ¢ fourth approach 1s

Xapprox (1) =

59.5231

2.067 — V4.0003 + 0.280334¢ **"7" — (49)

0.097¢ %084 giny
6.672—

0.611395| (00084 \/42.81e°'°17t +3 \/4.0003 +0.28¢” """ sinh™(3.778" %)
0.28 + 4.0003¢"”*

. 3 T
It is shown in Figure 5. sin X = X — §x3 for |x| Sg, (51)

The obtained results may be applied to solve the pen-

dulum equation with quadratic damping and then, we replace i.v.p. (43) with the iv.p.

.. . . . . 2
£ redlil+@sinx=0, x(0)=xp X (0= (50 g iiretx2CaP =0, x(0)=x0 ¥ (0) = %
19
Indeed, we may use the approximation (52)
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P =
0007191 | [=» |+| & ¥| =]

Error=0.0076191

FiGgure 1: Comparison between the analytical approximant (44) (formula (8)) and the Runge-Kutta numerical solution for the i.v.p (43).

ErrorHe=0.0170689
0.10

0.05

-0.05

FIGURE 2: He’s homotopy method-error comparison with the Runge-Kutta numerical solution.

ErrorKBM=0.00392463
0.10

0.05

-0.05

FIGURE 3: KBM-error comparison with the Runge-Kutta numerical solution.

P G
0.00719 | = » [+ [&|¥ =
0.10 ErrorF4=0.000887871
0.05

T

FIGURE 4: Method using the fourth approach-error comparison with the Runge-Kutta numerical solution.
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FIGUure 5: Comparison between the analytical approximant (49) and the Runge-Kutta numerical solution for the i.v.p (48).

4. Conclusions

We have obtained approximate analytical solutions to the
quadratically damped Duffing oscillator equation by means
of an elementary approach. We introduced a p—parameter
technique that allowed us to optimize the obtained solution.
The results are also valid for the linear quadratically damped
oscillator X + ex[x| + ax = 0. A similar approach may be
employed to study the quadratically damped cubic-quintic
oscillator % + ex|x| + ax + fx* + yx®> = 0. Also, a more
general quadratically damped oscillator X + ex|x| + h(x) = 0
may be solved for any odd parity function h(x). In future
work, we will study quadratically damped forced oscillators
having the form X + ex|x| + h(x) = F(t) for any continuous
functions h(x) and F(t).
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