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 e mean �ow of direct survey estimates is mainly concerning the sample adequacy ful�llment unless it has been produced large
variance estimates, and therefore, the small area estimations are developed to manage this �aw of the path. Small area estimation
improved the direct survey estimates by borrowing strength from the census data and at the same time by using historical data
from consecutive surveys. In this paper, we applied the spatiotemporal Fay–Herriot (STFH) model for producing fairly reliable
disaggregate-level estimates of undernutrition indicators across all zones.  e STFHmodel is an appropriately �tted model to the
undernutrition data since it has the lowest information criteria (IC) value.  e spatiotemporal estimates improved both the direct
and spatial estimates of undernutrition under the FHmodel and have brought e�ciency gain in the percent coe�cient of variation
(CV).  ese results may provide useful information to the government’s planners, policymakers, and legislative organs for
e�ective policy formulation and budget allocation in all zones.

1. Introduction

 e complete enumeration of surveys in geographically small
areas with adequate sample sizes is too expensive and time-
consuming; it is utterly unthinkable for developing countries
like Ethiopia. It is known that censuses are conducted once in
a decade, while surveys are conducted within �ve years of
intervals. A survey is often planned to provide reasonable
estimates at large geographical areas like national and regional
levels [1]. However, the sample sizes are seldom large enough
for small areas to produce direct estimates of adequate pre-
cision for the domains characteristics of interest [2]. Large
estimation errors are produced in such cases, and the in-
ferences are unreliable and useless for policymakers [1, 2].

 e demand for small area statistics at disaggregated levels
is increasing across the globe for policy interventions [1]. In
addition to survey estimates produced e�ciently at large
scales (national and regional levels), these surveys also con-
tribute to the country’s economic, health, social, and political
decisions, and policy implementations.  e legislative organs
of the government of Ethiopia rati�ed laws, implemented
policies, and made political decisions are based on only the
information received from the national and regional levels.
 e estimated information is not decentralized as the gov-
ernment’s structures are decentralized.  e accessibility of
disaggregate-level statistics for target-oriented e�ective policy
planning and monitoring is essential for Ethiopia’s decen-
tralized administrative planning systems.
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Different researchers have suggested several model-
based techniques of small area estimation to improve the
direct survey estimates for domains with small samples sizes
[3–5]. +e ordinary Fay–Herriot (FH) model was developed
and studied by [1, 6–9] to improve the small areas with small
sample sizes. +e spatial small area estimates are studied by
[4, 10–13] with area correlations of the characteristics in-
terest under the FH model. +e need for spatial information
in neighborhood areas is stated by [14] as “everything is
related to everything else, but near things are more related
than distant things.” +us, closer areas tend to have similar
socioeconomic characteristics of interest than distant small
areas. Such extensions of the spatial FH model are further
studied by [5, 10, 15].

Spatiotemporal small area estimation incorporates time-
related historical data. It simultaneously includes the spatial
correlation among data from the neighboring areas (zones in
our cases) with fixed regression parameters across time.

In our study, we considered the zones to be small areas.
+is study focuses on child undernutrition indicators
stunting, wasting, and underweight among children under
five years of age. Among undernutrition indicators; stunting
(height-for-age), underweight (weight-for-age), and wasting
(weight-for-height) have been considered. Children whose
height-for-age z-score is below minus two standard devia-
tions (−2 SD) from the reference population’s median are
considered stunted. Stunting is also called shortness, which
means low height relative to age. Children whose weight for
height z-score is below minus two standard deviations (−2
SD) are considered as wasted [16–18]. +is study used the
z-scores of the standard forms of stunting, wasting, and
underweight as continuous variables to utilize the maximum
amount of information available in the data set.

Globally, estimated 144 million and 47 million under
five-year-old children were stunted and wasting, respec-
tively, according to a research in [17]. +e majority of the
world’s stunted, underweight, and wasted children under the
age of five lived in Asia and Africa [17]. Furthermore, un-
dernutrition is associated with 45 percent of deaths in
children under the age of five worldwide [17]. In Ethiopia,
38%, 10%, and 24% of children under the age of five were
stunted, wasting, or underweight, respectively [18].

Decentralization is the most important administrative
element in Ethiopian healthcare system [19]. Complemen-
tary to government institutions, the federal ministry of
health decentralized the health service (regions, zones, and
woredas). +ese administrative hierarchies are the most
important entities in the country’s healthcare delivery
[19, 20]. Between regional and woreda (district) govern-
ments, zonal governments act as a link (milestone). +e
health efforts in the districts are monitored and evaluated by
the zonal health department [19]. As a result, estimates of
undernutrition indicators at the zonal level are a consid-
erable benefit for legislative bodies, policymakers, and
monitors at all levels of government.

+e focus of this paper is exploiting the spatial infor-
mation obtained via the neighborhood area characteristics of
interest for improving the direct survey estimates for un-
planned domains, which are zones. Besides this, the

spatiotemporal model has been adopted to further improve
the direct survey estimates by simultaneously incorporating
the four years from 2000 to 2016 Ethiopian demographic and
health survey (DHS) to strengthen the direct survey esti-
mates of the last survey data. +e Ethiopian DHS has been
carried out within five-year intervals for the large geo-
graphical areas of regions and national levels. +is study
generated a spatiotemporal zonal level estimate using the
surveys taken in 2000, 2005, 2011, and 2016. In this study, the
researcher applied spatial FH and STFH models to obtain
reliable and precise estimates of undernutrition (stunting,
wasting, and underweight) by linking characteristics of
interest from the 2000, 2005, 2011, and 2016 DHS data,
which are considered to be temporal data, with the 2007
census data.

+e remainder of the paper has been arranged as follows:
in Section 2, the study discussed the methods and materials
of the study, the spatial FH model with spatial correlation
among the small areas (zones in our case), and the STFH
model, which incorporates both area effects and time-related
random effects. We report the results of the data analysis in
Section 3 and discuss them in Section 4. Finally, we present
conclusions in Section 5.

1.1. Literature Review. +e spatiotemporal model in small
area estimations is proposed by [5] and further studied by
[21–23]. Using survey data from 2004 to 2008, a spatial-
temporal Fay–Herriot model is applied with Spanish data to
estimate poverty indicators for Spanish provinces in 2008
[5].+e spatial autocorrelation among the neighboring areas
might be exploited to improve the direct survey estimates;
however, incorporating time-related historical data further
improves the direct survey estimates and spatial small area
estimates [5, 21].+e spatiotemporal small area estimation is
not studied in the country, yet it has not received attention in
the undernutrition literature.

Estimation results for spatial and spatiotemporal small
area models were compared in different types of literature
[5, 21, 23, 24]. +e spatiotemporal small area estimates of
income in Poland data were applied by [25]. According to
the studies in [25], the spatiotemporal models that used
spatial correlation between neighboring areas as well as
historical data were compared to EBLUPs based on spatial
models derived separately for each year and with EBLUPs
[5, 22, 23, 26]. +e findings, the Polish data coming from the
household budget survey and the administrative data, show
that spatiotemporal small area models has been realized a
noticeable reduction in estimation errors, especially when
strong spatial and time autocorrelations were detected [25].

Spatiotemporal Fay–Herriot models are one of the SAE
approaches that have incorporated spatial and time effects
and have been utilized in poverty at the district level in west
Sulawesi province [22].+e studies in [27] investigated area-
level time models for small area estimate of poverty indi-
cators and borrowed strength from time by employing area-
level linear time models. +e Spanish living conditions
survey’s poverty indicators are evaluated using spatiotem-
poral models [27]. Spatiotemporal Fay–Herriot model
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applied with Spanish EU-SILC data is carried out to obtain
estimates of poverty indicators for Spanish provinces in
2008, making use of survey data from years 2004–2008 [21].
Spatiotemporal data contain a diverse set of variables, posing
distinct problems and possibilities for professionals
attempting to maximize its full potential.

2. Methods and Materials

2.1. Data Sources. +e data were taken from the nationally
representative cross-sectional study design of 2000, 2005,
2011, and 2016 Ethiopian DHS for the characteristics of
interest and the 2007 census data for auxiliary variables. +e
Ethiopian DHSs are designed nationally representative,
probabilistic, and household surveys that include a wide
range of key demographic and health indicators used to
monitor and evaluate population, health, and nutrition
programs [18, 28–30]. +e 1994 and 2007 population and
housing census were considered for the sampling frame
classifications, and the collection of the surveys is based on
standardized questionnaires that yield different data files
[18, 28–30]. Within 83 zones in Ethiopia, this study was
conducted on under five-year-old children consisting of
8590 under five-year-old children from 2000, 3874 under
five-year-old children from 2005, 9611 under five-year-old
children from 2011, and (8505 stunting, 8675 wasting, and
8556 underweight) from 2016 Ethiopian DHS data. +e
height and weight measurements were collected from
children 0–59 months [18, 28–30] in all the selected
households for all survey years.

2.2. Study Variables. For this analysis, there are 41 area
(zonal)-level proportions of covariates taken from the 2007
population and housing census. Stepwise regression analysis
was used for all variables to filter out some of the best ex-
planatory variables. Women aged 15–24, children aged 4–5,
parents without disabilities, marital status (separated, wid-
owed, divorced, and others), illiterate mothers, mothers with
babies younger than one, and families with only one
daughter who has died are selected for stunting under five-
year-old children. Females, children under one year old,
different marital statuses (separated, widowed, divorced,
etc.), parents without disabilities, children ages 2–3, and
mothers working for governmental organizations are tar-
geted for wasting under age five children. Families with less
than age five children, other marital statuses (separate,
widowed, divorced, etc.), married, improved water facilities,
and other occupations are selected for underweight children
under five years of age.

2.3. Spatial Data. For administration purposes, Ethiopia has
been divided into nine regions and two administrative cities,
which, in turn, are divided into 83 zones. +e global posi-
tioning system (GPS) point data were linked to each sampled
urban-rural cluster residence to all household attributes.+e
GPS urban/rural locations have been masked [31] for
confidentiality reasons. +e GPS latitude/longitude position
for DHSs data is randomly displaced to keep the

respondent’s confidentiality. In small area administrative
units, the displacement is randomly carried out with 2 ki-
lometers, and 5 kilometers for urban and rural residence
clusters, respectively, and also 1% of rural clusters were
displaced up to 10 kilometers [31]. +e GPS point data as
shapefiles are also available and obtained from https://www.
dhsprogram.com. And also, the shapefiles for Ethiopian
administrative boundaries are available on the website
https://africaopendata.org.

2.4. Spatial and Spatiotemporal Small Area Estimation.
+e FH model has been extended in various works of lit-
erature. +e multivariate FH models are investigated by
multiple researchers [3, 6, 32–36]. +e temporal FH model,
which borrows strength from historical data, past time in-
stants, and correlations, is studied by [27, 37] to produce
reliable area-level estimates. +e STFH model borrowed
strength from census data and similar small areas through
the time effect in historical data and spatial effects [5, 21, 23].
In the STFH model, the spatial and time-related depen-
dencies have had between domains (zones in this case).

Let θit be the variable of characteristics of interest for
area i and time t, where i, . . . , m and t, . . . , T. If the direct
estimator of this quantity is denoted by θ

dir
it , the sampling

errors can be expressed as εit. Similar with the FHmodel, the
extended STFH model has two stages. +e first stage can be
expressed as follows:

θ
dir
it � θit + εit, (1)

where the sampling error εit is assumed to be independent
and normally distributed with variance σ2it known for all i

and t.
+e small area model, which incorporates the spatio-

temporal relationships in the second stage, is given as

θit � X
T
it + ]1i + ]2i, (2)

where Xit is the vector of p auxiliary variables dependent
linearly with θit for area i at time instant t, and β is the
regression coefficients of auxiliary variables. Finally, the area
effects vector (]11, . . . , ]1m)T follows a first-order simulta-
neous autoregressive process with variance parameter σ21,
and spatial autocorrelation |ρ1|≤ 1 and row-standardized
proximity matrix W. And also the vectors of area-time
random effects (]21, . . . , ]2m)T will follow identically and
independently distributed for each area i and follow an first
order autoregressive (AR(1)) with autocorrelation parameter
|ρ2|≤ 1, that is,

]2i � ρ2 ]2i, t−1 + ε2it, (3)

where ε2it ∼ ii d N(0, σ22).
+e matrix notations of STFH general linear mixed

model can be written as

y � Xβ + Zν + ε. (4)

Using stacking notations for vectors and matrices, the
following relationship is considered as
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y � col1<i<m(col1<t<T(θit)), X � col1<i<m(col1<t<T(Xit)),
ε � col1<i<m(col1<t<T(εit)), ]1 � col1<i<m(col1<t<T(]1i)), and
]2 � col1<i<m(col1<t<T(]2i)), where ] � (]T

1 , ]T
2 )T, and Z is

the constant unit matrix. Let the random component
parameter τ � (σ21, ρ1, σ22 , ρ2)

T be the vector of unknown
parameters involved in the covariance structure of the
STFH model. +e random sampling errors ε ∼ N(0, Vε),
where 0 vectors of zeros, and Vε is the diagonal matrix
Vε � diag1<t<T(σ2it). In addition, ] ∼ N(0,V](τ)) with
covariance matrix given by the block diagonal matrix has
the following form V](τ) � diag(σ21Ω1(ρ1), σ22Ω2(ρ2)), the
matrices Ω1 and Ω2 have the following relationships Ω1 �

[(Im − ρ1W)T(Im − ρ1W)]− 1 and Ω2 � diag1<i<mΩ2i(ρ2),
and

Ω2i ρ2(  �
1

1 − ρ22

1 ρ2 . . . ρT−2
2 ρT−1

2

ρ2 1 . . . ρT−3
2 ρT−2

2

⋮ ⋮ ⋱ ⋮ ⋮

ρT−1
2 ρT−2

2 . . . ρ2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Give all the above expressions, the covariance matrix
for the full model (the sampling error plus the random
components) can be written as var(y) � ZV]Z

T + Vε.
Note that the STFHmodel is a more general model and

the ordinary spatial FHmodel can be obtained by ignoring
the random time effects. When the spatial autocorrelation
ρ1 and area-time random effects ρ2 are zero, the STFH
model absolutely becomes the complementary FH model
[21, 26].

2.4.1. Parameters Estimation of Spatiotemporal Model.
Predicting and measuring the variability of the random
components is one of the main issues in small area esti-
mations. In this paper, we dealt with the problem of pre-
dicting θit by using empirical best linear unbiased prediction
(EBLUP) of θit. By adopting the STFH model analogous to
the Prasad and Rao [8,38], the mean square error (MSE) of
EBLUP estimator under spatiotemporal FH model is as
follows:

MSE θit  � g1(τ ) + g2(τ ) + 2g3(τ ), (6)

where τ � (σ21, ρ1, σ22 , ρ2)
T is the vector of estimated random

variance components in the STFHmodel, g1(τ ) is due to the
estimation of random area effects with the order of O(1) for
large m, g2(τ ) is due to the estimates of β with order
O(m− 1), and the third term g3(τ ) is due to the estimates of
variance component.

+e STFH model is fitted by restricted maximum
likelihood (REML) methods, and also, the parametric
bootstrap techniques are used for estimating the spa-
tiotemporal EBLUP and its MSE [5, 21, 26].+e R package
sae provides small area estimation methods based on the
area-level models extended Fay–Herriot model, which
allows for spatiotemporal correlation [39].

3. Result

3.1. Diagnostic Measures. +e random component param-
eter estimator of the STFH model is reported in Table 1. +e
spatial correlations under the simultaneous autoregressive
process are 96.5, 90.5, and 98 for stunting, wasting, and
underweight, respectively. In addition, the time-related
autoregressive are −63, −68.7, and −73.3 for stunting,
wasting, and underweight, respectively. +ese results show
that both the spatial area effect and the time-related random
effects are in the FH model, and therefore, STFH model is
appropriate model of this analysis. +e random component
variance of both the spatial and times effects is also presented
in Table 1 for all target variables.

+e relative best model was identified using the infor-
mation criterion (IC) in Table 2. +e IC (−2 log-likelihood
(−2LL), Akaike information criterion (AIC), and Bayesian
information criterion (BIC)) of the STFH model are smaller
than the spatial Fay–Herriot model (SFH) for all under-
nutrition indicators.+us, the STFHmodel is better than the
SFH model.

+e p-values for stunting, wasting, and underweight are
a lot larger than 0.05 for the Kolmogorov–Smirnov test.
+us, we can conclude that the distribution of the STFH
model for the undernutrition indicator does not differ
significantly from a normal distribution. As a result, the
STFH model meets its normality assumption satisfactorily.

Figure 1 shows the STFH model bias diagnostics mea-
sures. +e direct survey estimates are plotted on the y-axis,
and the spatiotemporal estimates are plotted on the x-axis.
+e diagnostic measure examines the validities of model-
based spatiotemporal small area estimates. +e regression of
direct survey estimates is analogous to the spatiotemporal
small area estimates since the spatiotemporal estimates are
adjacent to the actual values. +e graph shows that the
model-based spatiotemporal small area estimates are not
very far off from the fitted values of the regression line. As a
result, the spatiotemporal estimates of small areas are not
very different from direct survey estimates, indicating that
the model-based estimates are valid. Overall, the bias di-
agnostic measures indicate that the model-based spatio-
temporal small area estimates are likely to agree with direct
survey estimates for all target variables of undernutrition
indicators less than five years.

Figure 2 shows the STFH-based EBLUP estimates and
the direct estimates. According to the figure, EBLUPs and
direct survey estimates are equivalent, so EBLUPs are stable
in all undernutrition indicators (stunting, wasting, and
underweight).

+e percent coefficient of variation of spatiotemporal
small area estimates, spatial small area estimates, and direct
estimates are presented in Figure 3.+e percent coefficient of
variation (CV) of spatiotemporal EBLUP is smaller than the
corresponding direct estimates and spatial EBLUP estimates.
From the figure, we observed that the CV (%) of direct
survey estimates of undernutrition indicators is larger than
the corresponding spatial small area estimates. +e spatial
small area estimates are more precise and reliable than the
direct survey estimates, meaning that spatial estimates
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improve the direct survey estimates because of the corre-
lation among the neighboring zones.

Compared with the spatial estimates, the spatiotemporal
estimates are deemed more precise and reliable. +e

spatiotemporal small area estimates improve the precision of
spatial estimates for all undernutrition indicators. In addi-
tion to being more precise than direct survey estimates,
spatiotemporal small area estimates also improve them. As a

Table 2: Model comparison based on information criteria.

IC
Spatial FH model STFH model

Stunting Wasting Underweight Stunting Wasting Underweight
−2LL 384.52 240.72 367.1 171.56 135.7 288.26
AIC 210.27 262.72 389.09 195.57 159.69 312.24
BIC 248.32 304.57 430.95 241.23 205.35 357.90

-3.0 -2.5 -2.0 -1.5

-3.0

-2.0

-1.0

Spatio-Temporal diagnostics
plot-stunting

STFH Estimates

D
ire

ct
 es

tim
at

es

y=x line
Direct vs STFH

y=x line
Direct vs STFH

y=x line
Direct vs STFH

-2.0 -1.5 -1.0

-2.5

-1.5

Spatio-Temporal diagnostics
plot-wasting

STFH Estimates

D
ire

ct
 es

tim
at

es

-2.5 -1.5 -0.5

-2.5

-1.5

-0.5

Spatio-Temporal diagnostics
plot-Underweight

STFH Estimates

D
ire

ct
 es

tim
at

es

Figure 1: Bias diagnostic plot with y� x line (red line) and regression line (blue line) for stunting, wasting, and underweight: Model-based
STFH estimates versus direct estimates.
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Figure 2: EBLUPs based on STFH model and direct estimates of children under five years of age for each zones.

Table 1: Parameters estimator of STFH model.

Parameters Stunting Wasting Underweight
σ21 0.00019 0.0026 0.0014
σ22 0.0106 0.044 0.08
ρ1 0.965 0.905 0.98
ρ2 −0.63 −0.687 −0.733
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result, the direct survey estimates and spatial small area
estimates are improved by spatiotemporal small area esti-
mates. Generally, using temporal data (2000, 2005, 2011, and
2016 Ethiopian DHS) with fixed regression parameters from
census data across all surveys improves the direct estimates
and spatial small area estimates. Due to the inclusion of
time-related autoregressive AR (1) correlations across small
areas, STFH models have an advantage over spatial FH
models.

Figure 4 show the zonal-wise root MSE of stunting,
wasting, and underweight for children under five years of
age. Direct survey estimates have the largest root MSE,
while spatiotemporal EBLUPs have the smallest root MSE.
Because the root MSE means are small, spatiotemporal
estimates are the most precise, followed by spatial small
area estimates. By contrast, direct survey estimates are the
least accurate. Consequently, we can confirm that the
spatiotemporal EBLUP is the most reliable and precise
estimate of undermatron indicators in children under age
five.

+e summary results of spatiotemporal EBLUP effi-
ciency gain in CV over the spatial EBLUP and direct survey
estimates are presented in Table 3. +is table examined the
magnitude to which the spatiotemporal small area estimates
of stunting, wasting, and underweight improved in precision
than the spatial EBLUP and direct survey estimates. +e
efficiency gains in CV due to spatiotemporal EBLUP over the
direct and spatial EBLUP are improved for all target vari-
ables. Compared to direct survey estimates, the spatio-
temporal EBLUPmethods showed a median value of 53.74%
with a maximum value of 90.34% for stunting, a median
value of 49.60% with a maximum value of 91.30% for
wasting, and a median value of 49.23% with a maximum
value of 89.64% for underweight. +e minimum, the first
quartile, the mean, and the third quartiles of spatiotemporal
EBLUP efficiency gain in CV over direct survey estimate for
all undernutrition indicators are reported in Table 3. A few
zones have a loss in efficiency for all target variables since the
minimum values of gain in efficiency are recorded as neg-
ative values.

+e spatiotemporal small area estimates efficiency gain
over the spatial small area estimates are also investigated and
reported in Table 3. +e results of spatiotemporal EBLUP
have a maximum value of 78.41%, 77.76%, and 68.77% ef-
ficiency gain for stunting, wasting, and underweight, re-
spectively, over the corresponding spatial EBLUP. +ese
results clearly show that the spatiotemporal small area es-
timates are more precise, efficient, and reliable than cor-
responding to the spatial small area for stunting, wasting,
and underweight due to the incorporations of temporal
effects on the spatially correlated zones. +e spatiotemporal
small area estimates improved the direct survey estimates
and the spatially correlated zonal estimates. +erefore, the
spatiotemporal small area estimates are the best reliable,
precise, and efficient estimates for all undernutrition
indicators.

4. Discussion

+is part discussed the spatiotemporal small area estimates
of undernutrition indicators: stunting, wasting, and un-
derweight for children under age five. +is article provides
the zonal estimates of undernutrition indicators: stunting,
wasting, and underweight for children under age five in
Ethiopia using four consecutive surveys (2000, 2005, 2011,
and 2016) and the 2007 population and housing census data.
+e standardized z-scores of undernutrition indicators,
stunting, wasting, and underweight were used to exploit the
maximum amount of information. +e STFH model was
applied to obtain zonal level estimates of undernutrition
indicators in Ethiopia. It is a STFH model that accounts for
the spatial correlation between neighboring areas and that
simultaneously incorporates the time-related (four consec-
utive surveys from T time instants) to enhance small area
estimates at the current time (in this case, the 2016 survey)
[5, 21, 23].

+e validity, reliability, and precision of model-based
spatiotemporal small area estimates of undernutrition in-
dicators were examined using bias diagnostics, Kolmogor-
ov–Smirnov test, CVs, and root MSEs [2, 5, 21–23]. +ese
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Figure 3: Zones percentage of coefficient of variation (CV) of direct, spatial FH, and STFH estimators of undernutrition indicators.
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measures indicate that the spatiotemporal small area esti-
mates are superior to the direct survey estimates since the
STFH model borrows strength from time-related temporal
data from the four consecutive surveys (2000, 2005, 2011,
and 2016) [5, 21–23]. In addition, the Kolmogorov–Smirnov
test and the bias diagnostics of spatiotemporal small area
estimates versus direct survey estimates (Figure 1) were used
to test the model assumptions. +erefore, the model as-
sumptions have been met satisfactorily.

For comparison, we computed the percentage CVs and
root MSEs of direct survey estimates, spatial small area
estimates, and spatiotemporal small area estimates of un-
dernutrition indicators. In comparing the percentage CV of
direct estimates and model-based spatiotemporal estimates
(Figure 3), the spatiotemporal estimates were lower than the
direct estimates for all indicators of undernutrition. Besides
comparing spatiotemporal small area estimates with direct
survey estimates, we also compared the percentage CV of the
spatiotemporal estimates with the spatially correlated zonal
estimates (Figure 3). Consequently, the spatiotemporal es-
timates have a lower CV than the spatial small area esti-
mates. Similarly, the comparisons of root MSEs follow a CV-
like approach.

As a result of the model assumptions and small area
estimate diagnostic, the spatiotemporal small area estimates
were more stable and precise than the corresponding direct
survey estimates and spatial small area estimates for all
undernutrition indicators of children under age five. And in
turn, the spatial small area estimates have greater precision

and reliability than the direct survey estimates [4, 12, 40].
Direct survey estimates of undernutrition have improved
using a spatial FH model with reasonably large spatial au-
tocorrelations. And also, the spatiotemporal model further
enhances the direct survey estimates, taking into account the
temporal data considerations.

As a measure of the performance estimators under the
most general model, the STFH model, efficiency gains in the
CV of the STFHmodel over the spatial FHmodel, and direct
estimates are computed. +e average median improvements
in the CV of the STFH model over the direct survey esti-
mates are 53.74, 49.60, and 49.23 for stunting, wasting, and
underweight, respectively (Table 3). Similarly, the average
median efficiency gains in the CV of the STFH model over
the spatial FHmodel are 33.78, 28.07, and 15.66 for stunting,
wasting, and underweight, respectively (Table 3). +us, it is
evident that using temporal data in the STFH model offers
advantages over spatial estimates of undernutrition indi-
cators such as stunting, wasting, and underweight [5, 21].

5. Conclusion

+is paper applied the STFH methods in four consecutive
surveys and Ethiopia’s 2007 population and housing census
data to improve the direct survey estimates of undernutri-
tion indicators for children under age five across all zones.
+e CSA conducted regular surveys on several essential
health, demographic, and socioeconomic indicators, but the
results were limited to national and regional estimates. By

Table 3: Summary statistics of efficiency gain in CV (%) for spatiotemporal EBLUPs over direct survey estimates and spatial EBLUPs.

Efficiency gains of STF model over direct estimates Efficiency gains of STFH model over the spatial FH
model

Stunting Wasting Underweight Stunting Wasting Underweight
Min −132.84 −118.31 −117.60 −139.28 −145.30 −181.122
Q1 34.03 35.42 29.65 11.75 8.01 −10.44
Mean 47.61 43.96 39.39 25.68 20.39 4.79
Median 53.74 49.6 49.23 33.78 28.07 15.66
Q3 71.09 66.64 64.11 47.36 44.73 37.16
Max 90.34 91.30 89.64 78.41 77.76 68.77
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contrast, the administrative levels below regional levels are
not examined due to small sample sizes. As this paper
demonstrated, spatiotemporal small area estimations can be
used as a cost-effective and efficient method for estimating
undernutrition indicators.

+e improvement of direct survey estimates and spatial
small area estimates of zones are achieved in root MSE and
CV for all target variables. It is evident that the use of
temporal data in the ST FH model brings efficiency gain in
CV over the spatial small area estimates of undernutrition
indicators stunting, wasting, and underweight. +erefore,
the use of temporal data is adequate. Consecutively, STFH
models have an advantage over spatial FH models with
temporal consideration due to the inclusion of time-related
correlations across the zones. +ese results may provide
useful information to the government’s planners, policy-
makers, and legislative organs for effective policy formu-
lation and budget allocation in all zones.

Abbreviations
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