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A fast and efcient diagnosis of serious infectious diseases, such as the recent SARS-CoV-2, is necessary in order to curb both the
spread of existing variants and the emergence of new ones. In this regard and recognizing the shortcomings of the reverse
transcription-polymerase chain reaction (RT-PCR) and rapid diagnostic test (RDT), strategic planning in the public health system
is required. In particular, helping researchers develop a more accurate diagnosis means to distinguish patients with symptoms
with COVID-19 from other common infections is what is needed. Te aim of this study was to train and optimize the support
vector machine (SVM) and K-nearest neighbors (KNN) classifers to rapidly identify SARS-CoV-2 (positive/negative) patients
through a simple complete blood test without any prior knowledge of the patient’s health state or symptoms. After applying both
models to a sample of patients at Israelita Albert Einstein at São Paulo, Brazil (solely for two examined groups of patients’ data:
“regular ward” and “not admitted to the hospital”), it was found that both provided early and accurate detection, based only on
a selected blood profle via the statistical test of dependence (ANOVA test). Te best performance was achieved by the improved
SVM technique on nonhospitalized patients, with precision, recall, accuracy, and AUC values reaching 94%, 96%, 95%, and 99%,
respectively, which supports the potential of this innovative strategy to signifcantly improve initial screening.

1. Introduction

Te World Health Organization designated SARS-CoV-2
(COVID-19) as a pandemic onMarch 11, 2020 [1].Te rapid
propagation of the disease around the world has increased
the need to apply health protection measures. Tese mea-
sures were aimed at solving the problem of overburdened
intensive care units, as well as to strengthen and preserve the
capacity of hospitals. As a result, many countries have
adopted new health approaches and diverse perspectives to
prevent the excess spread of the virus in terms of virus
vitality within a specifc political-economic territory. Ex-
amples include the closure of borders and the cancellation of
sporting and cultural events. Unfortunately, these decisions

have caused economic, social, and environmental disrup-
tions. In addition, they have brought uncertainties and fears
to the world economy, education, health, and the funda-
mental rights of the population.

As of September 30, 2022 [2], more than 622,585,710
cumulative cases of SARS-CoV-2 have been confrmed
worldwide, along with more than 6,547,814 deaths in 228
countries and territories. Approximately 40% of cases
present with mild disease (cough and fever), 40% with
moderate disease (bilateral pneumonia), 15% with severe
disease, and 5% with critical disease [3]. Te severe con-
sequences of COVID-19 are due to its rapid spread, the
inability to make a quick and accurate diagnosis, and the
inability to perform large-scale testing of patients. It is
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therefore crucial to establish rapid and reliable diagnostic
methods to detect the disease in real time [4].

Indeed, healthcare is a vast sector that requires the
collection, analysis, and processing of medical data, which
have recently become impossible due to several factors, such
as massive data volumes, the inadequacy of wireless network
applications, and security issues [5]. Hence, it is essential to
use data mining to fnd and extract rich information for
classifcation. Medical datasets can be used to precisely
detect SARS-CoV-2 infections [6]. However, the primary
limiting factor is data processing, which necessitates real-
time data collection and the provision of data to researchers
for immediate medical response.

In the same vein, artifcial intelligence (AI) promises to
transform the healthcare sector [7]. Machine learning (ML)
and deep-learning algorithms are capable of detecting
COVID-19 [8]. In fact, the classifcation is one process by
which COVID-19 patients are assigned to their corre-
sponding classes [9]. Tere are many classifcation methods,
such as the Bayesian method, AdaBoost, random forest,
artifcial neural networks, and K-nearest neighbors [9].

Much COVID-19 research has focused on how AI can be
deployed to detect, confrm, and make forecasts at early
stages. As the authors in [10] involved regression models
(CUBIST, RF, RIDGE, SVR, and stacked-set learning), the
ARIMA statistical model has also been used in some cases to
make similar predictions. Te authors in [11] adopted
BRNN, KNN, QRF, and SVR as well as the VDM approach
coupled with exogenous climate variables to predict con-
frmed cumulative cases in ten Brazilian states. Tese pre-
dictions were made one, three, and six days in advance. As
reported in [12], the SVMmodel detected and discriminated
patients with severe COVID-19 from those with mild
symptoms using 28 features based on clinical information
and blood/urine test data, with an overall accuracy of 0.8148.

Previously, an efcient scheme in [13] was proposed
using the available, relevant X-ray images to train an efcient
deep neural AI network and use the trained parameters to
detect COVID-19 cases even with a very small sample of
COVID-19 X-rays. Te proposed method provided a very
satisfactory detection performance at 97.4% accuracy.

A case report in [14] emphasized the importance of full
autopsy in understanding the disease process and identifying
potential targets for therapeutic interventions. Te authors
of the aforementioned study conducted a full autopsy on
a confrmed COVID-19 patient in Lagos, Nigeria, providing
valuable insights into the pathological features of the disease.

Two studies proposed diferent machine-learning ap-
proaches for addressing COVID-19 challenges. Ribeiro et al.
[15] proposed the use of ensemble-learning models coupled
with urban mobility information to predict COVID-19 in-
cidence cases. Tis approach leverages the relationship be-
tween human mobility patterns and the spread of the virus to
achieve accurate predictions. Another study [16] introduced
an equilibrium-based COVID-19 diagnostic method using
routine blood tests and a sparse deep convolutional model.
Tis method provides a noninvasive, low-cost, and potentially
more accurate alternative to existing diagnostic methods.

Da Silva et al. [11] focused on using climatic exogenous
variables to forecast COVID-19 cases. Tis study proposed
a novel approach for forecasting Brazilian and American
COVID-19 cases based on artifcial intelligence coupled with
climatic exogenous variables, providing a more holistic
approach to COVID-19 prediction.

In [17], the researchers applied AI to identify commer-
cially available medicines that may be efective in treating
patients with COVID-19. At the core of their proposedmodel,
they implemented the bidirectional encoder representations
from transformers (BERTs) framework.

COVID-19 primarily afects the respiratory system.
Tus, in [18], the authors presented a fne-tuned model
based on a generative adversarial network to detect one of
the symptoms of COVID-19 infection from chest X-ray
scans. Gunraj et al. [19] applied a convolutional neural
network model to detect COVID-19 in patients using
chest X-ray images. Tey used pretrained ImageNet and
trained the model on an open-source dataset of X-ray
images. Aggarwal et al. [20] reviewed and summarized
a number of important research papers on deep learning-
based classifcation of COVID-19 across CXR and CT
images. Using a deep learning-based P-shot N-ways Si-
amese network as well as prototypical nearest neighbor
classifers, classifcation of COVID-19 infection from lung
CT slices was proposed by the authors in [21]. Another
approach for classifcation of COVID-19 chest X-ray
images from two diferent datasets (small and large
datasets) using a tunable Q-wave transform (TQWT)
based on a memristive crossbar array (MCA) was pro-
posed by the authors in [22]. Te average accuracy values
obtained for the proposed method are 98.82% and 94.64%,
respectively.

Together, these studies highlight the potential of dif-
ferent approaches; therefore, it is necessary to construct
prediction techniques and innovative applications for fre-
quent diseases, as well as to further expand prediction
methodologies. Te objective of the present study is to
address this need. Te main contributions of the proposed
work that have not been addressed in the prior art are as
follows:

(i) We showed that it is possible to predict whether
a person is positive or negative for COVID-19 in-
fection in the early stage of the disease, using
anonymized data from Israelita Albert Einstein
Hospital [23]. Te data analysis process consists of
two stages: statistical analysis followed by data
processing with machine-learning algorithms using
SVM and KNN. Te enhanced SVM technique
achieved high values for precision, recall, accuracy,
and AUC, with scores reaching 94%, 96%, 95%, and
99%, respectively.

(ii) Without knowledge of any individual’s medical
history or symptoms, the proposed method for
predicting the COVID-19 test result (positive/
negative) is solely based on a complete blood
examination.
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(iii) Tis strategy is based on the need to rapidly dis-
tinguish patients with COVID-19 from those with
similar symptoms, as well as the recognized limi-
tations of using the RT-PCR and rapid diagnostic
test (RDT).

(iv) Te statistical test and feature selection technique
plays a crucial role in the prediction model.

(v) Polynomial features and SelectKbest provide more
information about the most important variables.

(vi) Tis study indicates the immediate relation of the
pathogenesis of COVID-19 to monocytes and neu-
trophils, as shown by the results of the dependence
test (ANOVA test); it should be noted that the four
variables from the regular ward data had the best
scores for eosinophils, followed by red blood cells,
hemoglobin, and leukocytes. Community patients
with SARS-CoV-2 have high scores on leukocyte,
monocyte, platelet, and eosinophil parameters.

Tis article is structured as follows: Section 2 includes
a description of the dataset, the data analysis and data pre-
processing for the classifcation algorithms used, and a detailed
description of the materials and methodology. Te results of
the experiment are presented in Section 3. Section 4 discusses
the results, and Section 5 ofers conclusions on the prospects
for use of this analysis procedure to detect COVID-19.

2. Materials and Methods

2.1. Dataset. Te data used in this study were obtained from
the Kaggle website [23]. Information was retrieved for pa-
tients treated at Israelita Albert Einstein Hospital in São
Paulo, Brazil, who had samples collected to perform the
SARS-CoV-2 RT-PCR and additional laboratory tests be-
tween March 28, 2020, and April 3, 2020 [24]. Following
international best practices, all data were anonymized. Te
normalization process resulted in a mean of 0 and a standard
deviation value for all clinical data.

Te hospital data consisted of 5,644 individual patients
and 111 variables, as presented in Table 1. Te patients were
classifed into four groups: community (not admitted to
hospital), regular ward, semi-intensive unit, and intensive
care unit (see Table 2).

Patient information included age, the SARS-CoV-
2 RT-PCR test result, and full blood results, including he-
matocrit, hemoglobin, platelets, mean platelet volume, red
blood cells, lymphocytes, mean corpuscular hemoglobin
concentration (MCHC), leukocytes, basophils, mean cor-
puscular hemoglobin (MCH), eosinophils, mean corpus-
cular volume (MCV), monocytes, and red blood cell
distribution width (RDW). Additional pathogen tests were
conducted on 356 of the 598 tested for SARS-CoV-2.

2.2. Data Analysis. In the dataset provided, we have divided
the extracted information into columns and rows. Rows are
referred to as observations. Each column in this dataset shows
some information about observations, such as hematocrit,
hemoglobin, or platelets. Tese columns are labeled features

or predictor variables of our dataset. Te “SARS-CoV-2 exam
result” column classifes our dataset and predicts whether or
not the individual is infected with COVID-19; consequently,
it is considered as the target variable.

Te degree of infuence that the variables in the dataset
have over the target value can be determined by their
correlation with the target. As a result, we were able to
pinpoint the features that can distinguish an infected patient
from a noninfected patient.

During our data mining and analysis of the “blood/target
and hospitalization/blood” visualization graphs, we noticed
that the monocyte, platelet, leukocyte, and eosinophil levels
for infected and noninfected individuals were signifcantly
diferent (see Figure 1). In addition, the relationship between
a patient’s hospitalization status and their blood charac-
teristics difered for each hospitalization category (com-
munity, regular ward, semi-intensive unit, or intensive care
unit) (see Figure 2), which presents the possibility that these
variables are related to positive COVID-19 infection. Testing
this hypothesis through Student’s t-test allowed us to verify
that the means (averages) between the two distributions
(positive versus negative COVID-19 test result) are signif-
icantly diferent at the level of these variables.

Student’s t-test results (see Table 3) support our hy-
pothesis that the levels of platelets, monocytes, eosinophils,
and leukocytes are signifcant for predicting SARS-CoV-2
and, therefore, can assist in decision-making.

2.3. Data Preprocessing. Data preprocessing consists of
treating, fxing, and preparing data before inputting it for
machine learning. Te goal is to transform the raw data into

Table 1: Data description.

Features Description

Target SARS-CoV-2 exam result
(RT-PCR SARS-CoV-2 test)

Id Patient ID
Age Patient age quantile
Categorical variables Pathogen test
Continuous variables Complete blood count
Missing values 90% NaN

Hospitalization

Community
Regular ward

Semi intensive unit
Intensive care unit

Table 2: Albert Einstein hospital dataset groups.

Group of patients RT-PCR
negative

RT-PCR
positive Other pathogens

Community 431 (92%) 39 (8%) 149 (32%)
Regular ward 31 (54%) 26 (46%) 12 (21%)
Semi-intensive
unit (SIU) 34 (81%) 8 (19%) 17 (40%)

Intensive care
unit (ICU) 21 (72%) 8 (28%) 12 (41%)

Total 517 (86%) 81 (14%) 190 (31%)
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Figure 1: Visualization of blood/target. Te plots show the variation curves of individual parameters categorized according to whether the
patient tested positive (blue curve) or negative (yellow curve) on the RT-PCR test for SARS-CoV-2. Tese plots indicate a statistically
signifcant diference between the two curves (positive-negative). In particular, leukocytes, eosinophils, monocytes, and platelets seem to
have diferent variability across the two classes (negative-positive).
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Figure 2: Visualization of hospitalization/blood. Monocytes, eosinophils, leukocytes, and platelets seem to have diferent variability
between COVID-19-positive and negative patients. In addition, the levels of these parameters vary according to patients’ hospitalization
status.
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a format conducive for the development of a machine-
learning model and to clean the dataset as much as possi-
ble to improve the performance of the model. For our data,
we followed a simple and efcient approach. Te dataset
consists of columns with continuous and categorical vari-
ables. Since the machine-learning model requires that all
input data be in numeric form, we have coded the target
value “SARS-CoV-2 exam result” by assigning 0 for “neg-
ative” and 1 for “positive.”

Te hospital data contain 111 columns with 90%
missing values (5,046 of the 5,644 results). Te dataset is
also challenging because no information is provided about
the patients except their ages, which makes it difcult to fll
out the missing data using precise extrapolation methods.
Using diferent methods to recover the missing data using
the mean value is efective for some cases, but not for a set
of medical exam results (sensitive data). For all these
reasons, 5,046 of the 5,644 results were excluded from
analysis, leaving only 598 cases (517 positives and 81
negatives) containing complete variables for use in
the study.

Te analysis was performed based on patients’ severity
according to their hospitalization status. Blood counts were
obtained for the community, regular ward, semi-intensive
unit, and intensive care unit cohorts (see Table 2). Only
patients with a full blood examination and RT-PCR SARS-
CoV-2 outcome were included.

To ensure that our prediction is based on early in-
dicators, patients in the semi-intensive and intensive care
units were removed from our analysis. In addition, we
excluded pathogenic (viral) factors and age from our study.

In this work, we used feature selection using the
SelectKbest transformer and polynomial features in both
groups of the dataset to fnd the most important variables.
Given the result of our statistical test (Table 3), we will
examine only the blood variables. Tese variables will be
used to detect the presence of SARS-CoV-2.

2.4. Evaluation Metrics. Te purpose of this study was to
accurately predict whether an individual is infected with
COVID-19 based on available clinical data. Te main issue
in this study is the unbalanced classes. Since this is a very
sensitive prediction, accuracy alone is typically not sufcient
in the absence of other performance measures. In this case,
we used a confusion matrix to evaluate the performance of
classifcation models. Four indicators are measured in the
confusion matrix: accuracy, recall, precision, and F1 score
(see Table 4) [25]. Tese indicators are defned as follows.

Te terms used in the equations are a, true positive; d,
true negative; b, false positive; c, false negative; r, recall; and
p, precision.

2.4.1. Accuracy. Accuracy is the percentage of all predictions
that were accurate.

Te formula is

Accuracy �
a + b

a + b + c + d
. (1)

2.4.2. Precision (Positive Predictive Value). Precision is the
likelihood that the prediction of a positive result is actually
positive. Precision minimizes the chances of a false positive
result.

Te formula is

p �
a

a + b
. (2)

2.4.3. Recall (True Positive Rate, Sensitivity, or Probability of
Detection). Recall is the probability of the model success-
fully identifying true positive cases. Te recall reduces the
number of false negatives in our predictions, allowing us to
detect as many COVID-19-infected individuals as possible.

Te formula is

r �
a

a + c
. (3)

2.4.4. F1 Score. Te F1 score is an overall indicator of
classifer performance, and F1 is a function of a true positive
rate and positive predictive value (precision and recall).

Te formula is

F1Score �
2∗p∗ r

p + r
. (4)

2.4.5. AUC. AUC is the area beneath the ROC curve. It is
calculated using the ROC curve, which is a plot of the true
positive rate versus the false positive rate. Te greater the
area under the plotted line, the better the algorithm performs
due to its higher sensitivity and specifcity. Te commonly
used metric known as the “area under the ROC curve,” or
“AUROC,” ofers an easy approach to compare algorithms.

Table 3: Student t-test results.

Parameters p value H0

Hematocrit p> 0.05 0
Hemoglobin p> 0.05 0
Platelets p< 0.05 H0 rejected
Mean platelet volume p< 0.05 H0 rejected
Red blood cells p> 0.05 0
Lymphocytes p> 0.05 0
Mean corpuscular hemoglobin
concentration (MCHC) p> 0.05 0

Leukocytes p< 0.05 H0 rejected
Basophils p> 0.05 0
Mean corpuscular hemoglobin (MCH) p> 0.05 0
Eosinophils p< 0.05 H0 rejected
Mean corpuscular volume (MCV) p> 0.05 0
Monocytes p< 0.05 H0 rejected
Red blood cell distribution width (RDW) p> 0.05 0
Te null hypothesis (H0) stated that both means are statistically equal,
whereas alternative hypothesis stated that both means are not
statistically equal.
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Many investigators choose the point on the ROC curve that,
in their opinion, will produce the best outcomes for the
task [26].

2.5. Methods. Te purpose of this work was to predict
COVID-19 infections from blood features using SVM and
KNN classifers. After preprocessing and feature selection,
we applied the two models to the bloodwork results for
patients with and without COVID-19 who either were not
hospitalized (39 tested positive for SARS-CoV-2 and 431
negative) or were admitted to the regular ward (26 tested
positive for SARS-CoV-2 and 31 negative). A common
supervised-learning technique used in regression and clas-
sifcation is SVM [27]. SVM involves fnding a hyperplan,
whose ideal location is in the center of two classes. Te best
hyperplan equation is that which maximizes the margin
between the two groups in various classes [28]. Te choice of
the kernel function is an essential component because
a suitable kernel function is imperative for the SVM to
acquire learning capability. Terefore, we employ SVM with
the radial basis kernel function.

Meanwhile, the KNN algorithm is considered a type of
lazy learning since it is practical machine learning that does
not require preparation or a training cycle. Because of its
straightforwardness, the KNN calculation is one of the ten
best known data-mining algorithms [29]. KNN demon-
strates high profciency and a magnifcent capacity to tackle
troublesome classifcation problems. As a rule, KNN is
a valuable and quick procedure [30], which lends itself to our
purpose of saving valuable time for health experts.

Terefore, we implemented and regularized the two
models as follows (see Figure 3). First, we created a list of
models that included SVM and KNN and then submitted all
the models to the same evaluation procedure. We note that
the algorithms in the list are introduced through a pipeline
that includes steps completed in the preprocessing phase.
Ten, we renamed this pipeline that has the polynomial
features and SelectKbest transformers as “preprocessors.”

Tis preprocessor pipeline is appended, upstream, to
these two models. In contrast, we created a new pipeline of
the SVM model that contains the preprocessor followed by
a standardization operation (with the StandardScaler
function) and an SVC classifer. In addition, we applied the
same process to KNN, which is a pipeline containing the
preprocessor, StandardScaler, and KNeighborsClassifer.We
trained and evaluated both models on their default hyper-
parameters using our evaluation procedure. (Te evaluation
function provides training and testing of the models, as well
as visualization of the confusion matrix and the learning
curve.) Our goal was to improve the performance of these
models by enhancing these hyperparameters.

2.5.1. Hyperparameter-Tuning Techniques. Te random
search technique via the RandomizedSearchCV function
enables identifcation of the best hyperparameters by
comparing the performance of each combination using the
cross-validation technique. We created a dictionary con-
taining the diferent hyperparameters (penalty coefcient C,
Gamma, polynomial feature, and SelectKbest) to be regu-
lated. We embedded the SVM model, which is a pipeline, as
well as the dictionary of hyperparameters in the function
RandomizedSearchCV, followed by a scoring rubric which is
the recall with cross-validation (cv� 10). We applied the
same process to KNN using the RandomizedSearchCV
function. It included the KNN model, a dictionary of
hyperparameters (“neighbors classifer weights,” “neighbors
classifer neighbors,” and “polynomial features degree,”
SelectKbest k), followed by a scoring rubric, which is always
the recall with cross-validation equal to 10 and the number
of iterations fxed at 100.

2.5.2. Application of SMOTE to the Imbalanced Dataset
(Community). Te community dataset included 39 positive
and 431 negative patients. Terefore, the data are charac-
terized by a distribution of the modalities of the class that is
very far from a uniform distribution (that is, unbalanced
classes), which is a relatively frequent situation in some
classifcations. More concretely, unbalanced classes gener-
ally refer to a classifcation problem where the classes are not
equally distributed. Te difculty of working with un-
balanced data classes (defned as positive/negative� 0.09) is
that the KNN and SVM models ignore the minority class. A
class imbalance increases the difculty of learning via the
classifcation algorithm. Indeed, the algorithm has few ex-
amples of the minority class to learn from. It is therefore
biased and produces potentially less robust predictions than
if the data were balanced.

Te imbalance between the two classes in the community
dataset is signifcant (positive/negative� 0.09), thereby
degrading the performance of the defned ML model. Tus,
the SMOTE technique [31] is adapted to balance the two
classes in the dataset, a type of data augmentation for the
minority class, 1, and designed to make it similar to the
majority class, 0. We used the implementations of SMOTE
provided by the Python library imbalanced-learn set to their
default parameters (k neighbors� 5 . . .); this object is an
implementation of [31]. Te 10-fold stratifed cross-
validation technique is again applied and repeated re-
cursively for 10 classes.

Next, we divided the dataset, designating 85% of the data
points for training and 15% for testing. Finally, we imple-
mented and evaluated the SVM and KNN models, as shown
in Figure 3.

Table 4: Performance metrics.

Confusion matrix Target
Positive Negative

Model Positive a b Positive predictive value� a/(a+ b)
Negative c d Negative predictive value� d/(c+ d)

Te Scientifc World Journal 7
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Figure 3: Methodology workfow.
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3. Results

In this section, the efectiveness of the proposed SARS-CoV-
2 prediction strategy is evaluated. Te proposed SVM and
KNN classifers will be evaluated for both regular ward and
community groups to accurately detect SARS-CoV-2 pa-
tients. Te performance of each implemented model is
presented in terms of AUC, accuracy, precision, recall, and
F1 score.

3.1. StatisticalAnalysis. Polynomial features and SelectKbest
provide more information about the most important vari-
ables. SelectKbest selects the 14 variables with a statistical
test score of dependence (ANOVA test) with the target.
Tese variables are the most signifcant for predictive
purposes. Te dependency test analysis of the main variables
according to the SelectKbest transformer corresponding to
the patients in the regular ward (see Table 5) and the
community ward revealed a recognizable ANOVA test
score. It should be noted that the four variables from the
regular ward data had the best scores for eosinophils, fol-
lowed by red blood cells, hemoglobin, and leukocytes (see
Table 6). Community patients with SARS-CoV-2 have high
scores on leukocyte, monocyte, platelet, and eosinophil
parameters.

3.2. Results for Patients Admitted to the Regular Ward.
SVM, run using the default settings, yields a precision value
of 89% and a recall value of 75% and a precision and F1 score
of 1 and 86%, respectively, for class 1 (patients testing
positive) on 10-fold stratifed cross-validation, as shown in
Table 7. Receiver operating characteristic (ROC) curves were
plotted for the 10-fold and area under the curve (ROC)
values for all folds (Figure 4). After the model was improved
through optimization of its parameters via a random search,
we obtained almost the same values for the model metrics.
Te metric evaluations of the model are presented in Fig-
ure 5. Te confusion matrix and the learning and validation
curve are illustrated in Figures 6 and 7.

Te results of the implementation of KNN with default
parameters yield an average AUC of 84% on 10-fold
stratifed cross-validation, an accuracy of 78%, a recall of
75%, a precision of 75%, and an F1 score of 75%, re-
spectively, for the class 1 patients. After regularization of the
hyperparameters, the AUC improved remarkably, from 84%
to 91%. While the other metrics remain almost the same
(Figure 8), the AUC score is equal to 0.91± 0.11 (see Fig-
ure 9). Te results of the two classifers are summarized in
Tables 7 and 8.

3.3. Implementation Results for the Community Dataset.
SVM defned for the data on patients not admitted to
hospital using default parameters yields an average
accuracy of 85%, a recall of 81%, a precision of 89%, an
F1 score of 84%, and an AUC of 99% for class 1 on 10-fold
stratifed cross-validation (see Table 9). Te ROC curves

for all 10-folds produce an average AUC of 0.99 ± 0.00.
Meanwhile, the optimized SVM results yield an average
AUC of 99% (see Figure 10), an accuracy of 95%, a recall
of 96%, a precision of 94%, and an F1 score of 95%,
respectively (see Table 10 and Figure 11). Te confusion
matrix, learning curve, and validation curve are illus-
trated in Figures 12 and 13.

With KNN set to default parameters, accuracy is 88%,
recall is 96%, precision is 84%, and the F1 score is 90%,
respectively (see Table 9).

After tuning parameters and 10-fold stratifed cross-
validation are applied, the mean AUC score is 0.99± 0.10
(see Figure 14), accuracy is 90%, recall is 91%, precision is
89%, and the F1 score is 91%, respectively (see Table 10 and
Figure 15). Te results of the two classifers are summarized
in Tables 9 and 10.

Table 5: Te 14 variables (14 diferent blood counts) in the con-
struction of the predictive model (regular ward data), ranked
according to the best dependency test scores (ANOVA test) with
the target (SARS-CoV-2).

Feature name Score
Eosinophils 19.097924
Red blood cells 10.508018
Hemoglobin 9.878300
Leukocytes 9.760907
Hematocrit 9.638821
Mean platelet volume 5.262199
Platelets 4.385559
Red blood cell distribution width (RDW) 3.503271
Basophils 3.459295
Lymphocytes 2.726842
Mean corpuscular volume (MCV) 1.767816
Mean corpuscular hemoglobin (MCH) 1.447305
Monocytes 0.137198
Mean corpuscular hemoglobin concentration
(MCHC) 0.008929

Table 6: Te 14 variables (14 diferent blood counts) in the con-
struction of the predictive model (community data), ranked
according to the best dependency test scores (ANOVA test) with
the target (SARS-CoV-2).

Feature name Score
Leukocytes 375.774996
Monocytes 228.273420
Platelets 225.528765
Eosinophils 46.271648
Mean platelet volume 34.246066
Mean corpuscular hemoglobin (MCH) 12.148960
Hemoglobin 10.499801
Red blood cell distribution width (RDW) 10.174787
Basophils 8.583406
Hematocrit 7.795479
Mean corpuscular volume (MCV) 6.610441
Lymphocytes 6.433391
Mean corpuscular hemoglobin concentration
(MCHC) 6.345696

Red blood cells 1.443602

Te Scientifc World Journal 9



4. Discussion

Te complete dataset included 5,644 patients tested between
March 28, 2020, and April 3, 2020, of which 598 complete
blood count results were used for statistical analysis. Te
remaining 5,046 results were omitted because of incomplete
blood count data. Despite the constraint of the small sample
size, our goal of identifying patients with COVID-19 in-
fection was achieved with an accuracy of 95% using an SVM

classifer. By promoting and developing diferent classif-
cation models (SVM and KNN) with 598 patients, we
predicted SARS-CoV-2 infection with an AUC of up to 0.99
for nonhospitalized patients and 0.92 for regular ward pa-
tients, using only standardized complete blood count data.

Te fnding that SARS-CoV-2-positive and negative
cases can be classifed using biological features at an early
stage of the disease has important implications. Te study
was performed on a dataset organized by the patients’
hospitalization status. We excluded patients in the semi-
intensive and intensive care units from our analysis in order
to base predictions of COVID-19 test results on indicators of

Table 7: Evaluation results for model predictions with the regular ward data group (patients testing positive for SARS-CoV-2) using default
parameters.

Variables Model Precision Recall F1 score Accuracy AUC
14 diferent blood counts SVM 1.00 0.75 0.86 0.89 (0.94 ± 0.15)

14 diferent blood counts KNN 0.75 0.75 0.75 0.78 (0.84 ± 0.20)
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Figure 4: Te ROC curve and AUC values of the SVM model for
regular ward patients. Te ROC curve shows the true-positive rate
versus the false-positive rate. Comparing AUC values reveals that
the ROC curve has greater AUC and thus indicates better overall
performance. Generally, the higher the AUC, the better the model
performance.
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the disease in its early phase. Terefore, age and pathogenic
(viral) variables were excluded from our study.

Te strategy we have developed can provide a reliable
and rapid SARS-CoV-2 diagnosis. KNN and SVM algo-
rithms on both groups of patient data have shown that the
SVM algorithm applied to community patients with opti-
mization and the SMOTE technique ofers the most accurate

predictions. Tis enhanced SVM technique provides pre-
cision, recall, accuracy, and AUC values that reach 0.94, 0.96,
0.95, and 0.99, respectively. KNN optimized over commu-
nity patient data after the SMOTE technique is applied
produces accurate results.

However, for the regular ward data, both classifers
retain almost identical metrics regardless of the optimization
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Figure 8: Te metric evaluations of the KNN model for regular ward patients.
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Figure 9: Te ROC curve and AUC values of the KNN model for regular ward patients.

Table 8: Evaluation results for model predictions with the regular ward data group (patients testing positive for SARS-CoV-2) after tuning
parameters.

Variables Model Precision Recall F1 score Accuracy AUC
14 diferent blood counts SVM 1.00 0.75 0.86 0.89 (0.92 ± 0.15)

14 diferent blood counts KNN 0.75 0.75 0.75 0.78 (0.91 ± 0.11)

Table 9: Evaluation results for model predictions with the community data group (patients testing positive for SARS-CoV-2) using default
parameters.

Variables Model Precision Recall F1 score Accuracy AUC
14 diferent blood counts SVM 0.89 0.81 0.84 0.85 (0.99 ± 0.00)

14 diferent blood counts KNN 0.84 0.96 0.90 0.88 (0.99 ± 0.00)

Te Scientifc World Journal 11



of the hyperparameters and the selection technique used.
Tis result may be due to the problem of low data regis-
tration, which infuences and explains both the lack of
improvement in the results despite optimization. Te same
problems may also infuence and provide less relevant in-
formation for the signifcant variables of the regular ward
patients as well (see scoring table). Overall, this underscores
the difculty of interpreting standardized data of low reg-
istration. Both classifers can be used as an improved al-
gorithm to perform SARS-CoV-2 prediction for new data.

SVM and KNN are very robust in analyzing data with two
classes (positive or negative).

Te symptoms of COVID-19 are often accompanied by
an immune response [32]. Terefore, hyperactivity of blood
parameters is noticed in all stages whenever an infection
exists [33]. Indeed, several scientifc reports have confrmed
this hypothesis. Te researchers in these works used similar
predictive models based on blood parameters, suggesting
elevated levels of some of these parameters; for example, an
elevated level of eosinophilia could be a potential diagnostic
indicator [34]. Indeed, the value of this marker has been
identifed in cerebrovascular pathologies and during coro-
nary bypass surgery. Te previous fnding of an elevated
neutrophil/lymphocyte count seems to be a relevant marker
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Figure 10: Te ROC curve and AUC values of the SVM model for community patients. Comparing AUC values for algorithm simulation
cases (Figures 6 and 7) shows that the ROC curve for the SVM model with community patients has greater AUC and, thus, indicates better
model performance.

Table 10: Evaluation results for model predictions with the community data group (patients testing positive for SARS-CoV-2) after tuning
parameters.

Variables Model Precision Recall F1 score Accuracy AUC
14 diferent blood counts SVM 0.94 0.96 0.95 0.95 (0.99 ± 0.00)

14 diferent blood counts KNN 0.89 0.91 0.91 0.90 (0.99 ± 0.11)
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in the diagnosis of COVID-19 [35], as is the case in our study
(see the tables of the predictive variables for each dataset).

In this study, we examined the evolution of blood pa-
rameters in all the patients in a particular unit as exploratory
analyses using ratios of diagnostic blood characteristics.
However, the fact that these characteristics may be related to
other pathogens and viral diseases is a potential limitation of
the proposed method. Indeed, previous studies have shown
that MERS increases monocytes [36]. SARS also directly
infects monocytes, which produce cytokines that directly
afect neutrophils [37]. Both infections, then, produce
similar efects on blood activity related to humanitarian
reactions. At the same time, this study indicates the im-
mediate relation of the pathogenesis of COVID-19 to
monocytes and neutrophils as shown in the dependency test
score results (ANOVA test) (see Tables 5 and 6).

However, these parameters are often signifcant
depending on the results of the statistical test performed, and
we have initiated research to identify feature scores that
distinguish SARS-CoV-2 with a preprocessor that embraces
both polynomial features and the SelectKbest transformer in
both groups of the dataset to fnd the most signifcant
variables (see Score Table). Te variable selection method
used shows, on the one hand, the utility of data mining in
extracting altered information from key features for clas-
sifcation should a future strain of coronavirus emerge,
which remains a risk and danger facing humanity. On the
other hand, the collection, analysis, and processing of
medical data must be of interest to the health sector.

5. Conclusion

Our model and all artifcial intelligence-based predictive
models related to the healthcare sector rely on medical data.
Te use of machine learning (ML) is important for pro-
cessing patient data to guide efective control and treatment
strategies for the pandemic. Te main element in con-
structing an AI-based predictive model is information.
Terefore, the availability of and access to such data are
crucial for the development of similar studies. Te study will
also be further adapted to address the lack of information
and collected data in the medical feld to facilitate the task of
direct detection of SARS-CoV-2 in hospitals and medical
testing laboratories. An automated medical diagnosis that
reduces costs for healthcare institutions is very important,
especially when quick decisions are necessary to isolate
infected patients and provide prompt treatment. Direct
contact with infected patients may threaten doctors and
caregivers with illness or even death. To overcome this global
and dangerous challenge, it is fundamentally essential to
analyze patient data at health facilities and detect the disease
immediately, with accuracy, and within the shortest possible
time frame. Future work will focus on creating a pipeline
that combines AI-based predictive models with these types
of complete blood counts and healthcare data processing
models. Tese models will then be included in applications
that will help in the development of mobile healthcare.
Terefore, ML can provide a step toward a semiautonomous,
expeditious diagnostic system that would be useful in
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Figure 13: Learning and validation curves of the SVM model for
community patients.
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combating a future pandemic situation and would ofer
tremendous opportunities to harmonize with sustainable
development goals.
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