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In this study, we proposed an automatic water extraction index (AWEI) threshold improvement model that can be used to detect
lake surface water based on optical remote sensing data. An annual Landsat 8 mosaic was created using the Google Earth Engine
(GEE) platform to obtain cloud-free satellite image data.*e challenge of this study was to determine the threshold value, which is
essential to show the boundary between water and nonwater. *e AWEI was selected for the study to address this challenge. *e
AWEI approach was developed by adding a threshold water value based on the split-based approach (SBA) calculation analysis for
Landsat 8 satellite images.*e SBA was used to determine local threshold variations in data scenes that were used to classify water
and nonwater. *e class threshold between water and nonwater in each selected subscene image can be determined based on the
calculation of class intervals generated by geostatistical analysis, initially referred to as smart quantiles. It was used to determine
the class separation between water and nonwater in the resulting subscene images.*e objectives of this study were (a) to increase
the accuracy of automatic lake surface water detection by improvising the determination of threshold values based on analysis and
calculations using the SBA and (b) to conduct a test case study of AWEI threshold improvement on several lakes’ surface water,
which has a variety of different or heterogeneous characteristics. *e results show that the threshold value obtained based on the
smart quantile calculation from the natural break approach (AWEI≥ − 0.23) gave an overall accuracy of close to 100%. *ose
results were better than the normal threshold (AWEI≥ 0.00), with an overall accuracy of 98%. It shows that there has been an
increase of 2% in the accuracy based on the confusion matrix calculation. In addition to that, the results obtained when classifying
water and nonwater classes for the different national priority lakes in Indonesia vary in overall accuracy from 94% to 100%.

1. Introduction

Remote sensing plays a role in providing information on
large-scale monitoring of surface waters, with the advantages
of high spatiotemporal resolution, multisensors, and near-
real-time operational data [1–3]. Monitoring can be per-
formed faster when compared with direct measurements in
the field and can assist in strategic planning to cost reduction
measures, with limited human and scientific resources [4, 5].
Based on a review of optical remote sensing, several methods
can be used to extract surface water. Several studies have also
developed more effective surface water extraction methods

using water index methods [6]. McFeeters [7] developed the
normalized difference water index (NDWI) based on the
green and near-infrared (NIR) bands to delineate features of
open water by using a threshold value greater than zero as a
delimiter for extracting surface water. *is means that the
positive values are classified as water and negative values are
classified as nonwater.*eNDWI approach wasmodified by
Xu [8] to become the modified normalized difference water
index (MNDWI) by replacing the NIR band with the
shortwave-infrared (SWIR) band.*is was done because the
application of NDWI in some water areas adjacent to built-
up land produces noise extraction of water information
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mixed with the built-up land. To eliminate the noise in the
water extraction results, the NDWI was modified by Xu [8]
into MNDWI.

Furthermore, Feyisa et al. [9] developed the AWEI using a
multiple-band index formulation based on four-band satellite
imagery, namely green, NIR, SWIR, and mid-infrared (MIR)
bands. *is approach was developed to improve the extraction
results of water information from several previous water in-
dices, which was insufficient to use only two satellite imagery
bands to achieve high accuracy. *is was done because noise
cannot distinguish between water and darker pixel (nonwater)
surfaces, such as the shadow. Implementation of several indices
of such water has been used in various other aspects, such as
analysis and flood monitoring [10–12], environment analysis
[13], water surface mapping [14–16], water-quality assessment
[17], and agriculture [18].

Based on a review of several water indices, the AWEI was
selected for this study because it gives better results in
representing available surface water. In general, the results of
the water index calculation require a threshold value to
separate the water and nonwater objects. Based on the results
of a review of several previous studies, it was shown that the
threshold for the water class is a positive value, which means
it can separate between required water and nonwater
threshold values greater than 0 (null) [6, 9, 17, 19]. De-
termining the threshold value plays an essential role in
showing the boundary between water and nonwater, which
was a challenge in this study.*e split-based approach (SBA)
was initially proposed by Bovolo and Bruzzone [20] and is
used to determine local threshold variations in data scenes; it
was used to classify water and nonwater classes in this study.
It was also chosen to improve the global threshold limita-
tions in these objects. *e SBA was used by Bovolo and
Bruzzone [20] to identify the impact of land changes due to
the tsunami disaster, applied to multitemporal imagery.

To address this challenge, one of the index approaches to
water, AWEI, was selected and used in this study.*e AWEI
approach was developed by adding a threshold water value
based on the SBA calculation analysis for images applied to
Landsat 8 satellite imagery. Furthermore, the same approach
was used byMartinis et al. [21] for flood detection with high-
resolution TerraSAR-X data and Yulianto et al. [22] to
determine threshold flood detection with ALOS PALSAR
data.

*is study used the AWEI, a multiple-band index, as an
automatic approach for lake surface water extraction. Fur-
thermore, the AWEI was developed with the aim of (a)
increasing the accuracy of automatic lake surface water
mapping by improvising the determination of threshold
values based on analysis and calculations using the SBA and
(b) conducting test case studies of AWEI threshold im-
provement results on the surface water of several lakes,
which has a variety of different or heterogeneous
characteristics.

2. Materials and Methods

2.1. Study Area. Toba Lake, also known as Danau Toba,
which is located in North Sumatra, Indonesia, at coordinates

2.35°–2.88° North and 98.52°–99.1° East (Figure 1), was used
as a test case study area to develop an AWEI threshold
improvement model to detect lake surface water on remotely
sensed optical data that represent the characteristics of the
type of volcanic-tectonic lake [23, 24]. *e AWEI threshold
improvement to detect lake surface water was tested at
several other locations representing different lake charac-
teristics in Indonesia. *e Ministry of Environment of the
Republic of Indonesia (KLHK) states that 15 national pri-
ority lakes in Indonesia need to be saved to restore, preserve,
and maintain lake functions based on the principle of
ecosystem to balance the environment’s carrying capacity.
*e 15 lakes (including Toba Lake) can be classified based on
the characteristics of the process of formation, namely (a)
the techno-volcanic process, comprising Toba Lake (North
Sumatra); (b) the tectonic process, including Poso Lake
(South East Sulawesi), Tempe Lake (South Sulawesi), Ton-
dano Lake (North Sulawesi), Singkarak Lake (West Suma-
tra), Limboto Lake (Gorontalo), and Sentani Lake (Papua);
(c) the volcanic process, including Batur Lake (Bali), Kerinci
Lake (Jambi), Maninjau Lake (West Sumatra), Matano Lake
(South Sulawesi), Rawa Pening Lake (Central Java), and
Rawa Dano (Banten); and (d) the flood plain process, in-
cluding Sentarum Lake (West Kalimantan) and Jempang
Lake (East Kalimantan).

2.2. Data Set. *e main problem in using optical satellite
imagery data is the obscuring of objects on the surface of the
Earth by clouds. *is can be solved by creating cloud-free
satellite imagery data annually. In this study, such creation
from Landsat 8 was performed using the Google Earth
Engine (GEE) platform. Input data were obtained based on
Landsat 8 Surface Reflectance Tier 1 data collection. *is
data set comprises the atmospherically corrected surface
reflectance, which is based on the Landsat Ecosystem Dis-
turbance Adaptive Processing System (LaRSC), and the
various stages of the process consisting of cloud, shadow,
water, and snow mask are produced using CFMASK
[25–27]. Filter dates are needed to determine the date range
selection time limit to get annual Landsat 8 in 2019. In this
case, the date used was 01 January 2019 to 31 December 2019.
Furthermore, the determination of the area of interest (AOI)
boundary for the lake surface water refers to digital vector
data published by theMinistry of Environment and Forestry,
Indonesia (KLHK), based on the 15 national priority lakes.

2.3. AWEI Approach. *e automatic water extraction index
(AWEI) approach was used as the water index by removing
shadow pixels, which can be formulated based on [9]

AWEI � 4x(G − MIR) − (0.25xNIR + 2.75xSWIR), (1)

where AWEI is the automatic water extraction index; G is
the green channel, with wavelength 0.53–0.59 µm; NIR is the
near-infrared channel, with wavelength 0.85–0.88 µm; SWIR
is the shortwave-infrared channel, with wavelength
1.57–1.65 µm; and MIR is the mid-infrared channel, with
wavelength 2.11–2.29 µm, from the Landsat 8 imagery.
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ID Information:

1. Toba lake
2. Maninjau lake
3. Singkarak lake
4. Kerinci lake
5. Rawa danau lake

6. Rawa pening lake
7. Batur lake
8. Sentarum lake
9. Jempang lake
10. Tempe lake

11. Matano lake
12. Poso lake
13. Limboto lake
14. Tondano lake
15. Sentani lake

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community
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Figure 1: (a) Location of the 15 national priority lakes in Indonesia for management and spatial planning. At these locations, a test case
study of AWEI threshold improvement was conducted, which represented the characteristics of other lakes. (b) Toba Lake, located in North
Sumatra Province, Indonesia, was used as a test case study area to develop an AWEI threshold improvement model to detect lake surface
water on remotely sensed optical data.
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2.4. Split-Based Approach (SBA)

2.4.1. Image Tiling and Split Selection. *e split-based ap-
proach (SBA) was used to determine local threshold vari-
ations in the scene data used to classify “water” and
“nonwater” in the study and improve the global limitation
threshold separating the two classes.*e SBA is illustrated in
Figure 2, which illustrates a scene image XC that has di-
mensions A x B and a split scene image XCi (subscene
image) with dimensions a x b. A x B is a grid cell in one scene
image, whileA is a line in scene imageA x B. B is a column in
scene image A x B; XCi is the subscene image XC to i, where
(i � 1, 2, 3, . . . , n); a is the line of the split parts of the
subscene image XCi, while b is the column of the split parts
of subscene image XCi [20, 22].

In this study, the result of the AWEI image is used to
implement the SBA with size A x B. *e split scene for the
result of the AWEI is created using the grid index features
(GIF), with image size 2 km× 2 km, so that it could be
obtained on each XCi with size a � 2km and b � 2km. A
total of 1677 split scene images were used in the study to

calculate the local statistics parameters for each split scene
image; in this case, XCi, where i � 1, 2, 3, . . . , n. *e
statistical parameters used in calculating each split scene
image were the minimum, maximum, mean, and standard
deviation values.

*e coefficient of variation value (CVXCi) was for-
mulated as the ratio between the mean (µXCi) and standard
deviation (σXCi) for the split scene image (XCi) was used in
an appropriate statistical measure to select split images
within the data range. *e scene ratio (RXCi) was formu-
lated as the ratio between the mean (µXCi) for the split scene
image and the global mean (µXC) for one scene image.
Furthermore, the distribution of measurement results, the
level of data variation, and the probability that the splits
contained more than one semantic class were determined.
*e measurement results of the coefficient of variation
values of each split scene image can be plotted on the X-axis,
and the scene ratio values of each split scene image can be
plotted on the Y-axis.

XCi′ � XCi|CVXCi≥ 0 ^RXCi0.5≤ . . . ≤ 1.0, Ci � 1, 2, 3, . . . , n , (2)

XCi″ � XC1′,XC2′, . . . ,XCi′|ΔCVXC1′ ≤ ΔCVXC2′ ≤ . . . ≤ΔCVXCi′, n≤XC″ . (3)

*e selection of the first-stage split scene image in the
scene data (XC′) of subscene images (XCi′) was made by
investigating several data sets to show the optimal repre-
sentation of water and nonwater, based on equation (2).
Furthermore, the selection of the second-stage split scene
image in the scene data (XCi″) of subscene images (XCi″) in
equation (3) was made from the data set selected from
(XCi′), (XCi′), and used to determine the calculation of the
local threshold in the data set, selected and based on the
Euclidean distance calculation (ΔCVXCi′). *ese technical
procedures refer to Martinis et al. [21].

2.4.2. Automatic 5reshold Selection Procedure. *e geo-
statistical analysis approach initially referred to as smart
quantiles was used to help determine the class separation
between water and nonwater in the resulting subscene
images selected (XCi″). Equal interval, quantile, geometrical
interval, and natural break comprised the classification
approach based on the intervals and statistical data distri-
bution used in this study. Figure 3 shows the automatic
threshold selection procedure using the geostatistical anal-
ysis approach: (a) equal interval, (b) quantile, (c) geometrical
interval, and (d) natural break (an example for split scene ID:
AWEI_15).*e class threshold between water and nonwater
in each selected subscene image can be determined based on
the calculation of class intervals generated by each geo-
statistical analysis method. Furthermore, the average value
of each local threshold generated from all the subscene
images selected was used as the final threshold to determine

the class boundary between water and nonwater in one
overall image scene (XC).

Equal interval classes can be grouped across a range of
values that allow them to be divided into equal-sized in-
tervals. Usually, there are fewer endpoints at the extreme,
and the number of values in the extreme class is lower. *e
quantile class can be grouped based on a range of values that
allow it to be divided into intervals of unequal size so that the
number of values is the same in each class. *e classes at the
extreme and middle have the same number of values. *e
geometric intervals class can be grouped based on a clas-
sification scheme by creating class breaks based on class
intervals that have a geometric sequence. *e geometric
coefficient can change once (in reverse) to optimize the class
range. *e algorithm creates geometric intervals by mini-
mizing the sum of the squares of the number of elements in
each class. *is ensures that each class range has approxi-
mately the same number of values as each class and that
changes between intervals are relatively consistent. *e
natural break (Jenks) class can be grouped based on natural
groupings inherent in the data. Class breaks are created in
the best way possible, grouping the same values and max-
imizing class differences. *ese features are divided into
defined classes in which there is a relatively significant
difference in data values [28].

2.5. AWEI 5reshold Improvements. *e calculation of the
local threshold results was based on the second-stage split
scene image selection in the scene data (XC″) of the
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Figure 2: (a) Illustration of the SBA for scene image XC with size A x B and subscene image XCi with size a x b. (b) Graphical illustration of
the distribution of pixel values for the two classes water (C+) and nonwater (C− ), and unlabeled class (U) for which the threshold value
(T � ?) is needed as a boundary between the water and nonwater classes.
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Figure 3: Continued.
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subscene images (XCi″), (XCi″), using the equal interval,
quantile, geometrical interval, and natural break approach
that were used to determine the AWEI threshold im-
provements. A total of 20 selected subscene images (XCi″)
were used to determine the local threshold value. *e local
threshold value obtained for each subscene image (20
subscene images) was calculated for the minimum, maxi-
mum, mean, and standard deviation values. Furthermore,
the process to obtain the global threshold value was de-
termined by calculating the mean value minus the standard
deviation (the value of the mean − standard deviation of the
selected 20 subscene images).

2.6. Accuracy Assessment of the AWEI 5reshold
Improvements. Evaluation of the reliability level and ac-
curacy assessment of the AWEI threshold improvement was
made using the visual and statistical approaches. *e visual
approach was performed to compare the appearance of
objects in the Landsat 8 image and the classification results
of water and nonwater classes generated by the thresholds of
the equal interval, quantile, geometrical interval, and natural
break. Meanwhile, the statistical approach to the confusion
matrix calculation considers commission error, omission
error, user accuracy, producer accuracy, total error, kappa,
and overall accuracy. It was used to evaluate the class’s
quality generated by the thresholds of the equal interval,
quantile, geometrical interval, and natural break and
compared based on map references [29–31]. In this study,
the map references were obtained based on the on-screen

visual digitization process in Landsat 8 imagery, which was
performed at several lake locations that are national pri-
orities in Indonesia.

3. Results

3.1. Image Tiling and Split Selection from the SBA. *e result
calculation of the AWEI approach for scene images or split
scenes from the SBA is presented in Figure 4. A total of 1677
split scene images were used in this study to calculate local
statistics parameters (the coefficient of variation value and
the scene ratio value) for each split scene image, with GIF
conducted at a size of 2 km× 2 km. In addition, the results of
split scene image location for the first-stage split scene image
in the scene image data (XCi′) and also for the second-stage
split scene image in the scene image data (XCi′) are pre-
sented in Figure 5.

3.2. Automatic5reshold Selection Procedure. *e automatic
threshold selection procedure was performed with the
geostatistical analysis approach to determine the class sep-
aration between water and nonwater in the resulting sub-
scene images selected (XCi′). *e result calculation of the
local threshold based on the second-stage split scene image
selection in the scene data (XC″) of the subscene images
(XCi′) is presented in Table 1. In addition, the results of the
class separation between water and nonwater in the split
scene image selection based on the results of the equal in-
terval, quantile, geometrical interval, and natural break
threshold are presented in Figures 6–9.
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Figure 3: Automatic threshold selection procedure using geostatistical analysis approach: (a) equal interval, (b) quantile, (c) geometrical
interval, and (d) natural break (an example for split scene ID: AWEI_15).

6 *e Scientific World Journal



3.3. AWEI 5reshold Improvements. *e local threshold
result calculation based on the second-stage split scene
image selection using the equal interval, quantile, geomet-
rical interval, and natural break approach has been used to
determine the AWEI threshold improvements. *e local
threshold values obtained for the 20 subscene images were
calculated for the minimum, maximum, mean, and standard
deviation values (Table 1). *e AWEI threshold

improvement to obtain the global threshold value was de-
termined by calculating the mean value minus the standard
deviation, based on the 20 subscene images selected, with the
results presented in Table 2. Furthermore, the AWEI
threshold improvement test case results to detect lake
surface water in Toba lake, based on the comparison of
normal, equal interval, quantile, geometrical interval, and
natural break thresholds, are presented in Figure 10.

9°10'0"E9

99°10'0"E

99°0'0"E

99°0'0"E

98°50'0"E

98°50'0"E

98°40'0"E

98°40'0"E

98°30'0"E

98°30'0"E

2°
50

'0"
N

2°
50

'0"
N

2°
40

'0"
N

2°
40

'0"
N

2°
30

'0"
N

2°
30

'0"
N

2°
20

'0"
N

2°
20

'0"
N

200 105 Km

Legend
High:1.65

Low:-4.03

(a)

99°10'0"E

99°10'0"E

99°0'0"E

99°0'0"E

98°50'0"E

98°50'0"E

98°40'0"E

98°40'0"E

98°30'0"E

98°30'0"E

2°
50

'0"
N

2°
40

'0"
N

2°
30

'0"
N

2°
20

'0"
N

2°
50

'0"
N

2°
40

'0"
N

2°
30

'0"
N

2°
20

'0"
N

(b)

-6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00

3.00

2.50

2.00

1.50

1.00

0.50

The coefficient of variation value (CVXCi)

Th
e s

ce
ne

 o
f r

at
io

 (R
XC

i)

(c)

Figure 4: (a) Result calculation of the AWEI approach for (a) scene image and (b) split scene image with GIF at the size of 2 km× 2 km; a
total of 1677 split scene images were used in the study to calculate the local statistics parameters for each split scene image. (c) Measurement
results of the coefficient of variation value of each split scene image plotted on the X-axis and the scene ratio value plotted on the Y-axis.
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3.4. Accuracy Assessment of the AWEI 5reshold
Improvements. *e results of the summary of the clas-
sification accuracy assessment of the AWEI threshold
improvement are presented in Table 3. A statistical as-
sessment approach based on confusion matrix calcula-
tion was used to account for commission error, omission
error, user accuracy, producer accuracy, total error,
kappa, and overall accuracy. *e accuracy calculations
show that the threshold value derived from natural break
had the best overall accuracy of 99.86%, while that

derived from equal interval had the lowest overall ac-
curacy of 49.38%. Furthermore, the best results from
determining the natural break threshold value were
implemented to classify lake surface water (water and
nonwater classes) at several other priority lake locations
in Indonesia; these can also be compared with the results
of the lake surface water classification derived from the
normal threshold. *e comparison results of the lake
surface water classification from the natural break and
normal thresholds are presented in Figures 11 and 12. In
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Figure 5: (a) Location of the split scene image with GIF was at a size of 2 km× 2 km for the first-stage split scene image in the scene image
data (XCi′). (b) Location of the split scene image with GIF for the second-stage split scene image in the scene image data (XCi″). (c) *e
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addition, the results of the calculation using the con-
fusion matrix statistical approach are presented in
Table 4.

4. Discussion

*is research was conducted to contribute to the efforts to
improve accuracy in detecting and rapidly classifying lake
surface water based on optical remote sensing data in the
Indonesian territory. In addition, the results can also be used
to perform several other surface water mappings and analyze
surface water changes caused by environmental dynamics.
*e SBA was applied in this study to determine and obtain
statistical variations in local pixel values, which were applied
to optical satellite imagery from Landsat 8 using the AWEI
as the water index. Furthermore, variations in local pixel
values from the AWEI were used as input to determine the
global threshold in classifying water and nonwater objects in
the study area. Based on research conducted by Feyisa et al.
[9], the AWEI is a development of the previous water in-
dexes. It has a better accuracy in detecting various types of
surface water in various environmental conditions than the
NDWI developed by McFeeters [7] and the MNDWI de-
veloped by Xu [8].

Determining the threshold value is essential in classi-
fying water and nonwater classes. In general, several studies
have stated that a positive value for the AWEI or an AWEI
value of more than 0 is the boundary between water and
nonwater classes [6, 17, 19]. According to Feyisa et al. [9],
many mappings related to surface water and increasing its

accuracy have been presented in related studies. However,
there are limitations in making judgments regarding ac-
curacy at a more detailed pixel level (subpixel) in practice. In
this study, make tiling and split image selection from the
SBA aimed to establish the variation in pixel values locally,
with GIF at a size of 2 km× 2 km. A total of 1677 split scene
images were used to calculate local statistical parameters (the
coefficient of variation and the scene ratio value), wherein 20
selected subscene images were used as location tiles in the
study area, representing local pixel value variations to de-
termine the threshold value for water and nonwater classes.

Geostatistical analysis approaches consisting of the equal
interval, quantile, geometrical interval, and natural break
were used to automatically determine the threshold value for
20 selected subscene images divided into two classes (water
and nonwater) and calculated based on the overall mean
value − standard deviation. *e results of calculating ac-
curacy using the confusion matrix show that the threshold
value generated from the natural break approach (AWE-
I≥ − 0.232) has the best accuracy, with an overall accuracy of
99.86% (as shown in Table 2 and Figure 10). *is approach
also has a better accuracy when compared with the normal
threshold condition (AWEI ≥ 0), whose overall accuracy is
98.17%. *is shows that there is an increase of 1.69% in
accuracy from the threshold improvement that has been
proposed and tested in this study. *e threshold value de-
rived from geometrical intervals (AWEI≥ − 0.084) and
quantile (AWEI≥ − 0.089) has the same overall accuracy of
99.84%, which shows an increase of 1.67% in accuracy from
the normal threshold value (AWEI ≥ 0). However, the water

Table 1: Result calculation of the local thresholds based on the second-stage split scene image selection in the scene data (XC″) of the
subscene images (XCi″) using the equal interval, quantile, geometrical interval, and natural break approach.

Split scene ID
*reshold value

Equal interval Quantile Geometrical interval Natural break
AWEI_0 − 0.430 0.010 0.016 − 0.155
AWEI_1 − 0.466 0.040 0.041 − 0.160
AWEI_2 − 0.577 − 0.331 − 0.309 − 0.184
AWEI_3 − 0.447 0.025 0.027 − 0.195
AWEI_4 − 0.596 − 0.007 − 0.009 − 0.198
AWEI_5 − 0.592 0.013 0.013 − 0.232
AWEI_6 − 0.660 0.008 0.004 − 0.216
AWEI_7 − 0.508 0.016 0.016 − 0.195
AWEI_8 − 0.502 − 0.018 − 0.017 − 0.263
AWEI_9 − 0.438 0.050 0.033 0.204
AWEI_10 − 0.487 0.032 0.030 − 0.200
AWEI_11 − 0.655 0.012 0.009 − 0.241
AWEI_12 − 0.600 0.025 0.026 − 0.214
AWEI_13 − 0.566 − 0.058 − 0.056 − 0.160
AWEI_14 − 0.470 − 0.009 − 0.004 − 0.235
AWEI_15 − 0.547 0.017 0.018 − 0.301
AWEI_16 − 0.687 0.045 0.045 − 0.196
AWEI_17 − 0.798 − 0.017 − 0.021 − 0.211
AWEI_18 − 0.641 0.008 0.006 − 0.168
AWEI_19 − 0.747 − 0.042 − 0.043 − 0.229
Mean − 0.571 − 0.009 − 0.009 − 0.203
Std. Dev 0.105 0.080 0.075 0.029
Minimum − 0.798 − 0.331 − 0.309 − 0.263
Maximum − 0.430 0.050 0.045 − 0.155
Mean − Std. Dev − 0.676 − 0.089 − 0.084 − 0.232
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and nonwater classification results derived from the cal-
culation of the threshold equal interval (AWEI≥ − 0.676)
have an accuracy of 49.38%.

To study further about its more comprehensive appli-
cation, the best threshold improvement value (natural break
on AWEI≥ − 0.232) was applied to several national priority

lake locations in Indonesia. *e implementation was tested
on several lakes, which have different process formation
characteristics, which can be grouped based on (a) the
techno-volcanic process, as with Toba Lake (North Suma-
tra); (b) the tectonic process, including Poso Lake (South
East Sulawesi), Tempe Lake (South Sulawesi), Tondano Lake
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the equal interval threshold results.
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(North Sulawesi), Singkarak Lake (West Sumatra), Lim-
boto Lake (Gorontalo), and Sentani Lake (Papua); (c) the
volcanic process, including Batur Lake (Bali), Kerinci
Lake (Jambi), Maninjau Lake (West Sumatra), Matano
Lake (South Sulawesi), Rawa Pening Lake (Central Java),
and Rawa Dano (Banten); and (d) the flood plain process,

including Sentarum Lake (West Kalimantan) and Jem-
pang Lake (East Kalimantan). *e results show that using
the natural break threshold implemented on several na-
tional priority lakes in Indonesia to classify water and
nonwater classes had a variation in overall accuracy
ranging from 93.58% to 99.59%.
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on the quantile threshold results.
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Figure 9: Location of the split scene image selection in the scene data (XC″) of the subscene images (XCi″) with a size of 2 km× 2 km based
on the natural break threshold results.
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Table 2: AWEI threshold improvements are based on the mean value calculation of the local threshold of the second-stage split scene image
selection for surface water detection.

Approach class threshold calculation AWEI equation *reshold improvement value
Equal interval 4 x (G-MIR) − (0.25 xNIR+ 2.75 x SWIR) ≥− 0.676
Quantile 4 x (G-MIR) − (0.25 xNIR+ 2.75 x SWIR) ≥− 0.089
Geometrical interval 4 x (G-MIR) − (0.25 xNIR+ 2.75 x SWIR) ≥− 0.084
Natural break 4 x (G-MIR) − (0.25 xNIR+ 2.75 x SWIR) ≥− 0.232
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Figure 10: Continued.
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*is study applied AWEI threshold improvement to
cloud-free Landsat 8 satellite imagery data, which displays
the median pixel value based on the filter date data used as
input. *is will affect the quality and accuracy if the
development of the AWEI threshold is applied to a
Landsat 8 image with one recording date (single date),
which is also influenced by other factors such as the use of

its atmospheric correction type. *e study has not con-
sidered the influence of seasonal variations on selecting
the filter date data used as input in creating the cloud-free
Landsat 8 satellite imagery data. *is will be a challenge
for future research to be more specific in considering
variations in seasonal conditions and their development
for other types of optical satellite image sensors. In

0 10 205 Km

99°10'0"E99°0'0"E98°50'0"E98°40'0"E98°30'0"E

2°
50

'0"
N

2°
50

'0"
N

2°
40

'0"
N

 

2°
40

'0"
N

2°
30

'0"
N

2°
30

'0"
N

2°
20

'0"
N

2°
20

'0"
N

99°10'0"E99°0'0"E98°50'0"E98°40'0"E98°30'0"E

Water, Lake boundary area 
Based on the geometrical
interval threshold

Line boundary (reference)

Non-Water

(e)

0 10 205 Km

99°10'0"E99°0'0"E98°50'0"E98°40'0"E98°30'0"E

2°
50

'0"
N

2°
40

'0"
N

2°
30

'0"
N

2°
20

'0"
N

2°
50

'0"
N

2°
40

'0"
N

 
2°

30
'0"

N
2°

20
'0"

N

99°10'0"E99°0'0"E98°50'0"E98°40'0"E98°30'0"E

Water, Lake boundary area 
Based on the natural
break threshold

Line boundary (reference)

Non-Water

(f )

Figure 10: Test case results of the AWEI threshold improvement to detect lake surface water (water and nonwater class) in Toba lake:
(a) map references were obtained based on the on-screen visual digitization of Landsat 8 imagery from 2019; (b) classification based on the
normal threshold; (c) classification based on the equal interval threshold; (d) classification based on the quantile threshold; (e) classification
based on the geometrical interval threshold; and (f) classification based on the natural break threshold.

Table 3: Summary of the classification accuracy assessment of the AWEI threshold improvement.

Class threshold method *reshold Land cover class User Accu.
(%)

Product
Accu. (%)

Comm. error
(%)

Omi. error
(%)

Total error
(%) Kappa Overall

Accu. (%)

Normal threshold ≥0.000 Water 99.82 78.07 0.18 21.93 22.11 0.876 98.17Nonwater 98.16 99.98 1.84 0.02 1.86

Equal interval ≥− 0.676 Water 27.65 99.99 72.35 0.01 72.36 0.187 49.38Nonwater 99.99 37.26 0.01 62.74 62.75

Quantile ≥− 0.089 Water 99.69 98.21 0.31 1.79 2.10 0.987 99.84Nonwater 99.87 99.98 0.13 0.02 0.15

Geometrical interval ≥− 0.084 Water 99.70 98.11 0.30 1.89 2.19 0.987 99.84Nonwater 99.86 99.98 0.14 0.02 0.16

Natural break ≥− 0.232 Water 98.56 99.67 1.44 0.33 1.77 0.989 99.86Nonwater 99.98 99.89 0.02 0.11 0.13
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addition, there are several limitations in applying the
study results in detecting lake surface water caused by the
covering of the surface of the water body by a vegetation

canopy above it. *is can be exemplified at the Lake Rawa
Danau (Banten Province) location, visually presented in
Figure 11(g), with the classification results in Figure 11(h).
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Figure 11: Results of water and nonwater classification based on the natural break threshold (AWEI≥ − 0.232): (a, b) Maninjau Lake;
(c, d) Singkarak Lake; (e, f) Kerinci Lake; (g, h) Rawa Danau; (i, j) Rawa Pening Lake; (k, l) Batur Lake; (m, n) Sentarum Lake; and (o, p) Jempang
Lake.
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Figure 12: Results of water and nonwater classification based on the natural break threshold (AWEI≥ − 0.232): (a, b) Tempe Lake;
(c, d) Matano Lake; (e, f ) Poso Lake; (g, h) Limboto Lake; (i, j) Tondano Lake; and (k, l) Sentani Lake.

Table 4: Summary of the classification accuracy of the AWEI threshold improvement based on the results of the natural break threshold to
detect lake surface water, tested at several locations that could represent other lake characteristics in Indonesia.

Test site *reshold Land cover class User Accu. (%) Product Accu. (%) Kappa Overall Accu. (%)

Maninjau ≥− 0.232 Water 97.24 99.41 0.98 99.55Nonwater 99.91 99.57

Singkarak ≥− 0.232 Water 97.18 99.74 0.98 99.55Nonwater 99.96 99.51

Kerinci ≥− 0.232 Water 95.99 99.72 0.97 99.43Nonwater 99.96 99.38

Rawa Pening ≥− 0.232 Water 82.71 87.79 0.73 93.58Nonwater 98.40 98.01

Batur ≥− 0.232 Water 96.46 97.75 0.97 99.34Nonwater 99.71 99.54

Sentarum ≥− 0.232 Water 87.99 91.92 0.79 94.33Nonwater 99.61 99.39

Jempang ≥− 0.232 Water 83.85 76.66 0.76 93.83Nonwater 95.56 97.15
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5. Conclusion

*e objectives of this study were to increase the accuracy of
automatic lake surface water classification using an AWEI
based on analysis and calculations with the SBA and to
determine the threshold value in classifying water and
nonwater classes and conduct a test case study of AWEI
threshold improvement results on the surface water of
several lakes with a variety of different or heterogeneous
characteristics. *e SBA was used to perform split image
selection in determining variations in the local pixel value of
the AWEI, which represents the study area based on sta-
tistical calculations. Furthermore, the split image selection
results were used to determine the threshold value in
classifying water and nonwater classes. *e results show that
there was an increase of 1.69% in accuracy in the classifi-
cation of water and nonwater classes based on the natural
break approach (AWEI≥ − 0.232) compared with the results
of normal threshold conditions (AWEI ≥ 0), with a com-
parison of the overall accuracy for a natural break and
normal thresholds of 99.86% and 98.17%, respectively. *e
threshold value results derived from the natural break ap-
proach (AWEI≥ − 0.232) were used as the threshold im-
provement in this study and applied to several national
priority lakes in Indonesia that have different formation
processes. *e results also can be applied to the monitoring
of multitemporal lake water conditions at medium resolu-
tion and to support mapping efforts at a scale of 1 : 50,000–1 :
100,000 in Indonesia. Further development is needed in
future research using other types of optical satellite image
sensors and on more specific seasonal variations so that the
temporal density variations in monitoring the dynamics of
changes in lake surface water can be increased.

Data Availability

Landsat 8 was performed using the Google Earth Engine
(GEE) platform. Input data were obtained based on Landsat
8 Surface Reflectance Tier 1 data collection. *is data set
comprises the atmospherically corrected surface reflectance,
which is based on the Landsat Ecosystem Disturbance
Adaptive Processing System (LaRSC), and the various stages

of the process consisting of cloud, shadow, water, and snow
mask are produced using CFMASK. Detailed technical in-
formation and explanations regarding the data can be
accessed at https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C01_T1_SR.
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