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In this paper, we show the local well-posedness for the Cauchy problem for the equation of the Nagumo type in this equation (1) in
the Sobolev spaces H* (R). If D> 0, the local well-posedness is given for s>1/2 and for s>3/2 if D = 0.

1. Introduction

In this paper, we show the local well-posedness for the
following Cauchy problem:

{ut:Duxx—u(u—(x)(u—l)—eu”ux, x eR,t>0,

u(x,0) = y(x),
(1)

where D > 0 is a constant diffusion coefficient, « € (0, 1/2)
and € >0 is a small positive quantity. In [1], the equation
(1) was used to model chemotaxis (see equation (55) in
[1]). Organisms which use chemotaxis to locate food
sources include amoebae of the cellular slime mold Dic-
tyostelium discoideum, and the motile bacterium
Escherichia coli [1]. Therefore, u =u(x,t) models the
population density, n is a positive integer, and « is a
parameter which determines the minimal required den-
sity for a population to be able to survive (for normalized
population density, i.e., such that u =1 is the maximum
sustainable population). Balasuriya and Gottwald [1]
studied the wave speed of travelling waves for the equation
(1). Also, they have the numerical evidence for the wave
speed of travelling waves for the equation (1). Other re-
sults related to the equation (1) can be found in [2].

When € = 0, the equation (1) is called a Nagumo equation
or bistable equation [3-7] in which case the model describes
an active pulse transmission line simulating a nerve axon.

Also, we can see the equation (1) as a generalized viscous
Burgers equation with a source term. Dix [8] proved local
well-posedness of the viscous Burgers equation with a source
term using a contraction mapping argument. Moreover, for
the classical Burgers equation (without viscosity) is well
known that classical solutions cannot exits for all time, but
weak global solutions can be established [9]. In addition, the
uniqueness of the weak solution depends on some entropy
condition. Observe that when D = 0, the equation (1) is a
generalized Burgers equation (without viscosity) and non-
linear source term. Therefore, from the mathematical
viewpoint, the case D =0 is very interesting to study the
existence and uniqueness of classical solution.

In this paper, we show the local well-posedness for the
Cauchy problem to the equation of the Nagumo type (1) in
the Sobolev spaces H* (R) for s > 1/2 if D >0, and for s > 3/2
if D = 0. Our proof of local well-posedness is based on the
results given in [10-12]. We use the Banach fixed point in a
suitable complete space to guarantee the existence of local
solutions to the problem (1) with D >0. The Banach fixed
point technique has been widely used to show existence and
uniqueness of solutions to differential equations in Banach
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spaces (for instance, see [10-14] for more details). When
D =0, we use the parabolic regularization method to show
local well-posedness for the Cauchy problem (1) (e.g.,
[12,15]).

We will use the following notation: R for the real
numbers; & (R) for the Schwartz’s space usual; f denotes the
Fourier transform of f; the inverse Fourier transform will be
denoted by Vv; by H*(R), s € R, the setofall f € S8’ (R) such
that (1 + EZ)S/Zf € L*(R). H*(R) is called the Sobolev space
and it is a Hilbert Space with respect to the inner product
(f,9); = _[R(l + &) f(f)g(f)df C(I; X) for the space of
all continuous functions on an interval I into the Banach
space X; if I is compact, C(I; X) is seen as a Banach space
with the sup norm; C,, (I; X) for the space of all weakly
continuous functions on an interval I into Banach space X;
C! (I; X) for the space of all weakly differentiable functions
on an interval I into Banach space X. We also denote by
V(t) = etP%-ald) 50 the semlgroup in H* (R) generated
by the operator tQ where Q = (Da —ald), ie.,

V(f = (e‘t(D«fzm)})v’

{V (£)},59 is a C°-semigroup of contractions in H* (R), s € R.
Moreover, u(x,t) = V (t)y (x) is the unique solution to the

for feHs(R),tZO, (2)

linear problem associated with (1), i.e., u(x,t) = V (£)w(x) is
the unique solution to the following problem.
u, =Du, —au, xeR,t>0,
(3)
u(x,0) = y(x).

Proposition 1. Let y € H*(R),s € R,A>0,D>0andt>0.
Then, there exists a constant C), depending only on A, such
that
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Bt 12
"V(t)I//Her)LSC/\(l"'(ﬂ)) - (4)

In particular, V (t)y € §(R) for all £>0.

When there is no risk of confusion, we will use the
notations u(t) for wu(x,t), ¢ for ¢(x), and
F(u) = eu"u, +u’ — (o + Du?.

2. Local Well-Posedness of the Problem
(1) with D>0

In this section, we use the Banach fixed point in a suitable
complete metric space to show the existence of local solu-
tions for integral equation (9) in Sobolev space H*(R) for
s$>1/2. In addition, the uniqueness of the solution and
continuous dependence are established.

Proposition 2. Let s>1/2 be fixed. Then, F(u) is a con-
tinuous map from H*®(R) into H*'(R) and satisfies the
estimates as follows:

IF (u) = F ()lly < L (lullg lwll) e - wll, (5)

for all u,v € H*(R), where L (-,-) is a continuous function,
nondecreasing with respect to each of their arguments. In
particular,

IF ()l < L (lull, 0)lluall. (6)

Proof. Observe that F(u) = (e/n+1) (™), +
u® — (a+ 1)u?. Then, as H*(R) is a Banach algebra for
s>1/2, we have the following:

IF () - F (W)l s% Ou(u™ =) [’ -y + (e D’ - w0
€
<l =W - 0+ G D - w7 2
= Ly (lullss lwll) lu — wl,
where
Ly (lulls lwllg) = — Z el wll + Z el Ml + (e + 1) (flull +lewll,). (8)

The following result is to prove the existence of solutions.
The proof is based in standard arguments [10,11]. We only
present a sketch of proof. O

Proposition 3. Let D >0 be fixed, s>1/2, v € H*(R), and
V (t) is defined by (2). Then, there exists T = T (|yll;, M) > 0 and
a unique function u € C([0,T]; H* (R)) satisfying the following
integral equation:
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t
u(t)=vVy() - Jo V(t—7)F(u(-,1))dr. 9)
Sketch of proof. Let M, T >0 be fixed, but arbitrary. Con-

sider the following:

X (M, T,y) = {u € C([0,T]; H (R)): f(}le] [lu () —V(t)l//"SSM},

(10)
which is a complete metric space with distance
d(u,v) =supopllu(t) —v(t)ll,. Define on the space
X (M, T,vy) the following map:

t
(d9)®) =V - | VE-DFg@@r (D

We have the following:

(1) Ifge X (M,T,y) then /g e L (M, T, y)
(2) We can choose T>0 sufficiently small such that
A (X (M, T,y)) C X (M,T,y)

(3) There exists T € (0,T] such that o is a contraction
on X' (M, T,vy)

So, & has a unique fixed point u in X (M, T, ) which
satisfies the integral equation (40) where
T =T (lyl, M) >0.

Proposition 4. The problem (1) is equivalent to the integral
equation  (40).  More  precisely, if s>1/2 and
u e C([0,T]; H*(R)NC((0,T]; H2(R)) is a solution of
(1), then u satisfies the integral equation (40). Conversely, if
$>1/2 and u € C([0,T]; H*(R)) is a solution of (40) then
u € C'([0,T]; H*(R)) and satisfies (1).

proof. Assume that u € C([0,T]; H*(R))NC'((0,T]; H >
(R)) is a solution of (1). Then, (d/dr)(V(t-1)u
(1)) = -V (t - 7)F (u(7)), 0 < T < t. So, u satisfies the integral
equation (40). Conversely, assume that u e C([0,T];
HS(IR)) is a solution of (40). For t>0, let 7n(t):=-
[4 V(¢ = DF (u(7))dz. Then, for h> 0 arbitrary,

llw_ < Jt V(t—T)(V(h)_l—Q>F(u(T)) dr
h s=2 0 h s=2 (12)
t+h
b |V n - DF @) - Pl e
However,
V(h
Hvu— )( - —Q)F(u(r))
52
2D(t-1)+1 V (h) -
gq( L ) ( Q)F(u(f)) -
2D(t—-1)+1
SCI( D= D) ) KIIF (u (7))l (13)
2D(t 1
sC1< zé(t i ) KIF ().,
2D(t-1)+1\"
SCl(W) KLS(S[?T] IIu(T)IIS,O) Tesgg] lle ()15
¢ V(h) -1
and the right hand side of (57) is a integrable function of 7 in hli_n}0+ Jo Vi(t- T)( ( h) - Q>F(“(T)) dr = 0.
[0, t]. Thus, using the dominated convergence theorem, we 2 (14)

have as follows:



Now, from the mean value theorem for integrals, there
exists a value ¢ on the interval (¢,t+ h) such that

S =

t+h

and therefore, lim;,__,j + (1/h) L

Fu(t)l,_,d7 = 0.

After, 9,7 (t) = Qu(t) — F(u(t)) in H™2(R). where 9] is
the right derivative. In similar way, we can conclude that the
left derivative is 0, 7 (t) = Qu(t) — F(u(t)) in H* *(R). So,
7€ CH((0, T H 2 (R)) and 3,7(t) = Q1) ~ F(u(t)). As
V (t)y(x) is the solution of the linear problem (3), we
conclude that u(t) =V (t)y +n(t) € C ((0,T]; H2(R))
and satisfies (1). O

IV(t+ h—1)F(u(r)) -

Lemma 1. Suppose >0, y>0, f+y>1, a>0, b>0, u is
nonnegative and tV"1u(t) is locally integrable on [0,T). If

u(t)ga+br (t - )P 1" Yu(s)ds, (16)
0

ie, in (0,T), then

t+h
L IV (t+h—71)F(u(r)) - F(u@®)ll_pdr =V (¢t +h—c)F(u(c) - F(u ()l
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(15)
=V (h=c)F (u(t+c)) - Fu®),,

The proof of this lemma is given in Lemma 7.1.2 in [16].

Proposition 5. Let y,¢ € H*(R) and u,ve C([0,T];
H*(R)) be the corresponding solutions of equation (9). If
s> 1/2, then

llee (8) = v ()l < Klly = ¢l (18)

where K = E,,,, ((b['(1/2))’T), b=L,(L,L)C, (V2DT +
1/V2D) and L = max{sup[o,ﬂ llells sup o1y ||V||S} (here E, )y,
is given by previous lemmay).

proof. Let v, ¢,u and v as in the statement of the propo-
sition. Let s> 1/2. From (9) we have as follows:

u(t) —v(t) =V () (y - ¢) - JO V(t - 1)(F(u(r)) - F(v(1)dr.

u(t) <aEg,((bI (B)"t), (17) (19)
where v=B+y—-1>0, Eg,(s) =37 ,c,s" with ¢y =1 By Propositions 1 and 2, we obtain the following:
and c,,,,/c,, =TI (mv+y)/I (mv+y + B) for m=>0.
t
e () =v (Ol <y — ¢l + JO IV (¢t = 7) (F (u(7)) = F (v(D)s_yd7
. 1 12
<ly - ¢l +C, JO (1 + m) IF (u (7)) = F(v(D)ll,-yd
(20)
V2DT + 1 ¢ ~12
<ly - ¢l + CIW JO (t=1) 7IF (u(2)) - F(v(D)l,dr
V2DT +1 (! s
<y =9l + LLDC == | (=07 Plu(n) - v(nldr,
Cppp . L((m/2)+1) mlI (m/2) (21)
where L = max{sup o [lull, suppop IVI}. Let b=L(L, ¢ T(m+12)+1) (m+ DI (m+1/2)

L)C, (V2DT +1/+2D). Observe that E, , ; ((bI'(1/2))°T) is
finite. In fact, Ej,,( (bT(1/2))°T) = ¥ a,, where
a,, = c,, (b*nT)". (i1 /a0y) = (Cppirlc,) (B

7T)"? and from Lemma 1 we have that

Asforall x>0, T (x) = V2mrx*™ (2= xe0012% with 0 < §
(x)<1, we have that 1<ef®<e and
e (MI6)0(mI2)= (6/m+1)8(m+1/2) ig hounded for m>1. From (21),
we obtain as follows:

Therefore,
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Cs1 M (my2) ™!

G mE1 (ma1/2)VT

So, lim,,_,la,,./a,|=0 and El/z’l((bl“(l/Z))zT) =
Yoo Gy With a,, = ¢, (L*RT)"™?, is convergent. O

Proposition 6. Let s > 1/2. Then, the map y—u is continuous
in the following sense: if y,— vy in H'(R) and
u, € C([0,T,]; H*(R)), where T, = T (|ly,ll, M) > 0, are the
corresponding solutions (of the problem (1) with u, (0) = v,,).
Let T € (0,T,,). Then, there exists a positive integer N =
N (D, v, T) such that T, >T for alln>N and

lim sup ”un (t) - u(t)”s =0. (23)

n

proof. As T, =T (|y,l, M) >0 is a continuous function a
llw,ll,, then there exists N € N such that T* <T, foralln> N.
Let T = min{T*,T,,T,,...,Ty_,}. Therefore, u, is defined
on [0, T] for all n. It follows that u € X' (M, T, y,,) for all n
and satisfies o, O <l lls + M<y+M where
y = sup, |y,ll;. Therefore, sup, (o1 llns, (D)< y + M for all n
and sup;¢ (o llu ()ll; <y + M. Now, similar to the proof of
the previous proposition, we have as follows:

||u,,(t) - u(t)"sg ||1//n - 1//"S +L(y+M,y+M)C,

. 7‘232_7;;1 J-; (t- T)fl/zuun (1) - M(T)nsdT.

(24)

Let b=L,(y+M,y+M)C,(vV2DT +1/v2D). Thus,
E,jp, ((BT(1/2))°T) is finite (where E, ), , is given in Lemma
1) and we have as follows:

2
4 (O = u(®)] < v, - q/nsz((br(%)) T), forallt € [0,T].
(25)

This finishes the proof.
Finally, from Propositions 3, 5 and 6, we can summarize
in the following theorem: O

Theorem 1. Let s> 1/2. The problem (1) is locally well-posed
in H* (R).

- 1/26(6/m)9(m/2)— (6/m+1)0(m+1/2)

for all

— 0, asm — oco. (22)

3. Local Well-Posedness of the Problem
(1) with D=0

In this section, we show the local well-posedness of the
problem (1) with D =0 using a priori estimate and the
parabolic regularization method, the so-called vanishing
viscosity method (for more details see [12]).

Lemma 2. Let 1 (t), a(t) and b(t) be real valued positive
continuous functions defined on [0,T]<[0,+00). Let G(r)
and H (r) be positive continuous functions for r >0, with G
strictly  increasing and H  nondecreasing.  Define
A(t) = supy.,,a(s) and B(t) = supy.,b(s). Then, the
inequality

G(n(®)<a(t) +b(t) J; H(y(1)dr, 0<t<T,  (26)

implies the inequality
n()<G ' (Q N (QA®) +tB(1), 0<t<T,<T, (27)

where  Q(r) = [L(d/H(G' (), €>0,r>0, and
T, =sup{r € [0,T]: Q(A(7)) + BrQ(lim,__, G (r))}.

proof. This is a particular case of the theorem given in [17]
[pp. 78]. O

Proposition 7. Let s> 3/2 be fixed. Then, F (u) satisfies the
estimate

| (= w, F (u) = F (w))o| < Lo (lull Nwll )l = wil,  (28)

u,we H'(R), where Ly(x,y)= exzz;é

1k g (en/2)y" + X%+ xy + ¥P + (a+ 1) (x + y).

xky

proof. We define q(u,w) = Y;_gukw" "%, As s>3/2 thus
H*(R) and H* !(R) are Banach algebras. Moreover, we
have that H*(R) — H*!'(R) and H*(R) — L*®(R).
Thus, using the Cauchy-Schwartz inequality, we have as
follows:



| (u = wIF () - F ()l)o| < e (1 - w](u" - w")u|)

+

(=),

<€llu- wIIOH(u" - w")uxuo + g ’<|< (u - w)z)’C
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o' + e'(u - wlw" (u - w)x|)0|

+(a+ 1)'(u - wlu’ - w2|)0|

7
0

+Hlu - wllpu® - w’|l, + (a + Dllu - wlp|u® - w?|,

< (el b )l + 5] = )] ().,

2
llee — wlly

| +||u2 +uw + w2||L00 +(a+ Dlu+ wIILoo>

(29)

< <€||ux”571||q(u, Wl + §|| (W), |+ + v+ |, + (@ + Dl + w||s,l>||u -

< <e||u||5||q(u, W, + %”Huﬂ‘ L o+ + WP+ (@ Dllu+ w||3_1>

2
llee — wlly

< (ellutba el + o |,y + e + ww + 0] + (@ Dl + wl, )

2 2
llue = wlly < L (lulls Ivil)llu — wil.

Lemma 3. (T. Kato). Let r >1 and s> 3/2 be fixed and h,v
are real valued functions. Then, there exists a constant C =
C(r,s) such that

| (v, i), <C(J0.h] IV + 0], Il M) (30)

In particular, |(v, ho,v) | < Cllaxhlls_lllvllf.

proof. See Lemma A.5. in [13]. O

O

Theorem 2. Let s>3/2 be fixed. For D>0, consider the
initial value problem (1) with initial data + and let
up € C([0,T:]; H* (R)) be the corresponding solution of (1)
for some T;>0. Then, there exists a T, =T(y)>0,
depending on |y, such that up can be extended to the
interval ~ [0,T,(y)], and there is a  function
p e C([0,T,(y)];t[0,+00)) such that p(0)= ||1//||§ and
lup (DI <p(t), forallt € [0,T,(y)].

proof. Using the inner product in H*(R) and Lemma 3 we
have that

at”uD“Z = Z(uD|a uD|) = Z(uD|DaiuD —up (up —a)(up—1) - eugaquDs
(uDlDa uD|) (uD|—uD (up —a) (up — 1)|)S +<uD|—eu%aqul)s]

=2
2| -Dlp,u; -

IN

UD|”D (up — &) (up

1)|) —e(uD|u"Daqu|)s] 31)

zcs(ian # (o Dl + €0 Juol])

<2C,(Jupll! + (o + D]} + efup]*).  forall € (.77 (D1y)).

Then, |lup (t)llf <p(t) for all € [0,T*), where
p € C([0,T*);t[0,+00)) is the maximally extended solution
of the following problem.
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dp(t) _oC ( 2 4 (@t 1) 32, . (n+2)/2) For n>2, from the problem (32) we obtain as follows:
dr s\P P P >
(32)
p(0) =yl
dp(t) ZC( 24t o2 (22 (1)) < 2 9 4 4, D12 (33)
T Aptdt +(a+1)p™ " (t) +ep (t))_ s((x+e+ +4p (t)),
and integrating from 0 to t we have as follows:
t
p(£) < IIWlI? +2C, (a + € + 2)t + 8C, I p "I (1)dr, 0<t<T<T". (34)
0

From Lemma 2 with a(t) = ||1//||§ +2C, (a+e+2)t,
b(t) =8C,, G(r) =r and H(r) = r"?2 we have the fol-
lowing bound:

/ —(2/n)
”2_.4nc;f) ., (35)

p(t) < <(||q/||§ +2C, (a+ e +2)t)
fort<T,,whereT, = sup{t € [0, 4+00): (||1//||f+ 2C(a+e+
2) t) "2 >4nC,t}. Observe that T, >0, since the function
O(t) = (||1//||f +2C, (a+e+ 2)t) "2 - 4nCt is strictly de-
creasing for >0, ®(0) = (1/|lylly) and there exists an
unique ¢, € (0,+00) such that ®(t,) = 0. Therefore, we can

p(B) <yl +2C, (a+e+2)t +

and from Lemma 2 we have p(t) <
(1/ (||1//||§ +2C, (a+e+2)t)"' —8C,t), for 0<t<T, where
T, = (~lvl?+ \/IIV/II;‘ +4(a+e+2)/16C, (a+ €+2)). So,

we can choose T’ (y) such that 0 < T, (y) < T',, and therefore,
we conclude that

1

(1)< - ,
: (IyI? +2C, (a+ e + )T, (y)) " - 8C.T. (y) (38)

for all t € [0, T (y)].
As, lup (t)||§ <p(t) forallt € [0,T*), and since p (t) and
T* do not depend on D, the usual extension method shows
that we must have T} (D, y)>T (y) for all D >0, where
T, (y) is any positive number satisfying 0 < T (y) <T*. O

Theorem 3. Let s>3/2 be fixed. If v € H*(R), then there
exists a T,=T,(y) and a function
uy € C, ([0, T,]; H (R))NCL ([0, T,]; H™*(R)) such that

choose T,(y) such that 0<T,(y)<T,. Moreover, the
function W (t) = (®(¢))"*" is increasing on [0, T ()], and
therefore we have that

) —(2/n)
p(t)< ((Ilwlli +2C (a+e+ 2T (y) " - anC.T, (w)) ,
(36)
for all t € [0, T (w)].
For the case n = 1, from (32) we have that
t
SCSJ P (n)dr, 0<t<T<T", (37)
0

u, (0) = v, and u, satisfies (1) with D = 0, in the weak sense,

ie.,

d n 3 2

%(”0 (Dlgl)s-, = (_‘X“O — €U0,y — Uy + (o + 1)M0|§0|)5_2,
(39)

forall p € H"2(R) and t € [0,T].

Moreover, ||u0||§ <p(t)forallt e [0,T,], where p(t) is as
in Theorem 2.

proof. LetT, =T (y) be as in Theorem 2. Now, we will split
the proof into four steps: O

Step 1. First we will show that (up (t))p., is a net which
converges to a function u, € C([0,T,]; L*(R)) in the L* -
norm, uniformly over [0, T ].

Let Dy, D, € (0, +00). Then,
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2 d
0 — uDl —MD2 .

1d
iduDl - uD
2 2
= <uD1 - uDz'Dlaqu1 — D,0,up,

2 il o~ o,

2

dt

Aur —u 3 3
0 D, D,

l/lD1 - uDz

>0
)0 - e<uD] - MDZ

2 2
up - uD2|>o - oc(uD] - uD2|uDl —up,

)
)
)

33
up —up,

),

n n
+(a+ 1)<uD] —up, up, OyUp, — Up O Up,

= —D1

ax(”D1 - ”Dz) i - (D1 - D2)<ax(uD] - uD2)|aqu2

3

3 2
up, - uD2|)O +(a+ 1)(”D1 —up,

2 —
up, —up,

- (LtD1 - MDZ

—aluy —u - eluy, —up |uh O.uy —u' 0. u
D, ~ UD,|, D, ~ Up,|Up Oxlip, —Up O, Up,

(ax(uD] _uD2)|aqu2|>0

)0

<|D, - D,|

+

),

(uDl - uDZ

+(a+1)

2 2
(uD1 —Up,[up —up,

+e ((uDl - uDzju;glaqul - ugzaquJ))O', forallt € [0,T].
(40)
Let M = sup, (o, 1V/p (t), where p is the function defined In order to bound the first term, we have as follows:
in the proof of Theorem 2. We bound separately each term
on the right-hand side of (40) as follows:
D, 3|2, 0 o) )| £ Dol =)o)
<|D, —D2|< aqul||0+ 0, up, 0) O,tip, ||, (41)
<2M’|D, - D,|-
We can bound the second term by the following:
; ; 2 2 2
(MDI ~ Up,|tp, T ¥p, )0 = "uDl ~Up, 0("”D1||0 +“uD1|'0| YDl +| Up, 0)
2 2 2
S"uD1 —up, O(HuD1 ot 'uDl Ao, |, *|up, S) (42)

2
2
<3M "uDl —up,|,

The third term is bounded by |[(up - uDZIu%)l—
up, Dol <2Mllup, —up ;.
Finally, we have
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5 5 (where g is defined in the proof of Proposition 7). From
<uD Up, uDl xMp, ~ uDz M, )0 Theorem 2, we obtain as follows:
1 (u u '8 il nﬂ |) axq(uDl,uDz) Lo < axq(uDl,uDz) <p(t)n/2 (44)
=1 \#p, " Hp
n ‘ for all £ € [0,T,).
1 il Therefore, from the above bounds, we have as follows:
= (ax(”D “D Up, ~ )
n+l ! : ! 0
. (43)
= ] (0, = a0, ), = 0, (15|

)

L’

1
T2+ 1) K(”Dl - up,) [o.q(utp, 1)

2
Sm“ul)l — Up, 0

axq(uDl’ uDz)

2

o (45)

Mﬂ
““DI up, |, <2M%|D, D2|+(3M +2(oc+1)M+m)"uDl—uDz

Zdt

Applying Gronwall’s inequality to the last relation, we  and so u, € C([0,T,]; L*(R)).
show that there is a constant C>0 satisfying
2 !
”gD (t) —up, Dl <CID, = D] for all ¢ € [0,T), and smee Step 2. Now we show that u, € H*(R). Lett € [0,T]. Since
L (IR) is  complete  there exists the limit
. ., . . Uup — U, in L?(R), as D — 0+, then there exists a sub-
u, (t) = limp__yup (t) in L* (R) uniformly with respect to sequence {D 1)} such that

€ [0,T,], ie
lim @ g (8, &) =1, (8, 8),& —ae.
lim + sup "L‘D(t)_”o(t)"()zo) (46) jil?ooupén( &) g ( £),E-ae (47)
D=0 yefor,]

We obtain by Fatou’s Lemma as follows:

Jinlf = [ (14 8) il < timin [ (148 (49

Step 3. We must show that up—u, in H*(R) for all  In fact, given ¢ € H°(R) and €>0, choosing ¢, € H*(R)
€ [0,T,] as D — 0+. such that [|¢ — ¢.[l; <€, then
First of all, we will show that (up(f))p., is a weak
Cauchy net in H* (R), uniformly with respect to t € [0,T].

(6) = up, (1)@ = 9c] ), + (up, (6) = up, ()],

|(p, () = up, (D)),

= [, 0 -, I+ (”Dl (0 - up, O](1-2:) o, )ol (49)
<2Me +'|“D1 (t) - up, (t)"()"(l - a;zc)s‘l’e 0
forallt € [0,T,(y)],
DliE}Q + sup  (up () —uy (Hlgl), =0, (50)

and therefore, we have limp , o+ sup,cpor(up, (£) - te[0.1,]

up, (B)lg]), = 0.
Thus, we have that up,—u, for all t € [0,T7], ie.,
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for all ¢ € H°(R). Moreover, since the convergence is
uniform for all ¢ € H*(R), we can conclude that
u, € C, ([0, T,]; H* (R)).

(up Dlgl)s-> = (WlgD;-»

t
" jo (D21, (7) — tpy (2) (up () -

for all t € [0,T,]. Since up, — u, in L*(R) and up—u, in
H* (R), we have 0, up,—0,u, in H! (R) and 0%up—0%u, in
H* 2(R) uniformly on [0, T,]. Observe thatifr > 1/2, f,— f
in H"(R) and g,—g in H" (R) then f,g,—fg in H (R).
After, we have

(4o Olg.cs = (WlgDs + | (it

Corollary 1. Let u, be as in the preceding theorem, then
uy € AC([0,T,]; H*(R)).

proof. Since t € [0,T,(y)]—u(u—-a)(u-1)+eu"u, is
weakly continuous in H*"2(R) and the Sobolev space is
separable, then applying the Bochner—-Pettis theorem, it is a
strongly measurable function in H* 2 (R). Therefore,

Jt (u(u—a)(u-1)+eu"u,)dr,
0

(54)
exists as a Bochner integral. So, from (53) we conclude that

uy(t) = v+ J; (u(u—-a)(u-1)+eu"u,)dr, (55)
and therefore, u, € AC([0,T,]; H*(R)). O
Theorem 4. Let s>3/2 and T>0 be fixed, y; € H*(R),

j=12, and v, € C([0,T];L*(R))NC,, ([0,T];H*(R))N
AC([0,T]; H2(R)) two weak sense solutions to (1) with

o ) (1t~ 1) - e, ulgl) .
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Step 4. Finally, we show that u, € CL ([0,T,]; H*(R)).
Let ¢ € H" ?(R). Then,

(51)
a) (up (1) = 1) = eup, ()"0, (up (1)) l9l) _,d,

up (up = &) (up = 1) =ty (ug — &) (ug = 1) in H* (R),

1 (52)
unDax (uD)_\u(r)lax (uO) in HS_ (IR)’

uniformly on [0, T]. Thereby, taking the limit as D — 0+
in (51), we obtain as follows:

(53)

R= max{ sup ||v1(t)||s, sup ||v2 (t)"s}. (57)
te[0,T] te[0,T]

proof. Let w(t) = v, () — v, (t). Since s>3/2, we have s —
2> -1/2>1-5s and 1-s> —s, and also
H* 2 (R) — H*(R). Using the fact that w (¢) is real valued
we have

(w(t +h)w(+ h))y - (wBw(B)])

h
{thwm) +<le(f)l>
0 0
- <le(t+h)l> + <M|w(ﬂl> ’

(58)
where t € [0,T] is fixed, h is such that t + h € [0,T], and

D = 0 such that vj (0) = v, j=12 Then, 1> is the H® duality bracket. As te [0,T]—
w(t) € H°(R) is bounded and
v @ =2 Ol <lys = vallge! 0, 56)
where L is as in the Proposition 7 and
w(t+h)—w(t
o = tim YTy )00~ ) (0~ 1) =120 (12 0~ (1,0 - 1))

—e(v (1)"0,v, (1) — v, ()"0, v, (1)),

exists in the norm of H*"?(R) — H~*(R), from (58) and
(59) we have as follows:

(59)
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Oy llw ()l

11

= =2 (1) (v, (1) — @) (v, (1) = 1) = v, () (V5 () — @) (v, () = 1) + vy (1)"0, v, (£) — €v, ()"0, v, (D)w (1))

==2(vy (1) (v (1) = @) (v (1) = 1) = vy () (v, (1) — @) (v, () = 1) + evy (£)"0, vy (£)—€v, (£)"0, v, (D)|w (£)]),)

(60)

= =2(v; (1) = (a+ Dy, (1) = ev, ()"0, (8) = (v, (8)° = (@ + v, (1) = v, ()"0, v, (1)) + (v, () = v, (D) [w (B)])

From Proposition 7 and (60) we have as follows:
B lw (B2 < (Lo (R, R) + &) |v, (8) = v, (D)5 (61)

where R is given by (57). Applying Gronwall’s inequality to
(61), and we have proved the theorem. O

Theorem 5. Let v € H* (R) with s > 3/2. Then, there exists a
T,=T,(y)>0 and a unique u, € C([0,T,]; H*(R)) such
that

{ O,y (1) + 1y (1) (1 (1) — &) (uy (£) = 1) + 1 ()"0 14y = 0,

Uy (0) = y.
(62)

proof. From the previous results, there exists a unique so-
lution of (62) in the class described in Theorem 4. Now, we
will show that u, € C([0,T,]; H*(R)).
Let ¢ € H°(R) be such that [l¢], = 1. Then, we have
[ (uplel)l < ||u0(t)||SSp(t)”2, for all ¢ € H*(R) and for all
€ [0,T,]. Additionally,

| (yloDy| = Tim +[ (uolol)| = liminf +| (uolgl) | < liminf +[uy (1)]

< limsup +[|uy ()|, < limsup +p (£)
t—0 t—0

for all ¢ € H°(R). As we have |ly|, = SUPy,). = 1 (ylol)l,
then taking supremum over [¢[l, =1 in (63) we have
liminf, _; + [luy (¢)|l, = limsup,__, + lluy (Dl = lwll,, ie.,
the limit of [u,(¢)ll, exists as t— 0+ and
lim,_ o+ lluy (Dl = lyl,. Since u(t) — y weakly in
H*(R) ast — 0+, it follows that lim,_,; + 1, () = y in the
norm of H*(R). Let t' € [0, T,) be fixed. Then, there exists
T >0, with T,—t'> T,and a unique v € C,, ([0, T]; H*(R))
NCL ([0, T]; H2(R)) satisfying 9,v(t) +v(t) (v(t) —a)
(v(t) = 1) +v(t)"0,v = 0, with v(0) = u(t"). We have noticed
that the uniqueness of solutions implies that v (t) = u, (t +t'),
fort € [0, T]. Since v is continuous from the right at t = 0, then
U, is continuous from the right at t = t'. Now, lett' € (0, T] be
fixed. Observe that the following problem

—ow(t) +w(t)(w(t) —a)(wt)-1) —w(t)"d,w=0,
w(0)=u(t),
(64)

has a wunique solution w(t, x)=uy(t'—t,—x) with
i(t', x) = uy (t',—x), because the equation in problem (64) is

(63)
=l

similar to the equation in problem (1) with D = 0 and it is
easy to show similar results to those obtained for problem (1)
with D = 0, specially the uniqueness results.

In particular, for the problem (64) there are results
analogous to Theorems 3 and 4. Therefore, since w is
continuous from the right at ¢ = 0, then u, is continuous
from the left at t'. So, u, € C ([0, T,]; H (R)). Moreover, we
have  u (uy — &) (uy — 1) + eufou, € C([0,T]; HT* (R)).
From (55) we also conclude that u, € C' ([0, T]; H* 2(R))
and that it is the unique strong solution of (1) with
D =0. O

Theorem 6. Let s>3/2, ye H*'(R) and upeC
([0, Ty, (W) H* (R) NCL([0, T, (9)]; HS 1 (R)) be the
corresponding solution of the problem (1) for D >0, defined in
the interval [0, T, (y)] which is independent of D. Then, ur,
can be extended, if necessary, to the interval [0,T,], with y
viewed as an element of H* (R).

proof. Applying (30) with r = s+ 1 to obtain
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d
5”’@ ”§+1 = 2(”D |ou, (t)l)sn

2
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2[—D||aqu||S+l —(uDiuD (up — ) (up — 1)|)s+1 - e(uD|ugaqu|)s+l] (65)

<2C,( Jup i ltn oy + o+ DY et oy +Jen e 1, )
<2C ”u

Now, from inequality (3.12) and Theorem 3.2 in [14], we
obtain as follows:

bl < 2upllnlsss < ol Junl— (66)

lplesr < (Replisln o +lp i ftp i)
Dlls+1 = DIlL2 " Dlls+1 DIlLe " Dlls+1
2 2 2
< 2fup o fup oy + il [un 1 = 3[un] 1o 4o

2
<Clup|fup.,

Therefore, using (66), (67) in (65), we have as follows:

(67)
d , "
oo O, <2 (Jup O + @+ Dt O]+t Ot O (68)
and integrating from 0 to ¢, we have as follows:
2 2 ' t 2 n 2
o O <0012 2 [ (Jtp O + @ Dl @, o (O Yo (e )
and applying the Gronwall’s inequality to obtain
t
e DI <y, exp(zc’ [ (heo @I + @4 Dy @]+ o (r)ll?)dr) (70)

Observe that on the right-hand side of (70) is well-de-
fined for t € [0,T,(y)] and therefore we can extend (if
necessary) u = u(t) to [0,T,(y)] as a solution in H**' (R).
Thus, we conclude that T (y)<T,, (y). So,
up € C([0, T, (v)]; H(R)) for D>0. From (70) also we
have that

2
lup O], <IIZ,, exp(2C"(M? + (a+ DM + M")T, ().

(71)

Observe that the last inequality is independent of D >0

and since up weakly converges and uniformly to u, in

H**'(R), then we have u, € C([0, T, (y)]; H (R)).
Following Lemma 5 in [15] we have the nextlemma. [

Lemma 4. Let s>3/2. For y € H*(R) and 7> 0, we define

v eXp<_T(1 B ai)sn)‘/’ - <17/(') exp(-7(1+| |2))5/2>V.
(72)

Then, lim,_; + [ly" — yl, = 0, and there exists a con-
stant C = C(s) such that

1225\ 2
lasc(1+(5)")

v =y <l eyl

(73)

Moreover, lim,_, + |y — y|; = 0 uniformly on com-
pact subsets of H*(R).

proof. Notice that [ly™ —y|? = [ (1 +&)]e 70+ -
1|2|17/(E)|2d5. Then, using Lebesque’s  dominated
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convergence theorem, we obtain lim,_ , + ly" — v, = 0.
Now, to prove the uniformity on compact subsets, it is
enough to show that v, — v in H*(R) implies lim,__, +
lv;, — w,ll; = 0 uniformly for n=1,2,..., since sequential
compactness is equivalent to compactness in metric spaces.
Thus, observe that

“‘V:l 3 WT“? _ JR(I N 52)36_21(1+52)s/2|{/}n - {[/(f)|2df

<[ 0+ &) ©- 9@ =]y, - vl
(74)

13

Let € > 0 be given and choose N such that if n> N, then
lv, —wll;< (1/3)e. Thus, for 7,>0 small enough that
0<7<71, we have

lva— vl <e (75)
for 1<n< N. Now, if n> N then we have

T Iy R A R T

W= [ ee) e perdes (1 max( g7 7006 ))uwui

(1))

usin the mean  value  theorem,

Finally using »
= | <|7 - 6](1 + £)¥?, and then we have

B 21/
|e T(1+&E%)

T Onzzj
o Jr
R

The proof is complete. O

- uﬂ(x)| dx

21§12 2522 R
e (1) e () \ 7 ©OPdE<]r— Pyl

(78)

T
“0

+e<uO —ul| (u) 0,1l - uo 8 u0'>

<

+€

+€

Now, the right-hand side of the inequality (3) will be
estimated.

o (15— ) (ug = 1) = (1t~

(5 = o (5 — @) (5 = 1) = () — ) (] - 1)
(ug - ug (u(g))nax(

T 0
Uy _”0)

(15—l (o) = ()",

, (76)
<[l = vl +lv" = v, +lv - vl <e.
Hence (75) holds for all n.
On the other hand, we have
(77)

Proposition 8. Lets>3/2, v € H*(R), y* (for T>0) be as in
the preceding lemma. If u is solution of the problem (62) with
ui(0) =y, for all >0, then there are constants
C=C(slvlly, T) >0 and n = n(s) € (0,1) such that

-t <l -

for T sufficiently small and 0<0< 2.

P+t ’1] (79)

proof. Let >0 be such that u] (¢) is well-define in [0, T'] for
all 0 <7< 7. Then,

a)(ug - 1)

).

(80a)

)|

(80b)

)
)|

First, we will estimate (80a). Applying the Cau-
chy-Schwartz inequality to (80a) we have

(80c¢)
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0 0 0 0|
R Y )| B ) o
6 2
<Cll -],
where  L(x, y)=x*+xy+y*+ (a+1)(x+y)+a and Finally, we estimate (80c). As s > 3/2, there is s, such that
C=L(M,M). 3/2<sy+1<s. From the Cauchy-Schwartz inequality, we
Now, we will estimate (80b). Observe that obtain
n T n T 2
(”o ug (ug) ax(uo —ug) >S gCuax(ug) N e
Scuug :l ug - uf j_ " uo—u()”
(82)
0 0\"
(”(T) - “OK (110)" _(”0) )ax”8|) Uy = “0“ " ug)" ~ a “0
(83)
< luo - ”0 (" (ug)" = (”0) s+1>
Now, we will estimate each term on the right-hand side
of the last inequality. First, observe that
0
(uo) |u0 — |, (u;,uo) . Uy — U K (84)
T T CT, (M?*+(a+1)M+M") —(1/s) 85
where g is defined in the proof of Proposition 7. R (g I <yl (89)
We also estimate || (17)" - (u9)" I lle4gllssr- From Lemma  for all 7< 7,
4 and the inequality (71), we have From Lemma 4, we have
0\" 0 e 1-e
" (ug)" ~(uf) S (ugy 1) . Uy — Uy WS Uy — | [[up — ”o“ )
<2(CM)°|lu, - ug";_g
where o = (sy/s). To estimate the term [uf — ugllo, observe
that
0,0 0
ug—u()" (”o ublud (uf — @) (ug - 1) - uo(uo—(x)(uo—l)DO
(87)
9 2
+ 26<u0 — ug| (ug)" 0 ug — (uo) 0 u0'> <C "”0 - uO”o — 1"q ul, ud ||Loo Uy — u0|| Uy — uOHO,
Uy — uou (88)

where g (u,v) = )" =0 u/v""J, and from Gronwall inequality

we have as follows: From Lemma 4,
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(so/s)

(1/s)

" (”0) _(”0)
<Clr - 6~ (50) ||w||;(s°“) Iyl e
< Clyl () 1= (sor1s),

Iyt

s+1 -

(89)

for 0 <0< 7. Therefore, we have

(”o) _(”0)

T

o |u‘)“sﬂ<2MCIII//||2 (s0/s) 1= (so1/s)

(90)

and the term (80c¢) is bounded for

(ug - ugK (ug)" —(ug)")axug )S sC(”uO - uON +1 (SDH/S)).

(91)
Of the bounds that were found for (80a), (80b), (80c) we
conclude that

at"uS - ug"j < (:][ (92)

Ul _“0" b (so+1/s):|’

and using Gronwall inequality, we obtain (79).
The following corollary follows immediately from
Proposition 8 and Lemma 4. O

Corollary 2. Let F be a compact subset in H°(R). Suppose
that v € F, y" and uf are defined as in the preceding result.

0

u; —u72—2 us . — Uy
0,j " Yol T 0,j ~ Yo

+ 26(1,16,]. - ug
sC(Z(

Applying Gronwall inequality to the last relation and the
fact that ||1//} -yl < IIWj -y, we have

T
Ho jl

<l - ol eo( e, (2(0

Therefore, for j sufficiently large, we have [lu, ; — ull; <€,
for all t € [0,T].

Finally, the results obtained above can be summarized as
follows: O

”uOJ - uO

Theorem 8. Let s> 3/2. For D = 0, the problem (1) is locally
well-posed in H* (R).

Bl )+ + a s,

15

Then, uj converges uniformly to u,, for all t € [0,T], as
T — 0+

Theorem 7. The map y—u, is continuous in the following
sense: let y; € H(R), j=1,2,3,... such that y; — y in
H*(R) and Uy € C((O T,,;); H (R))nC' ((0,
T J] H"%2(R)) are the correspondmg solutions of the
problem (62) with initial condition U, j 0) = Let
Te (0,T,.). Then, there exists a positive integer

Ny =Ny (s, y) such that T ;>T for all j>N, and

lim o, sup o7yt (6) = 1o (1) = 0. (93)

proof. Consider ¢ € H*(R) and let {1//]} be a sequence in
HS([R) such that converges to y. Suppose that ug, u > ug,
are the correspondmg solutions of (62) with initial
I/ues v Y v Y respectwely As y; — y, from Cor-
ollary 2 we have that ug,; converges uniformly to u, ; and ug
converges uniformly to u, as 7 — 0+. Thus, given € > 0, for
7 sufficiently small, we have

T T T T T T
HMOJ - Mo”s = "MO)]- - “0,]‘ + MO — Uy + “0,]‘ - MO s “0,]‘ - MO K
(94)
for all ¢ € [0,T]. Now, we will show that ||u0 ugll; con-

verges uniformly to zero, as j — 0. In fact, from Lemma 3
and the Cauchy-Schwartz inequality, we have as follows:

(15— @) (5= 1) = g - ) 4~ )] ).
(15,7 0t = ()"0

i) + sl + a(

)S (95)

Al.))

T _ T 2
Uy, — U,

T
Ug,;

(96)

il))ar ),
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