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�e impact of climate-friendly agricultural practices on rural household productivity is not well understood, and the available
evidence is mainly qualitative. �erefore, this study investigated the impact of the introduction of Climate-Smart Agriculture
Practices (CSA, i.e., row planting) on the productivity of improved wheat producers of rural farmer households in MishaWoreda,
the southern region of Ethiopia. For this study, we used the data collected from 202 randomly selected wheat producers through a
structured questionnaire. �e data were analyzed using propensity score matching (PSM) and the generalized Roy model of the
semiparametric local instrument variable (LIV) method. �e results of the PSM estimation showed that wheat row planting has a
positive and signi�cant impact on productivity. �e study found that farmers who sowed wheat in a row produced 1368 kg of
wheat per hectare compared to the counterfactual scenario. To further validate whether this result is a pure e�ect of the row
planting technique, we performed a covariate balance test that con�rmed the insensitivity of the treatment e�ect estimates to
unobserved selection bias. In addition, the Marginal Treatment E�ect (MTE) model also showed that the marginal utility of row
planting adoption increases the propensity of farmers to adapt climate-smart agriculture technologies. �erefore, by increasing
the productivity of farm households, the expansion of technology will signi�cantly contribute to farmers’ resilience to the harmful
e�ects of climate change and welfare.

1. Introduction

Climate change is becoming a growing challenge to main-
taining global food security that primarily a�ects the live-
lihoods of rural households in developing countries [1–3].
Maintaining food security and improving the livelihoods of
rural households in Ethiopia is a major challenge resulting
from rapid population growth, recurring droughts, land
degradation, increasing rural-urban migration, low agri-
cultural production, decreasing land area per capita, and
backward agricultural technology [2, 4]. According to the
World Food program [4], 31 per cent of households in
Ethiopia are calorie-de�cient (<2550 kcal per adult, equiv-
alent per day), with high levels of insecurity in rural areas (33
per cent of households) high. �e Ethiopian economy de-
pends on agriculture for the generation of jobs, food, sources

of foreign exchange, and supplies for the local industry.
Despite this signi�cant reliance on the sector, agriculture
lags behind, meaning it is rain-fed, and farmers are small-
holders with traditional farming tools. According to Tim-
othy et al. [3], climate change and variability will result in an
enormous loss of crop production in the coming years.
�erefore, the development of climate resilient agriculture
plays an outstanding role in the livelihood of the rural poor
and the population as a whole.

Since the introduction of the Climate Resilient Green
Economy (CRGE) strategy in 2011, Ethiopia has built up
climate-friendly agriculture. �e design aims primarily to
increase food security and improve farm income by intro-
ducing improved farming practices and infrastructure while
protecting the quality of the environment. Climate-smart
agricultural practices (CSA) are mainly yield-enhancing and
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reduce the challenges of climate variability [5]. Adopting
these high yield technologies will help build a climate re-
silient economy by adapting to shocks such as drought and
disease, which will ultimately increase agricultural pro-
ductivity, improve food security, and reduce poverty. Nu-
merous studies have shown the positive effects of CSA on
livelihoods. Studies by Tolosa et al. [6], Abate et al. [7], and
Mengie et al. [8] found that CSA has a positive impact on
increasing crop yield in Ethiopia; Teklewold et al. [9], Fentie
and Beyene [5] in Ethiopia, and Martey et al. [10] in Ghana
found positive effects on improving welfare (farm income
and per capita consumption per adult equivalent). Teklewold
et al. [9] found positive effects of CSA on multidimensional
poverty reduction in Ethiopia. Mujeyi et al. [11] also argued
that food security and farmers’ income respond positively to
climate-smart agriculture in Zimbabwe. Despite climate-
friendly agriculture (CSA) practices making such positive
contributions to improving the welfare of rural smallholder
households, there are few studies on the introduction and
impact of such practices on agricultural productivity. In
addition, most studies that focus on climate-smart farming
practices for well-being overlooked the role of row planting,
particularly on wheat productivity (the exception is [5] on
teff).

Many agricultural technologies, such as fertilizers, im-
proved varieties, and water management practices, have
immense potential for increasing yields. However, they are
capital intensive, less affordable, and therefore their adop-
tion rate is lower. )us, despite efforts to increase the uptake
of these inputs, agricultural productivity is still at its lowest
level, compounded by weak institutions, imperfections in
the credit market, poor infrastructure, and the lack of ad-
vanced research and advisory systems [12]. )e contribution
of CSA to food security and agricultural income by in-
creasing agricultural productivity is derived from the lit-
erature [13, 14]. )erefore, it makes sense to thoroughly
examine the productivity impacts of climate-smart agri-
cultural practices that help policymakers scale up these
practices and to understand the magnitude and potential of
their impacts in improving the welfare of smallholders.
)erefore, this study focused on examining the impact of
climate-smart agriculture practices (e.g., row planting) on
productivity.

To the best of our knowledge, there are few studies on the
effects of row planting on household welfare (wheat pro-
ductivity per land, in our case). Tolosa et al. [6] studied the
effect of row planting of wheat on yield in the Arsi Zone,
Oromia region. )eir study concludes that the effects of row
planting are related to agroecology, where row planting is
significant in upland areas and insignificant in lowland
areas. Tamirat & Abafita [15] analyzed the effects of row
planting on yield, farm income, and household expenditure
among wheat farmers in the Duna district, SNNP region.
Accordingly, their result evidenced that the introduction of
row planting is associated with higher yield and higher
household expenses. Mengie et al. [8] studied the effects of
sowing and sowing rate on teff yield and yield components in
Adet, Northwest Ethiopia. In their study, a 5 kg/ha seed rate
and row sowing result in higher yields and maximum net

returns for teff growers in the region. Fentie & Beyene [5]
studied the acceptability and effects of row planting on the
welfare (farm income and household expenditure per capita)
of rural teff producing farmers in the Gubalafto district,
Amhara region. )ey found that row-planting adopters had
higher per capita consumption and income per hectare than
nonadopters. Habtewold [16] also used a 2015 Ethiopian
socioeconomic survey (ESS Wave3) to examine the country-
level impacts of row planting and fertilizer use on the
multidimensional poverty of rural households in Ethiopia.
He found that introducing row planting and chemical fer-
tilizers together was significantly associated with poverty
reduction. In contrast to these studies, Vandercasteelen et al.
[17] examined the effects of teff row planting in Ethiopia and
that row planting is associated with increased labor demand
and reduced labor productivity. )ey also showed that
planting in rows had no significant correlation with yield.

Furthermore, the evidence on the superiority of row
planting over traditional broadcasting methods is mainly
qualitative and based on agronomic knowledge [6]; Abraha
et al. [18] and Tamirat and Abafita [15]. Studies on the
impacts of row planting on the welfare of rural smallholder
farmers are scant in the empirical literature, and existing
studies lack agreement on the impact of row planting. Be-
sides this, available studies applied different methodologies
and measured smallholder welfare by crop yield.

Against this background, our study aims to assess the
impact of row planting on wheat productivity of rural
smallholder households in the district of Misha, South
Nation, and Nationalities Region, and the contribution of
our study is manifold. First, we measure smallholder
farmers’ welfare in productivity (wheat yield/ha). Second, we
applied Propensity Score Matching (PSM) with the gener-
alized Roy model’s semiparametric Local Instrumental
Variable (LIV) method. )e Roy model is superior to the
linear endogenous treatment effects and maximum likeli-
hood estimation of switching regression because the Roy-
LIV model estimates the marginal treatment effect (MTE)
and the average treatment effect (ATE) of the adoption
decision [19]. In addition, the Roy model accounts for the
selection of unobservable and the returns (outcome variable)
(“)e problem of selection on returns happens when the
adoption decision of row planting and unobserved variables
are essentially related (essential heterogeneity) that affects
the return of the adoption (outcome variables), and it is this
dependence that makes it relevant to examine the marginal
effect of adoption of the row planting” [5].). )ird, our study
complements the scant literature on the relationship be-
tween adopting climate-smart agricultural practices and the
welfare of smallholder households in rural areas. Fourth, it
helps put the issue on the policy agenda by quantifying the
impacts of row planting practices on productivity. Finally,
our study closes the knowledge gap by introducing climate-
smart agricultural practices on board.

)erefore, the major objective of this study is to in-
vestigate the impact of climate-smart agriculture practices
on rural household welfare in the southern region of
Ethiopia. First, our study investigated the quantitative im-
pact of wheat row planting on the productivity of
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smallholder farmers. Second, the study examined the
marginal treatment effect of row planting adoption. Based
on these objectives, our study forwarded the following
hypothesis.

(i) hypothesis 1: Row-planting technique enhances the
productivity of smallholder farmers

(ii) hypothesis 2: Row-planting adoption increases the
marginal utility of farmers to adapt climate-smart
agriculture practices.

We organized the rest of our work as follows. Section 2
dedicates to the overview of wheat production and row
planting adoption; Section 3 deals with the data sources,
sampling, and study area description. Section 4 covers the
empirical strategy, Section 5 contains the findings and
discussions, and Section 6 highlights the conclusions and
policy implications of adopting row planting.

2. Overview of Wheat Production and Row
Planting in Ethiopia

Wheat is an important food crop grown in the highland
areas of Ethiopia. It plays an essential role in maintaining
food security and poverty alleviation in Ethiopia [20]. In
addition to its essential contribution to the food system, it
plays a prominent role as its straw is used as animal feed, as a
house roof, and as a cohesive material for building houses. It
is the third most cultivated crop in terms of acreage and
proportion of total crop production, after teff and maize
[21]. It is also the second crop marketed internationally [22],
and its contribution to food security is of strategic impor-
tance [23].

Wheat is a strategic staple in Africa, and its demand
increases over time due to income growth and urbanization.
However, sub-Saharan countries produce around 30% of
their domestic needs, meaning these countries are heavily
dependent on imports. Dependence on imports carries the
risk of commodity price volatility and supply shocks [24]. In
Ethiopia, over 4.7 million farmers grow wheat, and about
13% of those farmers are from the South Nation and Na-
tionalities (SNNP) region. Despite its lower national pro-
duction share, the region’s wheat productivity is the second
highest (26.67 quintals/ha) after the Oromia region (29.71
quintals/ha) [25]. Although wheat is grown as a grain,
production is insufficient to meet domestic wheat con-
sumption demand, meaning Ethiopia remains a net im-
porter of wheat. It covers 25% of domestic needs through
imports. )e lower wheat production is mainly due to
traditional production techniques dominated by small
farmers and dependence on rain-fed agriculture. One of the
traditional production systems is the seed sowing by
broadcast. Sowing through broadcast reduces yield, as it
requires a higher amount of seed, resulting in less plant space
and thus reduces plant nutrients. A smaller plant space also
makes weeding more difficult [7].

To increase productivity, climate-friendly farming
practices have recently been introduced, including row
plantings. )is production technology has several

advantages that we cannot achieve with the traditional
broadcast method. For example, planting in rows helps
increase the spacing between plants, allowing better access to
water and sunlight and reducing the amount of seed.

3. Materials and Methods

)is study was conducted in the Misha district of southern
Ethiopia using household-level survey data collected
through a structured questionnaire. According to the
population projection of the Central Statistical Office, the
Mischa district had 170,490 inhabitants in July 2021; of that,
48.6 per cent were men and 51.4 per cent were women.
Around 95 per cent of the population lives in rural areas and
depends on agriculture. )e Misha District has three agro-
climatic zones: lowland (Kola, 10%), mid-altitude (Woina
Dega, 70%), and highland (Dega, 20%) [26]. )e most
common crops are wheat, teff, corn, sorghum, peas, and
beans. In addition, the district also grows cash crops such as
chat, coffee, and vegetables.

We used a multistage sampling method to select the
study participants. For this study, we first purposively chose
Misha Woreda because wheat is the dominant crop in the
area. Second, we selected three kebele (Kebele is the smallest
administrative unit), namely Gidasha, Ololico, and Forks
kebele, that primarily produce wheat. )ird, we randomly
select 202 households that produce improved wheat from
the three kebele. Of that, 83 households are adopters and 119
households are nonadopters of row planting technology in
their wheat farm. )e sample size was determined based on
the proportion to the size of the household in each kebele. In
the first step, we selected those farmers who produce im-
proved wheat varieties in the study area. In the second phase,
we divided these farmers into producers of an improved
wheat variety using row seeding technology and traditional
broad seeding technology. Finally, we randomly selected
wheat producers from each treatment status category in the
kebele sample and collected the data through a structured
questionnaire in the 2018/19 cropping season.

4. Empirical Strategy

)e main challenge in evaluating an intervention or pro-
gram is obtaining a credible counterfactual estimate: What
would have happened to the participating units if they had
not participated? [5]. )erefore, identifying the counter-
factual problem is a proper impact assessment [27]. If the
treatment is randomly assigned, the outcome of interest in
no treatment scenario is a reasonable estimate of the
counterfactual outcome. However, treated households may
have different characteristics than untreated households.
Farmers are free to choose, and decisions are likely to be
influenced by unobserved human (motivation, innovation)
and agricultural (fertility) traits and experimental factors
that can be correlated with the outcome variables [9, 28] and
[10]. As a result, the adoption decision is potentially en-
dogenous, and thus, comparing the row planting technology
outcomes with the welfare of the two groups using the OLS
technique leads to biased estimates [29].
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Based on Heckman et al. [30], one can estimate the
effects of row planting on the mean outcome of the treat-
ment group (adopters) and the mean outcome of the control
group (nonadopters) as follows: Π�Y1–Y0. )is is the
difference between the outcome of the treatment group and
the controlled groups. However, although it is mathemati-
cally simple, estimating impacts using the above equation
leads to a “lack of data problem” referred to in the program
evaluation literature [31]. One primary reason is that the
outcomes of the treatment and control groups cannot be

observed simultaneously for a single person. )erefore, with
the nonrandom assignment of samples to participation, a
simple difference in mean outcome between the treatment
and control groups cannot predict the mean treatment effect
of row planting technology [30]. )erefore, it is essential to
find a valid counterfactual to assess the treatment effects in
nonrandom experiments.

)us, for our study, the average treatment effect on
treated (ATT) is given by the following:


ATT

� ATT zXi; Zi � 1(  � E Y1 − Y0(  � E Y1, Zi � 1(  − E Y0, Zi � 1( , (1)

where Zi is the binary treatment variable and indicates the
treatment status of the household i; it takes on the value one
of the households adopted row planting and zero, otherwise
(adopted broadcasting method), and Xi is the set of con-
trolled covariates. E (Y1, Zi = 1) refers to the mean outcome
for the treatment group, and E (Y0, Zi = 1) refers to the mean
outcome of the controlled group. While the mean outcome
for the treated group is observable, the mean outcome for the
untreated group is not. )erefore, we need to find groups
that share characteristics similar to the treatment group to
arrive at an accurate estimate of the average treatment effect
(ATT). To this end, we used a propensity score matching
method to find a controlled group that matched with the
treatment group and to estimate the average treatment effect
of adopting wheat row plantings. In the empirical literature,
there have been different approaches to estimating the
treatment effects. Other approaches, such as the endogenous
switching regression model [32–36] and endogenous
treatment regression model [33, 37], can also potentially be
used to estimate the treatment effects of row planting
adoption on farm productivity. However, these approaches
usually require at least one valid instrumental variable and it
is often hard to identify a valid instrumental variable.
)erefore, this study employs propensity score matching
that does not rely on an instrumental variable for estima-
tions. )e use of propensity score matching is also common
in the empirical literature [38–41].

A covariate balancing test is required to control the bias
and see if it changes after matching, making the matching
group an appropriate counterfactual for the treated group.
However, there are different versions of balance tests in the
literature [31]. Accordingly, we examine whether the
treatment effects are sensitive to hidden bias by following the
procedure of Rosenbaum & Rubin [42] by testing the
standardized differences in the means of each variable in Z
between the treatment and matched comparison group
samples. If the standardized bias difference is greater than
20%, it signals a failure of the match. However, our results
are insensitive to hidden biases.

A major problem with propensity score matching is that
it fails to account for unobserved heterogeneity. )erefore,
we fitted the generalized Roy model with local instrumental

variables to complement the propensity score matching
results. As a result, the Roy model underpins the selection of
unobservable factors, estimates the marginal treatment ef-
fect, and the mean treatment effect of the decision to enter
treatment using parametric and nonparametric approaches
[19].

5. Results and Discussion

5.1. Descriptive Statistics. After a thorough analysis of the
related empirical literature, we selected the variables pre-
sented in Table 1. Table 1 shows that 41.1 per cent of the
sample participants adopted the row planting method for
improved wheat production. In addition, men head about 52
per cent of adopter households, while only 41 per cent of
nonadopters are male-headed households. )e gender
composition of adopters and nonadopters is statistically
significant, as shown in Table 1. While most demographic
variables show a significant mean difference, institutional
variables show no significant difference between the treat-
ment and control groups. As shown in Table 1; however,
there is a significant difference in the means of gender and
market information (at the 10% significance level), social
role, off-farm income (at the 5% significance level), and
cooperative membership (at the 1% significance level) be-
tween users and nonusers of the row planting method of
agricultural production.

Compared to nonadopters of row planting technology,
adopters are male, have larger household sizes, are younger,
are closer to advisory offices, are cooperative members,
have more social roles, and are involved in nonfarm ac-
tivities.)e average household size of adopters is 4.5 people
compared to 4.4 people for nonadopters, although the
difference is statistically insignificant. )e choice of wheat
row planting is positively associated with access to market
information, membership in cooperatives, social role, and
off-farm income. Access to these institutional services
could help farmers adapt yield-enhancing technologies.
Because, on the one hand, farmers have the opportunity to
observe, learn, and develop knowledge about the use and
application of improved technologies, and on the other
hand, farmers become risk-takers. Adopters also consume

4 )e Scientific World Journal



more fertilizers and have larger farm sizes compared to
nonadopters.

)e other important variable is the outcome variable,
that is, wheat productivity as measured by yield per hectare
of land. Adopters have higher wheat productivity than
nonadopters. )ere is a significant difference in the average
productivity of wheat production between users and non-
users of the row sowing method. Adopters produce about 21
quintals (2124.696 kg/ha) per hectare, and nonadopters
produce eight quintals (800.489 kg/ha) per hectare of land,
which is significant at the 1 per cent significance level.

Finally, we asked respondents about their reasons for
adopting row planting technology in their production.
Approximately 90% of adopter respondents cited improving
productivity, reducing seed requirement (70%), and easing
weeding (40%) as the first, second, and third reasons for
adopting row planting. Similarly, we asked the nonadopters
why they did not apply the row-planting method in their
wheat production. Accordingly, about 85% of them reported
that the technology is labor intensive and time-consuming.
)e result prompts the need to use complementary tech-
nologies, such as agricultural mechanization, that reduce
labor and time requirements, thereby increasing nonuser’s
acceptance of row planting technology.

5.2. Determinants of Adoption, Propensity Score, and
Matching. )is section highlights the estimation of pro-
pensity scores and matching based on the propensity score.
After calculating the propensity score, we produced the
matched controls with the corresponding treatment sam-
ples. )en we assessed the average treatment effects on
persons treated (ATT) based on the matched households.

5.3. Determinants of Row Planting Adoption. Table 2 shows
the marginal effect estimates of the introduction of wheat
row planting technology. As the table shows, household size,
a proxy variable for labor requirement, is unrelated to

household adoption decisions. However, the coefficient is
positive, suggesting some positive association between
household size and adoption. )e result is consistent with
the findings of [5, 43]. )e result has implications for re-
ducing nonadopters labour restrictions, leading them to
adopt row planting via using hired labor. Demographic
variables such as education, gender, and household head age
have a positive and significant impact on the household’s
adoption decisions. )e results of the selection model
showed that one year more education of the household head
leads to a four-percentage point increase in the likelihood of
adoption. Educated farming households are more likely to
adapt to improved technology than their counterparts be-
cause they can process information quickly, learn how to use
it, and easily develop the skills needed to apply new tech-
nologies. Our result confirms the results of the studies in [44]
and [45].

)e outcome of the selection model also shows that a
male householder is positively associated with the adoption
of row planting technology. Male-headed households are

Table 1: Balance test of covariates.

Variable Adopters
(n� 83

Non-adopters
(n� 119)

Mean difference (non-
adopters—Adopters)

Household size 4.506 (1.81) 4.437 (2.208) −0.69 (0.293)
Education of household head (number of years of formal schooling) 2.711 (3.319) 2.924 (3.128) 0.214 (0.458)
Age of the household head 42.651 (9.863) 42.664 (11.06) 0.013 (1.513)
Livestock(TLU) 1.627 (1.009) 1.723 (1.186) 0 .096 (0.160)
Extension (distance from extension offices in walking minutes) 25.422 (14.164) 25.563 (13.087) 0 .141 (1.936)
Gender (1 if the head is male) 0.518 (0.503) 0.412 (0.494) −0.106∗ (0.712)
Spouse education (1 if spouse can read and write) 0.048 (0.215) 0.05 (.22) 0.002 (0.312)
Farm size (area cultivated for wheat production) 2.027 (0.913) 1.981 (0.883) −0.046 (0.128)
Cooperative membership (1 if the household head is member of farm
cooperative) 0.313 (0.467) 0.126 (0.333) −0.187∗∗∗ (0.056)

Off-farm (1 if the household has off-farm income source) 0.12 (0.328) 0.042 (0.201) −0.078∗∗ (0.037)
Social role (1 if the household head has any role in the community) 0.217 (0.415) 0.118 (0.324) −0.099∗∗ (0.052)
Market information 0.289 (0.456) 0.202 (0.403) −0.087∗ (0.061)
Farm experience (years of farm experience) 15.795 (8.606) 16.008 (8.984) 0.213 (1.263)
Mkt distance (distance to the main market in walking minutes) 37.289 (12.393) 37.202 (11.34) −0.087 (1.685)
Access to credit 0.313 (0.467) 0.311 (0.465) −0.002 (0.066)
Fertilizer use 0.289 (0.020) 0.143 (0.032) 0.146∗∗∗ (0.057)
Numbers in parenthesis are standard errors and ∗, ∗∗, and ∗∗∗ are significance levels at 10%, 5%, and 1% level of significance

Table 2: Marginal effect estimation of the Logit model.

Variables Marginal effect p-value
Household size 0.005 0.756
Education of household head 0.040 0.045∗∗
Sex of the household head 0.317 0.009∗∗∗
Age of the household head 0.054 0.036∗∗
Age squared of the household head −0.001 0.042∗∗
Livestock ownership (TLU) −0.045 0.141
Distance from extension offices −0.021 0.222
Farm size (ha) 0.026 0.501
Fertilizer use 0.065 0.515
Cooperative membership 0.269 0.012∗∗
Distance from the main market 0.026 0.179
Access to credit −0.111 0.162
Access to market information 0.059 0.482
∗∗, and ∗∗∗ refers to significance at 5% and 1% level of significance.
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31.7 per cent more likely to adapt than their female coun-
terparts are.)e result is similar to the results of Admassie &
Ayele [46], who argued that male-headed households are
more likely to adapt to new technologies because they are
more resourced and have access to new information and
ideas. Ragasa et al. [47] also argued that female households
are less likely to receive extension services and even if
they do receive, the quality of the services can be
compromised.

Age is another variable positively associated with
household adoption decisions, but only limited.)e effect of
the age of the household head on technology adoption was
not clear in the literature [45, 46]. On the one hand, older
households have more farming experience, resources, and
responsibilities to make decisions and are more likely to
adapt innovative technologies. On the other hand, older
farmers may be untrained, less exposed to information, risk-
averse, and happily ignoring new technology. Considering
this inconclusive result, in the empirical studies, we included
the squared age in the selection model to see if age had a
nonlinear relationship with the probability of farmer
adoption. Our result reveals a nonlinear relationship be-
tween the age of the head of the household and the decision
to adapt. )e age of farmers is a measure of the farmer’s
agricultural experience that increases the likelihood of
adopting new technologies but only up to a certain age limit.
After a certain age, households become less proactive and
stick to using the technology they adopted when they were
younger. )erefore, they prefer to avoid risks related to the
use of new technologies. As described in Table 2 below, an
additional year of farmers increases their chances of
adoption by 5.4%, while this reverses with older age as the
coefficient of squared age is negative and significant at the
5% level of significance. )erefore, we conclude that age and
adoption do not have a clear relationship that warrants
further analysis using a large dataset.

Among the institutional variables, membership in co-
operatives is positively associated with row planting tech-
nology. Farmer’s membership in cooperatives significantly
increases the probability of adoption by 26.9 percentage
points. Because cooperatives serve as a source of informa-
tion, provide inputs and offer training of various kinds to
enable farmers to develop new skills in using new tech-
nologies and become more risk-takers. )e role of coop-
erative membership in promoting agricultural technology
adoption has been widely proved in the literature, and our
findings are in line with the findings of [37, 48, 49]. Wossen
et al. [48] argued that cooperative membership of house-
holds increases their asset holdings and the likelihood of
formal credit access. )us, membership in cooperative is
strongly and positively associated with the adoption of new
technologies. Zhang et al. [49] also found that membership
in agricultural cooperatives increase the likelihood of
farmers in adopting extensive agricultural technologies.
Agricultural cooperatives help to accelerate technological
progress and its spread among farmers, as cooperatives
promote new technologies by organizing training and ini-
tiating cooperation with research and development
institutions.

5.4. Propensity Score and Matching. After estimating the
logit model using the covariates in Table 2, we use these
variables and predict the propensity score to find a matched
sample of households. Accordingly, the predicted propensity
score for adopter farmers is within a bound of [0.212 and
0.903] with a mean of 0.469. )e propensity score for
nonadopters ranges from 0.135 to 0.817, with a mean of
0.367. )us, the common support condition is met in the
range of 0.212 to 0.903.

We plot the common region of support that balances
household characteristics between adopters and non-
adopters of row planting technology using the predicted
propensity score. )e presence of a significant number of
samples of the two groups in the common support region
indicates the presence of an appropriate balance in the
distribution of covariates between the treated and controlled
samples. When covariate imbalances occur, it is just acci-
dental. To check the fulfillment of the balancing condition,
we introduced the common support condition in the esti-
mation bymatching the region of common support. Figure 1
is a visual representation of the overall support condition,
showing that respondents share common support or overlap
in the distribution of treated and untreated propensity
scores. In addition to visualizing the balance test, we per-
formed a standardized bias test and found that the mean bias
is well below 20%, the pseudo R2 is 0.031, and the p-value of
LR (χ2) is 0.935.)us, the distribution of covariates between
the treated and control groups is balanced after matching.

5.5. Estimation of Average Treatment Effect on Treated (ATT).
Using four comparative techniques, we estimated the effects
of adopting row-planting technology on the welfare of
farmers’ growing improved wheat. )ese techniques are the
nearest neighbor (NN) matching, radius matching, kernel
matching, and stratification matching algorithms. Estima-
tions are using Bootstrap standard errors.

)e estimates of all matching techniques showed the
positive and significant effect of row planting on wheat
productivity for the treated groups. As shown in Table 3
below, the average treatment effect on treated (ATT) ranges
from 1299 kg to 1368 kg per hectare of land, whichmeans that
the increase in wheat productivity ranges from 12.99 quintals
to 13.68 quintals per hectare for the row planters compared to
the broadcasters. Our results agree with Tolosa et al. [6], who
found that applying the row planting method increased wheat
yield by 14% more than applying the broadcasting method in
the highland area of Ethiopia. Tamirat and Abafita [15] also
found that row planting increased the yield of wheat farmers
by almost 75% and 7.23 quintals per hectare more than that of
untreated wheat farmers. Similarly, our result is consistent
with the results of Fentie and Beyene [5], who found that the
per capita consumption of households growing teff using the
row planting method increased by 12.3% to 18.4% compared
to those using the broadcasting method. However, our result
contrasts the results of Vandercasteelen et al. [17], who found
that planting in rows has no significant impact on teff yield.
)eir results also confirmed that planting in rows is associated
with an increased workload.
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Figure 1: Distribution of propensity score (80 of 83 treated samples are in the common support region).

Table 3: Estimation of average treatment effect (ATT): estimating the impact of row planting on wheat productivity.

NN-matching Radius(0.1) Kernel Stratification
ATT 1368.742∗∗∗ 1299.519∗∗∗ 1330.209∗∗∗ 1348.326∗∗∗
SE 293.548 341.583 276.064 387.914
Treated 83 83 83 83
Control 53 100 100 100
∗∗∗ implies significance at a 1% level of significance.

Table 4: Results of Sensitivity analysis using Rosenbaum bounds for wheat productivity. Rosenbaum bounds for Productivity (N� 81
matched pairs).

Gamma
Sig + upper
bound

significance level

Sig-lower bound
significance level

t-hat + upper bound
Hodges-Lehmann
point estimate

t-hat-lower bound estimate
Hodges-Lehmann point

estimate

CI + upper bound
confidence

interval (a� .95)

CI-lower bound
confidence

interval (a� .95)
1 0 0 889.238 889.238 533.333 1287.69
1.25 0 0 726.926 1057.11 384 1485
1.5 0 0 603.167 1209.24 268.667 1638.39
1.75 0 0 500.667 1320.25 179.417 1795.9
2 0 0 418.667 1433.23 92.9167 1957.67
∗Gamma refers to odds of differential assignment due to observed factors.
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Figure 2: Marginal Treatment Effect over the Common Support of p (Z).
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Despite the difference in the size of the average treatment
effect from using all matching algorithms, row planting has a
positive effect that shows its essential role in increasing
wheat productivity for the treated farmers. )erefore, our
result has implications for broadcasters that should produce
wheat by sowing in a row instead of using the traditional
broadcast method.

5.6. Sensitivity Analysis. Sensitivity analysis verifies the
sensitivity of the estimated treatment effect to small devi-
ations in the model’s specification, which is a strong as-
sumption that must be maintained to have the pure effect of
interventions on outcome variables. In the empirical liter-
ature, Rosenbaum & Rubin [42] recommend bounding

methods to test whether estimates of mean treatment effects
on those treated (ATT) are responsive to external changes
other than treatment. Accordingly, the sensitivity analysis
presented in Table 4 below confirms the absence of hidden
biases and confirms that the estimated treatment effects for
wheat farmers are solely due to the introduction of row
planting technology. )is result is similar to studies by [5,
15] analyzing the effects of row planting technology.

5.7. Semiparametric Local Instrumental Variable (LIV)Model
Estimation Results. )e results of semiparametric LIV are
similar to those of propensity score matching with positive
mean treatment effects. )e marginal treatment effect
(MTE) increases with a higher probability of participating in
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Figure 3: )e common support of P (Z).

Table 5: Determinants and impact of row planting semiparametric LIV regression.

Parameters Estimates
Household size −0.267∗∗∗ (0.008)
Education −0.276∗ (0.076)
Gender −1.334 (0.109)
Age 0.022 (0.728)
Farm experience −0.026 (0.714)
Livestock ownership(TLU) 0.107 (0.589)
Extension −0.041 (0.196)
Farm size −0.423 (0.101)
Fertilizer use −0.585 (0.638)
Off-farm activities −1.691 (0.389)
Access to credit −0.178 (0.732)
hfsXp (interaction of household size and pscore) 0.631∗∗∗ (0.004)
educXp (interaction of education and P score) 0.374 (0.343)
genXp (interaction of gender and pscore) 1.567 (0.452)
ageXp (interaction of age and pscore) 0.048 (0.756)
farm_expXp (interaction of farm experience and pscore) 0.052 (0.787)
livestockXp (interaction of livestock ownership and pscore) −0.254 (0.618)
ExtensionXp (interaction of extension visit and pscore) 0.004 (0.954)
Farm-sizeXp (interaction of farm-size and pscore) 0.961 (0.106)
fertilizerXp (interaction of fertilizer use and pscore) 0.987 (0.680)
off_farmXp (interaction of off-farm participation and pscore) 2.787 (0.353)
creditXp (interaction of access to credit and P score) 0.580 (0.651)
E Y1–Y0)@X 2.687∗∗ (0.026)
Note that the outcome variable is the log of productivity. ∗∗∗ significant at a 1% level of significance. ∗∗ significant at a 5% level of significance. ∗ significant at a
10% level of significance.
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the treatment. Figure 2 is the graph of the marginal treat-
ment effect result showing that the marginal treatment effect
is a negative function of propensity to adapt (UT).)erefore,
the marginal utility of using row-planting technology in-
creases as farmers’ propensity to use row planting tech-
nology increases.

)e MTE is estimated using the semiparametric LIV
method with values within the common support of the
predicted propensity scores. Accordingly, as shown in
Figure 3 below, the MTE showed the tendency toward
treatment was higher in the row planters (treated group)
than in the untreated group. )e result of the LIV semi-
parametric regression is shown in Table 5, and the last row of
the table is the mean treatment effect (ATE), which is
positive and statistically significant. )us, the marginal
treatment effect of producing wheat using the row seeding
method increases the productivity of wheat-growing
households.

6. Conclusions and Policy Implications of
the Study

)e empirical evidence shows that the relationship between
climate-smart agricultural technologies and their impact on
well-being is unexplored, and the available evidence is
mixed. It is challenging to find appropriate methods to
analyze the quantitative impacts of climate-friendly prac-
tices, and therefore, there are few studies on the uptake of
climate-smart agriculture technologies and their impact on
the productivity of rural farm households. )erefore, this
study examined the effects of CSA (row planting) technology
on wheat-producing farm households’ welfare (measured in
terms of productivity) using state-of-the-art analysis
methods. We used propensity score matching and the
semiparametric LIV method to estimate the mean treatment
effect of introducing row plantings to treated sample
households. In addition, the sensitivity analysis of the es-
timated treatment effects using the Rosenbaum limit method
is verified, and the ATT estimates are the pure effects of
applying the row planting technique.

)e results of our study showed the significant and
positive contribution of row planting technology to the
productivity of wheat-producing farmers. Propensity Score
Matching created appropriate matching samples for the
treatment groups, and the estimates confirm that the average
productivity of the row seeders is higher than that of the
broadcasters. Furthermore, as confirmed by the sensitivity
analysis, the treatment effect is free from hidden bias. )us,
for adopter households, the increase in productivity is as-
sociated only with sowing wheat in rows. We also estimated
the marginal treatment effect of introducing row plantings
using the semi-parametric LIV model. )e results showed
that the marginal benefit of adopting row-planting increases
as the likelihood of farmers adapting climate-smart agri-
culture practices.

Our study also explained why farmers use row planting
technology for those who adapt it and why they do not use it
for nonusers. Accordingly, a more significant proportion of
adopters responded that the need for productivity and ease

of weeding are themain reasons for adopting the technology.
On the other hand, nonadopters reported that labor and
time limitations are the challenges of adopting the tech-
nology. )erefore, efforts to disseminate this technology
should focus on helping farmers with labor allocation and
time management or helping them by providing agricultural
mechanization (reducing the need for labor).

Our result showed that education, gender, age, and
cooperative membership are strongly associated with row
planting adoption. )e main implication is that the positive
impact of introducing row planting on farmer productivity
could be enhanced by encouraging farmer membership in
cooperatives, supporting female-headed households with
farm information and access to formal credit, and increasing
access to education.

)e results of our study correspond to similar studies on
the introduction of agricultural technology. Further ex-
pansion of the technology to other but similar geographic
features could increase farmer acceptance of the technology
and improve farm household well-being by increasing
productivity. Aside from these, farmers exposure to climate
change could also be less since the technology is climate-
friendly. However, we encourage other researchers inter-
ested in this area to analyze large datasets across different
geographical regions to generalize the results on a larger
scale.
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