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Rainfall is one of the climatic factors that infuence various human activities and afect decisionmaking in daily life activities. High
intensity of rainfall can turn into a threat and cause serious problems such as causing various natural disasters. Terefore, it is
essential to conduct rainfall forecasting to anticipate and enable preventive actions and can be used as a decision consideration in
increasing the productivity and mobility of human activities. Te aim of this study is to compare rainfall accuracy between the
Gregorian and the lunar calendars using the bidirectional long short-term memory (Bi-LSTM) machine learning model through
the grid search approach. Tis method was used because it can capture patterns arising from the simultaneous efects of two
asynchronous calendars, Gregorian and lunar, which were used in this study by fnding the right parameters. Monthly rainfall data
from Bogor City, Indonesia, were used from the period of 2001 to 2022. Te results show that the MAPE of the lunar calendar is
relatively smaller at 14.82% which indicates the better forecasting ability than the Gregorian calendar which is 35.12%.

1. Introduction

Most rainfall forecasting is based on the Gregorian calendar
[1, 2], but many rainfall phenomena are closely linked to the
lunar calendar [3]. Earth’s climate including variations in
rainfall and tides is infuenced by the phases of the moon,
which are the cornerstone of making the lunar calendar (see
[4]). Conversely, rainfall forecasting has generated signif-
cant research attention in recent times owing to its com-
plexity and ongoing applications. Hence, methods
employing machine learning algorithms in conjunction with
time series data are being investigated as viable alternatives
to address these limitations (see [5, 6]).

In recent years, machine learning algorithms have been
widely employed for time series data predictions, yielding
highly accurate results. Machine learning enables the res-
olution of prediction problems in time series data with
a wide range of values. Numerous studies have been

conducted on rainfall forecasting using machine learning
algorithms, including the support vector machine (SVM)
method (see [7, 8]), the deep neural network (DNN) method
(see [9, 10]), and the long short-term memory (LSTM)
method (see [11–13]).

Bidirectional long short-term memory (Bi-LSTM) is
a machine learning method suitable for time series data
prediction. It is an extension of LSTM with the capability of
retaining dat information from both forward and backward
directions. Tis capability enhances the learning process by
ofering additional neural networks, leading to more com-
prehensive results. To obtain the best forecasting model
using the Bi-LSTM method, it is essential to determine the
optimal parameters for the learning algorithm. Parameter
setting and tuning play a signifcant role in improving
forecasting accuracy. One efective approach to determining
the optimal parameter setting and tuning is to utilize the grid
search algorithm. Te grid search algorithm works by
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systematically combining various parameters used in the
model creation process. Tis method divides the parameter
range into a grid and explores diferent combinations of
parameter settings to identify the best parameters for the
model. According to [14, 15], the grid search technique
improved the model performance.

Tis study covered three aspects of analysis: (1) rainfall
data conversion from the Gregorian-based calendar to the
lunar-based calendar, (2) rainfall data modeling and fore-
casting based on the lunar calendar, and (3) comparison of
rainfall forecasting accuracy which is based on the Gregorian
calendar and the lunar calendar. Te purpose of this study is
to forecast the rainfall using the bidirectional long short-
term memory (Bi-LSTM) model by the grid search ap-
proach. Tis research is expected to yield an efcient cal-
endar conversion algorithm and can be used as the basis for
further research for making an automatization of calendar
conversion. Some previous works on the calendar conver-
sion were conducted by [16–21].

2. Materials and Methods

2.1. Bidirectional Long Short-Term Memory (Bi-LSTM).
LSTM was specifcally designed to address the problem of
vanishing gradient. LSTM units consist of forget gates, input
gates, and output gates, which are used to control the storage
or disposal of information. Tis method has been used in
various cases such as sentiment analysis [22], COVID-19
vaccination responses [23], and smartphone data sensors
[24]. LSTM usually uses quite complex calculations and high
computation in its application. Terefore, this study ex-
amines a method with a simpler level of computation but
with comparable performance, Bi-LSTM.

Bi-LSTM was proposed by Graves and Schmidhuber to
solve a faw in the recurrent neural network (RNN) and the
LSTM model. In both models, information can only be
propagated forward, meaning that the time state t depends
only on the information before time t [25]. On the other
hand, Bi-LSTM involves two LSTMnetworks: processing the
sequence of data input in the forward direction and pro-
cessing the sequence of data in the reverse direction
(backward). Tis method can store time series information
in two directions and can provide additional training pro-
cesses. Additional training processes and two-way feature
extraction make Bi-LSTM have better performance [26]. In
addition, the outputs of the forward and backward LSTM
networks are combined on each time sequence.

Te Bi-LSTM model can learn past and future in-
formation for each input sequence. In addition, Bi-LSTM
has two layers of data input that are opposite to each other
which enable the model does not forget a long sequence of
data information during the training process [27].Terefore,
theoretical prediction performance with Bi-LSTM is better
than that with LSTM [28]. Te architecture of Bi-LSTM [29]
is provided in Figure 1.

Figure 1 shows that the order of the forward layer is the
same as in a regular LSTM network that calculates the se-
quence of t − 1, t, and then t + 1. However, for the backward

layer, the hidden layer and output iterated from t + 1, t, to
t − 1. (ht

→
) and (ht

⃖
) are the forward and backward layers,

respectively. According to [30], the process of forward
LSTM and backward LSTM can be written as follows:

ht

→
� LSTM xt, ht−1( 􏼁,

ht

⟵
� LSTM xt, ht+1( 􏼁.

(1)

It is described in Figure 1 that the hidden layers on each
forward and backward are connected and form an output
value. Te calculation of the output value is shown in the
following equation [31]:

yt � Uy ht

→
+ Wy ht

⟵
+ by, (2)

with yt as the fnal output value and Uy and Wy as the

weight values for the output gate on ht

→
and ht

⟵
, respectively.

Several studies using the Bi-LSTM method have been
conducted by authors in [32] on the case of wastewater fow
rate prediction, by authors in [33] on tropical cyclone
prediction, by authors in [34] on groundwater content
prediction and soil, and by authors in [35] on water content
and river water fow prediction.

2.2. Te Grid Search Method. Te grid search is a method
used for fnding appropriate parameters to improve model
performance by trying all combinations of parameters. In its
applications, the grid search algorithm is usually combined
with cross-validation to form a model evaluation index. Te
index evaluates model performance by considering data
sharing.

In this paper, the grid search algorithm is evaluated by
a cross-validation (CV) test. A common form of cross-
validation is k-fold, which is used to estimate prediction
errors in evaluating model performance. It divides datasets
into k groups of equal size. One of the k-fold groups was used
as test data while the rest of the groups were used as training
data. Te parameter pair obtained from the cross-validation
test with the smallest error average is the best parameter.
Tis parameter is used in the formation of themodel for later
testing and evaluation.

2.3. Calendar Conversion. Tis study utilizes algorithm to
convert daily data into monthly data based on the lunar
calendar. Te month’s names and the number of days are
referenced from the islamicfnder.com website. Te con-
version of daily data from the Gregorian calendar to the
lunar calendar requires data division into three segments, as
illustrated in Figure 2.Te conversion process using the “TS”
package in R software [36] is done through the following
steps:

(1) Determine the initial and end dates of the lunar
calendar

(2) Partition the time interval into three calendar parts
(3) Convert boundary points from the Gregorian cal-

endar to the lunar calendar
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(4) Make these three segments into vector shapes of the
dates of the Gregorian and lunar calendars as seen in
Figure 2

(5) Include calendar attributes, i.e., lunar number and
date, e.g., Attr< - c (no, dates)

(6) Create a data frame which consists of the combi-
nation of the three vectors

(7) Input the daily rainfall data based on the Gregorian
calendar in a separate column/vector

(8) Merge the column vector of daily data with lunar
number and dates into the data frame in Step 6

(9) Shift the daily data according to the calendar con-
verter and change the name of Gregorian months to
the corresponding lunar months

2.4. Preprocessing Data. Te data preprocessing stage is
carried out to improve performance in data processing and
prevent errors in the data so that the data used for the

prediction process have a high quality. Te frst stage in the
data preprocessing process is data cleaning in which data are
adjusted in the presence of missing values. Handling of
missing values in data can be done using the mean impu-
tation method, in which missing values are flled up with the
average of all known values in a variable.

Te second stage is data sharing or data splitting, i.e.,
data are divided into training and testing data. Training data
are used in training models, while testing data are used in
evaluation of the selection of model architectures with the
best parameters. Te total data used in this study were 286
lunar calendar data and 273 Gregorian calendar data. Tese
data were divided into several forecasting lengths: 3, 6, 12,
18, and 24months.

Te third stage is called a scaling or mapping technique
which is used to normalize data. Te normalization process
involves the min-max method. Te data normalization
process will result in values ranging from 0 to 1. According
to [28], the equation used in data normalization is as
follows:

yt+1yt–1 yt

xt–1 xt xt+1
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Figure 1: Architecture of bidirectional LSTM (Bi-LSTM).
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xnorm,i �
xi − xmin

xmax − xmin
; i � 1,2,3, . . . , t, (3)

and the denormalization [37] of the data is

x � x
′

xmax − xmin( 􏼁 + xmin, (4)

where xnorm is a normalised value, xmax is the maximum
value of the entire data, and xmin is the threshold of the
entire data.

2.5. Bi-LSTM-Grid Search Modeling. In building models
using the machine learning model such as Bi-LSTM, it is
important to select optimal parameters. Parameter de-
termination or tuning parameters are used to control the
model so that it can produce better model performance [38].
Tis study proposed the use of the Bi-LSTM-grid search
model (see Figure 3).

Bi-LSTM modeling with grid search consists of input
layer, Bi-LSTM layer, dropout layer, dense layer, and the
addition of the grid search algorithm to determine the best
parameters in the Bi-LSTM learning process and output
layer. Te input layer is the layer that receives input data,
while the Bi-LSTM is a layer in the learning process.
Dropout layers are used to prevent overftting of the model
during the learning process. Te dense layer is a neural
network layer that has functions to convert the output of the
previous layer into predicted values. Te output layer is
a layer that produces outputs or fnal values in the learning

process. Te addition of a grid search algorithm is used to
determine the best parameters, dividing the range of pa-
rameters used into grids and at all points in order to obtain
optimal parameters in the learning process of the Bi-
LSTM model.

Some of the parameters used in this study consist of one
hidden layer, hidden neurons, batch, and epoch. In addition,
dropout regulation techniques are also used to avoid
overftting in the model. Adam’s optimization or optimizer
function is added to determine the optimal weight and
reduce errors in the model formation process of maximizing
model accuracy. Te parameter values set to build the
prediction model are given in Table 1.

Te determination of neuron numbers in the hidden
layer is carried out to obtain the optimal number of hidden
neurons. Epoch is a condition where all data have gone
through the training process on the network that is formed
until it returns to the beginning in one round. Each epoch
can be partitioned into batches. Batch is a parameter that
determines the sample size used in the process before
updating architectural parameters.

Te best parameter value from each combination of
parameters can be determined using a grid search with the
help of cross-validation. It allows for an evaluation of each
model with various combinations of predefned parameter
limit values. A common form of cross-validation is k-fold
cross-validation. In this study, the grid search algorithm
used 5-fold validation.

3. Results and Discussion

3.1. Calendar Conversion Results. Te data used in this re-
search are daily rainfall data from 1st April 2000 to 31rd
December 2022 in Bogor City obtained from the Meteo-
rological, Climatological and Geophysical Agency. Te daily
rainfall data in the Gregorian calendar were shifted into
Gregorian monthly data. Te result of the observations of
22 years revealed that the Gregorian calendar has
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Table 1: Parameter description.

Parameter Value
Neuron hidden 5, 10, 15, 20, 25
Batch 4, 16, 32, 64, 128
Epoch 50, 100, 150, 200, 250
Dropout 0,1; 0,2; 0,3
Optimizer Adam
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Table 2: Monthly rainfall data (mm) based on the Gregorian calendar.

Year
Gregorian month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2000 — — — 449 339 295 376 248 123 222 36 99
2001 219 337 118 581 699 498 368 282 134 70 52 117
2002 376 439 76 635 659 337 339 31 152 186 81 23
2003 47 217 278 138 582 247 266 165 21 0 205 247
2004 291 264 373 292 513 270 355 241 40 74 155 239
2005 188 468 684 417 163 124 163 140 140 207 203 194
2006 264 283 692 446 161 309 132 41 14 6 21 102
2007 160 554 401 395 386 114 7 134 62 167 236 584
2008 311 315 515 516 406 155 63 3 74 160 224 473
2009 254 605 535 385 222 389 128 87 15 64 358 232
2010 417 523 475 84 291 255 138 306 375 427 286 291
2011 389 265 225 219 175 140 36 8 58 284 394 252
2012 384 348 240 318 144 64 41 12 122 260 366 423
2013 851 338 405 344 494 123 275 131 70.1 198.6 259 501.6
2014 1134 623.8 266.7 403.8 219.9 199.1 344.1 249.8 33.6 94.2 548.3 445.7
2015 284.2 345.4 335.7 196.3 148 14.8 0 0 18.8 50.1 457.7 409
2016 272.5 581.7 553.2 461.2 231.2 201.7 252.6 82.6 365.9 386.7 309.6 142.5
2017 293 688.5 283.7 400.8 225.9 130.8 89.1 49.3 33.7 367.4 420.8 320.7
2018 349.1 679.5 448 298.8 140 160.4 25 20.5 161.7 162.4 390.1 251.7
2019 416.3 467.9 234.8 471 207.4 0 51.4 34.8 13.8 196.2 183.8 328.9
2020 421.3 537.1 511.8 344.2 407.6 96.3 95.1 62 100.4 292.6 165.7 343.9
2021 392 687.1 235.4 382.2 155.3 289.6 74.3 189.7 211.6 327 343.8 446
2022 188.2 250 255.3 479.6 242.3 356.3 143.4 278.6 250.7 505.3 299.2 428.7

Table 3: Conversion of monthly rainfall (mm) data based on the lunar calendar.

Year
Lunar month∗

Muh Saf Raw Rak Jaw Jak Raj Syb Ram Syw Dzq Dzh
1420 — — — — — — — — 48 493 263 348
1421 329 190 127 218 33 101 210 336 119 475 790 363
1422 482 253 202 54 68 92 204 498 169 239 741 488
1423 320 259 97 71 179 78 23 70 208 283 119 582
1424 247 197 234 17 4 165 286 246 220 287 360 426
1425 405 189 386 120 67 10 99 200 140 171 499 699
1426 365 167 187 187 140 157 154 243 197 241 270 685
1427 461 146 309 132 41 5 15 6 62 149 332 401
1428 1137 408 262 253 100 94 47 102 64 289 227 649
1429 313 500 406 373 120 63 3 113 149 196 473 250
1430 520 612 371 219 399 145 18 82 65 214 315 245
1431 351 523 456 269 198 321 100 185 395 282 375 378
1432 199 409 264 184 231 157 157 13 3 60 201 456
1433 203 347 353 293 332 123 119 43 12 73 170 236
1434 490 506 714 385 340 270 438 135 314 64 102.6 166.1
1435 270.4 495.2 1128 624.1 266.4 394.9 227.9 200 343.2 171 112.9 47.6
1436 517.2 196.9 449.8 404 328.7 223.3 230.6 14.9 0 0 0 55.5
1437 142.7 479.1 354.3 342.7 638.6 466.2 373.6 183.6 258.8 194.7 90.1 358.3
1438 348.7 346.4 134.1 259.5 682.8 318.2 357.7 262.2 91.8 80 101.7 19.7
1439 262.4 370.6 365.1 266.8 684.4 485.8 380.5 109.4 131 159.7 24.8 89.8
1440 94.6 198 410.8 248.8 400.2 468.3 209.5 461 202.8 77.9 51.4 20.8
1441 27.8 190.5 167.9 252.3 383.4 536.9 441.6 449.9 264 288.5 135.7 72.5
1442 35.2 139.5 294.9 303.4 253.5 656.7 381.3 253.2 323.1 158 263.1 154.6
1443 108.8 256.7 312.6 323.9 419.2 124.9 313.3 255.3 471.6 210.6 363.9 175.5
1444 237.6 244.1 444.7 334.1 303.4 198.6 — — — — — —
∗Te names of lunar month areMuh (Muharram), Saf (Safar), Raw (Rabi’ul Awal), Rak (Rabi’ul Akhir), Jaw (Jumadil Awal), Jak (Jumadil Akhir), Raj (Rajab),
Syb (Sya’ban), Dzq (Dzul qo’dah), and Dzh (Dzul hijjah).
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273months as seen in Table 2. Te results of rainfall data
conversion from the Gregorian calendar to the lunar-based
calendar can be seen in Table 3 which has 286months.

3.2. Bi-LSTM Prediction Results, Grid Search. Te data used
in Bi-LSTM modeling were those that passed in the data
preprocessing stage, and parameter tuning was conducted
using the grid search algorithm. Based on predetermined
parameters, 375 models were obtained from a combination
of parameters. Of the 375 models, the most optimal com-
bination of parameters was obtained based on the minimum
MSE (mean squared error) value for each forecasting length
in the Gregorian and the lunar calendars which was con-
tinued to the testing process. See Table 4 for the complete
results.

Based on the results in Table 4, the smallest MSE was
0.01882 for a 12-month forecasting length with an optimal
combination of parameters based on tuning parameters
using the grid search such as the number of neurons 20,
batch 4, epoch 200, and dropout 0.2.Temodel with the best
combination of parameters obtained from the training data
using the grid search was then applied to the testing data.
Te optimal combination of parameters for rainfall data
based on the lunar calendar is shown in Table 5.

According to Table 5, the smallest MSE was 0.01891 with
a forecasting length of 3months, the number of neurons 20,
batch 4, epoch 200, and dropout 0.1. Similar to the model in
the Gregorian rainfall data, the model with the best com-
bination of parameters obtained from the training data was
then applied to the testing data.

Te Bi-LSTMmodel was formed using testing data based
on the selection of the best parameters. Te forecasting
length was evaluated using MAPE based on the lunar and
Gregorian calendars which is provided in Table 6.

Table 6 shows the results of model evaluation using
MAPE on rainfall data with various forecasting lengths.
MAPEs are computed based on the best combination of
parameters. Te lowest MAPE is the lunar calendar-based
rainfall data with a forecasting length of 3months. Te
results in Table 6 conclude that the longer the forecasting,
the smaller the MAPE. Te comparison of actual data and
forecasting results of rainfall data based on the Gregorian
and lunar calendars using a model with the best parameters
for each forecasting length is reported in Figures 4(a)
and 4(b).

According to Figures 4(a) and 4(b), the Bi-LSTM model
that was formed using the best parameter selected using the
grid search algorithm on rainfall data based on the lunar
calendar produces predictions that are quite similar to the
test data pattern. Te MAPE value obtained from rainfall
data based on the lunar calendar was relatively lower than
the one from the Gregorian. Te lowest MAPE was obtained
from the lunar calendar-based rainfall data at 14.82% with
the best parameter values optimized using the grid search
algorithm: the number of neurons 20, batch 4, epoch 200,
and dropout 0.1. Te criteria of the MAPE value could
confrm the accuracy of the model. In conclusion, the best

model obtained from the Bi-LSTM grid search was able to
provide better results in modeling rainfall data based on the
lunar calendar instead of the Gregorian calendar.

4. Discussion

Converting the Gregorian-based rainfall data to the lunar
calendar gives an advantage in time series analysis. Te
conversion of daily data to monthly data based on the lunar
calendar increases the length of the data series, which
provides more information and gives a better forecast. Te
addition in time series length is an efect of diferent number
of days in a year. In particular, the Gregorian calendar has
365 days, while the lunar calendar has 355 days. In general,
the longer the forecasting horizon, the bigger the mean
absolute percentage error (MAPE) for both Gregorian and
lunar calendars.

Te use of lunar calendar-based forecasting for rainfall is
because the moon’s gravity afects the earth’s climate.
Furthermore, the moon exerts a more signifcant infuence
on earth than the sun due to its closer distance. Te moon’s
position not only afects its phases but also has a gravita-
tional impact on earth’s weather. Te efect of the moon’s
gravitational force on earth’s rainfall needs further study
involving collaboration with astronomers.

Table 4: Results of Bi-LSTM-grid search tuning parameters on the
Gregorian calendar.

Forecasting length
Parameter

MSE
Neuron Batch Epoch Dropout

3 20 4 200 0.1 0.01926
6 20 4 200 0.1 0.01945
12 20 4 200 0.2 0.01882
18 15 4 200 0.1 0.02004
24 20 4 200 0.1 0.01964

Table 5: Bi-LSTM-grid search tuning parameter results on the
lunar calendar.

Forecasting length
Parameter

MSE
Neuron Batch Epoch Dropout

3 20 4 200 0.1 0.01891
6 15 4 200 0.3 0.01907
12 20 4 200 0.3 0.01896
18 20 4 200 0.2 0.01933
24 15 4 200 0.1 0.01926

Table 6: MAPE value in the Gregorian and lunar calendars.

Forecasting length
MAPE

Gregorian (%) Lunar (%)
3 35.12 14.82
6 40.27 15.46
12 37.29 26.81
18 47.36 40.76
24 49.14 42.65
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Lunar calendars are commonly used in countries with
Muslim populations as the majority, such as Indonesia,
Saudi Arabia, and the Middle East. Te Islamic calendar,
known as the Hijri calendar, is derived from the lunar
calendar. Religious holidays often afect signifcant move-
ments of residents who want to visit places of worship or
their hometown for family reunions, visit their parents and
relatives, and so on. As a result, the lunar calendar has
a notable impact on transportation and economy, particu-
larly in countries with large Muslim communities.

Te grid search algorithm proposed in this paper re-
mains time-consuming. Each parameter combination takes
approximately two hours to complete, which is less efcient.
Hence, it is advisable to explore alternative algorithms, such
as the genetic algorithm.

5. Conclusions

In this paper, we employed the machine learning time
series method with the Bi-LSTM model and the grid
search approach. Te accuracy of forecasting results of
rainfall data based on the lunar calendar was evaluated
using the mean absolute percentage error (MAPE). We
also compare the MAPE of the Gregorian calendar-based
rainfall data model and the lunar calendar-based rainfall
data model.

Te lowest MAPE for the Gregorian calendar-based
model was 35.12%, while the lowest MAPE for the lunar
calendar-based model was 14.82%, with a forecasting length
of 3months.Te smaller MAPE for the lunar calendar-based
model suggests a superior forecasting ability compared to
the Gregorian calendar-based model. According to the
MAPE criteria, the forecasting model based on the lunar
calendar can be considered highly accurate. Te optimal
combination of parameters for rainfall data based on the
lunar calendar, as determined through the grid search al-
gorithm, comprises 20 neurons, 200 epochs, a batch size of 4,
and a dropout value of 0.1.
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