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Traditional cancer treatment approaches are often hindered by the presence of toxic side efects and the high rate of relapse
observed in treated organs. In contrast, novel immunotherapeutic strategies targeting immune checkpoint inhibitors, particularly
PD-1, have demonstrated promising results with minimal adverse efects. However, the emergence of immunotherapeutic-
resistant tumors, predominantly caused by intrinsic mutations, poses a signifcant obstacle to successful treatment outcomes.
Consequently, the primary objective of this study was to screen for the most detrimental missense mutations in the PD-1 gene
associated with immunotherapeutic resistance. To achieve this aim, a comprehensive screening process utilizing 20 web servers,
incorporating both sequence- and structure-based methodologies, was undertaken. Trough meticulous analysis and mutual
disease association sorting, four specifc missense mutations were successfully identifed. Tese mutations, namely, R38C, D61V,
R94C, and D117V, emerged as the leading contributors to genetic cancer progression and immunotherapeutic resistance against
PD-1 blockers. Te fndings presented in this study are supported by multiple lines of evidence. A thorough examination of
protein topology, structural alignment, docking interactions with PD-L1, and protein fexibility collectively confrmed the
pathogenic nature of these sorted mutations. By considering these various aspects, we have gained a comprehensive un-
derstanding of the underlying mechanisms driving immunotherapeutic resistance. In conclusion, the comprehensive screening
process undertaken in this study has successfully identifed R38C, D61V, R94C, and D117V as the primarymutations contributing
to genetic cancer progression and immunotherapeutic resistance against PD-1 blockers. Te integration of protein topology
analysis, structural alignment, docking studies with PD-L1, and assessment of protein fexibility have collectively provided robust
evidence to support the pathogenic signifcance of these mutations.

1. Introduction

Cancer, a devastating disease afecting a substantial number
of individuals worldwide, remains a signifcant global health
concern. With an annual incidence of approximately 2
million cases, it tragically accounts for an estimated 608,000
deaths each year, and this number is projected to escalate to
22 million deaths by 2030 [1]. Te current therapeutic ap-
proaches available for cancer treatment encompass three
primary modalities: surgery, radiotherapy, and chemo-
therapy. Te selection of treatment options depends on the
type and stage of cancer in question. Typically, surgical
intervention is employed as the initial step, followed by
a combination of radiotherapy and chemotherapy. Tis

comprehensive approach aims to reduce the size of can-
cerous tissue through surgery and radiotherapy while uti-
lizing chemotherapy for long-term administration to
impede the proliferation of cancer cells [2]. Despite the
relative efcacy of these treatment strategies, no defnitive
cure has been achieved. Moreover, the high cost and con-
siderable toxicity associated with chemotherapy necessitate
a pressing need for the exploration of novel therapeutic
avenues [3].

Te modern arena of chemotherapy is immune-based
therapeutics (immunotherapy). Te immune system is
requested to regularly perform surveillance to detect and kill
cells transforming into cancerous. While it is substantially
important for immune cells to frst identify the cells
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undergoing cancer transformation, impedance is to alleviate
or overcome immunosuppression imposed by cancer tissue
preventing the identifcation step [4]. Immune checkpoint
inhibitors (ICIs) revolutionized the feld of cancer immu-
notherapy by overcoming immunosuppression. Two major
ICI targets include cytotoxic T-lymphocyte-associated an-
tigen 4 (CTLA-4) and programmed cell death 1 (PD-1).
CTLA-4 is upregulated in regulatory T cells resulting in
downregulation of the immune response toward cancer
cells. On the other hand, PD-1 upon binding to its inhibitory
ligand (PD-L1) is prevented from causing apoptosis to in-
fected host cells as well as cancer cells, keeping cancer
progression [5]. ICI treatment has been shown to satisfy the
desired therapeutic index with minimal side efects in
clinical trials [6].

However, the efcacy of immune checkpoint inhibitor
(ICI) immunotherapy has been hindered by the emergence
of resistance mechanisms in cancer cells. Tese resistant
cancerous cells have the ability to counteract the efects of
ICI therapy by acquiring multiple mutations in the targets of
ICIs and their corresponding natural ligands. Tis resistance
poses a signifcant challenge, as the cancer cells can display
aggressive behavior towards immune cells in advanced
stages. Notably, the relapse rate after immunotherapy is
estimated to be as high as 1 in every 3 melanoma patients [7].

Herein, the aim of the present theoretical work is to sort
and shortlist the most pathogenic missense mutations of
PD-1 through several sequence-based and structure-based
analysis methods and to assess the structural and binding
efects of such mutations.

2. Methodology

Te strategy employed in the present theoretical work is
summarized in Figure 1. However, the detailed explanation
of each step is given.

2.1.SequencesAccession. Te sequence of PD-1 was obtained
from Ensembl dataset [8] (Ensembl ID: ENSG00000188389).
Te variant table of the same dataset was utilized for re-
trieving and calculating the total and classifcation of
mutations.

2.2. Sorting Mutations. Only missense mutations were
considered for further analysis. Te retrieved missense
mutations were subjected to 3 stages of sorting. Te frst
stage involved ruling out the medium and less pathogenic
mutants via the built-in tools, namely, SIFT [9], PolyPhen-2
[10], and MutaionAssessor [11]. Stage two involves
sequence-based prediction via SNAP2 [12], MutPred2 [13],
SNP&GO [14], SuSPect [15], PANTHER [16], PMut [17],
and DEOGEN 2 [18] tools, whereas the third stage repre-
sented structure-based predictions using MUpro [19], I-
Mutant 2 [20], iStable 2 [21], CUPSAT [22], SDM [23],
mCSM [24], DUET [25], MAESTROweb [26], DynaMut 2
[27], and DeepDDG [28] servers (20 in total). Tis ensures
the obtaining of consensus disease-associated missense

mutations and, at the same time, excluding mutations with
less probability of neutral variants.

2.3. Determination of Evolutionary Conservation. Te con-
sensus mutations were subjected to evolutionary conser-
vation exploration to test the position and functional impact
imposed by those missense variants. Tis was accomplished
utilizing the ConSurf tool [29].

2.4. Homology Modelling, Refnement, and Validation.
After ruling out the less pathogenic missense mutations and
validating the most deleterious ones, the 4 most risky
mutations, together with the native protein (Uniprot ID#
Q15116), were inputted to the SWISS-Model [30] for ho-
mology modelling the tertiary structure and consecutive
refnement through the GalaxyRefne web portal [31]. Te
built model for wild-type PD-1 was checked using the
Ramachandran plot calculated using UCSF Chimera v1.16
[32] and further by the ProsA program [33].

2.5. Prediction of Protein Topology. Utilizing the UniProt ID
of PD-1 (Q15116), protein topology and its invagination into
the cell membrane were evaluated using the TOPCONS
server [34] and validated and depicted using Protter [35].
Tose servers also reveal the signal peptide, posttranslational
modifcations, and disulfde bonds.

2.6. Structural Comparison. To determine the efect of SNPs
on the tertiary structure of PD-1 wild-type and its variants,
structural superimposition was performed using RCSB
pairwise structure alignment [36]. Both rigid and fexible
modes of superimposition were tested.

2.7. Docking to PD-L1. In order to give crucial results re-
garding the efect of missense variants on the function of
PD-1, protein docking was performed via the HDock
platform [37] to evaluate wild-type PD-1 and its variants
binding to the native inhibitory protein PD-L1 (PDB ID#
5IUS).

2.8. Protein Flexibility. Te fexibility of all variants was
examined using the CABS-Flex 2 server (http://biocomp.
chem.uw.edu.pl/CABSfex2/index) [38]. Te number of
cycles and cycles between trajectory frames was set at 50;
otherwise, the remaining parameters were set as default.
Root mean square fuctuation (RMSF) data of all variants
were plotted using Microsoft® Excel 2019.

3. Results and Discussion

Tere were more than 6,300mutations found in the Ensembl
dataset concerning the PD-1 gene. Among these, 355 mis-
sense variants were observed, and the majority were intronic
mutations as elucidated in Figure 2.
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3.1. Sequence-Based Predictions. Te 3 gold standard tools,
namely, SIFT, PolyPhen-2, and MutationAssessor, were used
for ruling out the neutral missense variants from damaging
ones. Te SIFT algorithm listed 100 SNPs as deleterious. On
the other hand, PolyPhen-2 classifed 49 missense variants as
probably damaging, whereas only 4 variants demonstrated
high impact in MutationAssessor. Terefore, upon compar-
ison of the three tools, four deleterious missense SNPs were
found in common (summarized in Table 1).

Te positions of those consensus mutations are shown in
Figure 3. Subsequently, the top 4 deleterious mutations were
evaluated through 7 sequence-based predictions, which are
summarized in Table 2.

Among the utilized tools, only the DEOGEN web server
classifed the four variants as deleterious. Te remaining
tools exhibited fuctuating fndings; i.e., SNAP2 sorted 3 as
efect, whereas the rest tools classifed ≤2 variants as
damaging.

Accession of PD-1 gene
variants in Ensembl dataset

Missense mutations sorting

Determination of evolutionary
conservation by ConSurf

3 Gold standard tools
SIFT, PolyPhen-2 &
Mutation Assessor

7 Sequence-based servers

10 Structure-based servers

Homology modelling, Refinement
& Validation of wild-type and top 4

missense variants

Protein topology prediction

Structural comparison

Docking to PD-L1

Protein flexibility

Figure 1: Flowchart elucidating the workfow of the present study.
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Synonymous: 198

3'-UTR: 772
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Missense variants
Splice region variant
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3'–UTR
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Figure 2: Distribution frequency of mutations in the PD-1 gene.
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3.2. Structure-Based Predictions. Similar to sequence-based
servers, 2 servers (MUpro and DeepDDG) classifed the
efect of mutation on stability as “destabilizing” followed by
MAESTROweb (3 destabilizing mutations), while the rest of
the tools predicted two variants, in common, as destabilizing
mutations (Table 3).

3.3. Determination of Evolutionary Conservation. As illus-
trated in Figure 4, the four hotspot mutation sites, namely,
38, 61, 94, and 117, were exposed on the surface. In addition,
the obtained data suggest the implication of 2 missense
mutations (R94C and D117V) in functional roles. Tis
confrms the deleterious efects of substituting such highly

Table 1: Shortlisting of the most probable disease-associated missense variants.

Tools R38C D61V R94C D117V

SIFT 0
(Deleterious)

0
(Deleterious)

0
(Deleterious)

0
(Deleterious)

PolyPhen-2 0.999
(Probably damaging)

0.998
(Probably damaging)

1
(Probably damaging)

1
(Probably damaging)

MutationAssessor 0.953
(High)

0.955
(High)

0.953
(High)

0.955
(High)

Figure 3: 3D structure of native PD-1 along with the predicted hotspot positions of consensus mutations. Positions 38, 61, 94, and 117 are
shown in red, green, cyan, and purple, respectively.

Table 2: Sequence-based predictions of the top 4 missense variants.

Tools R38C D61V R94C D117V

SNAP2 −14
(Neutral)

26
(Efect)

71
(Efect)

83
(Efect)

MutPred 2 0.109
(Neutral)

0.259
(Neutral)

0.768
(Pathogenic)

0.805
(Pathogenic)

SNP&GO 7
(Neutral)

3
(Neutral)

3
(Neutral)

3
(Disease)

SuSPect 69
(Disease-associated)

15
(Neutral)

91
(Disease-associated)

12
(Neutral)

PANTHER 0.27
(Probably benign)

0.27
(Probably benign)

0.27
(Probably benign)

0.5
(Possibly damaging)

PMut 0.07
(Neutral)

0.11
(Neutral)

0.45
(Neutral)

0.69
(Disease)

DEOGEN 0.85
(Deleterious)

0.64
(Deleterious)

0.87
(Deleterious)

0.89
(Deleterious)

Numbers indicate the probable mutation efect score, while bold indicates deleterious mutations.
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Table 3: Structure-based predictions of the top 4 missense variants.

Tools R38C D61V R94C D117V

MUpro −0.187
(Decrease stability)

−0.326
(Decrease stability)

−1.307
(Decrease stability)

−0.734
(Decrease stability)

I-Mutant 2 2
(Decrease)

1
(Increase)

5
(Decrease)

5
(Decrease)

iStable 2 −0.494
(Decrease)

0.507
(Increase)

−0.90
(Decrease)

−1.24
(Decrease)

CUPSAT −1.4
(Destabilizing)

−1.94
(Destabilizing)

0.29
(Stabilizing)

0.53
(Stabilizing)

SDM 1.32 kcal/mol
(Stabilizing)

−0.17 kcal/mol
(Destabilizing)

−0.18 kcal/mol
(Destabilizing)

1.13 kcal/mol
(Stabilizing)

mCSM −0.43 kcal/mol
(Destabilizing)

0.14 kcal/mol
(Stabilizing)

−1.033 kcal/mol
(Destabilizing)

1.009 kcal/mol
(Stabilizing)

DUET 0.162 kcal/mol
(Stabilizing)

0.347 kcal/mol
(Stabilizing)

−0.97 kcal/mol
(Destabilizing)

1.492 kcal/mol
(Stabilizing)

MAESTROweb 0.51 kcal/mol
(Destabilizing)

1.428 kcal/mol
(Destabilizing)

0.88 kcal/mol
(Destabilizing)

−0.374 kcal/mol
(Stabilizing)

DynaMut 2 0.23 kcal/mol
(Stabilizing)

−0.7 kcal/mol
(Destabilizing)

1.51 kcal/mol
(Stabilizing)

−0.54 kcal/mol
(Destabilizing)

DeepDDG −0.279 kcal/mol
(Destabilizing)

−0.160 kcal/mol
(Destabilizing)

−2.146 kcal/mol
(Destabilizing)

−2.833 kcal/mol
(Destabilizing)

Numbers indicate the probable mutation efect score, while bold indicates deleterious mutations.

Figure 4: Evolutionary conservation of the individual residues along with the corresponding surface accessibility. b: buried; e: exposed; f:
functional; s: structural.
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conserved residues. Te other sites, 38 and 61, were variable
and thus imposed less efect on the protein function. Ac-
cordingly, the most pathogenic missense variants are R94C
and D117V.

3.4. Homology Modelling. Te generated model had 95.1%
Rama favoured, 4.9% residues in the allowed regions with no
poor rotamers (Figure 5(a)). Validation via the ProsA server
produced a Z-score of −5.31. Furthermore, the black circle
lies within the NMR revealed structures, mirroring the high
quality of the generated model (Figure 5(b)).

3.5. Protein Topology. Only a small portion of the total
protein was predicted to span the membrane (residues
170–190). Residues before 170 constitute the extracellular
domain, whereas the residues after 190 form the intracellular
domain.Te two examined servers are in a highly signifcant
agreement with respect to the transmembrane stretch
(Figure 6). Terefore, all tested variants lie within the ex-
tracellular domain, in which the ligand-binding pocket is
located.

3.6. Structural Comparison. To see the efect of SNPs on the
tertiary structure of PD-1 variants, structural superimpo-
sition was performed using RCSB pairwise structure
alignment. Te rigid as well as fexible aligned variants
exhibited a root mean square deviation (RMSD) of 0.27 and
TM-score of 1. Tis indicates that the SNPs have very weak
impact on the whole protein structure, albeit the variants
were distributed from residue 38 to 117 (Figure 7). Nev-
ertheless, an in-depth analysis of individual variants using
the DynaMut 2 server revealed steric hindrance (in-
termolecular clashes) and repulsive interactions pre-
dominantly in the D117V variant since the frst and third
variants had stabilizing impact on the whole protein

architecture. Te individual structural consequences of the
variants are depicted in Figure 8.

3.7. Docking to PD-L1. In order to give crucial results re-
garding the efect of missense variants on the function of
PD-1, protein docking was performed via the HDock
platform to evaluate wild-type PD-1 and its variants binding
to the native inhibitory protein PD-L1 (PDB ID# 5IUS).

As shown in Table 4, the wild-type protein exhibited
relatively weaker binding to its native inhibitory protein PD-
L1. In contrast, the four variants showed stronger binding
energy to PD-L1. Tis demonstrates the deleterious efect of
missense mutations on protein afnity since stronger
binding means, in this case, inability of the PD-1 protein to
avoid PD-L1 binding, and thus, no apoptosis takes place in
malignant cells.

3.8. Protein Flexibility. Te RMSF diagram showed marked
fuctuations in all variants at diferent positions. Never-
theless, there were relatively consensus peaks at certain
positions, namely, 17–21, 28–35, 42–48, 55–65, 72–76,
83–92, and 99–105 (Figure 9). RMSF data indicate the
changed dynamics of the variants in comparison with the
native protein. Hence, RMSF data emphasize the deleterious
efect of all variants.

4. Discussion

Conventional chemotherapy approaches exert their thera-
peutic efects by interfering with various cellular processes
such as the cell cycle, DNA replication, cell metabolism, or
microtubule assembly, ultimately impeding tumor growth
[39]. However, certain cytotoxic drugs, including oxaliplatin
and anthracycline, not only induce immunogenic cell death
but also trigger an antitumor immune response [40]. Tese
drugs not only enhance the activity of immune efector cells
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Figure 5: Validation of the generated and refned model of PD-1 via the Ramachandran plot (a) and ProsA (b).

6 Te Scientifc World Journal



but also modulate the tumor microenvironment by elimi-
nating and recruiting tumor-infltrating macrophages and
suppressing suppressor T cells. When combined with im-
mune checkpoint inhibitors (ICIs), particularly those

targeting the PD-1/PD-L1 axis, they hold great promise for
the treatment of various cancers, such as non-small cell lung
carcinoma [41]. It is important to note that neither con-
ventional chemotherapy nor immunotherapy alone is
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Figure 6: Obtained protein topology as predicted by Protter (a) and TOPCONS (b).
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Figure 7: Structural superimposition of the wild-type PD-1 together with the top four missense variants. RMSD and TM-scores are
also shown.
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Figure 8: Individual structural consequences of the four variants predicted using the DynaMut 2 server.
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sufcient to address the complexity and dynamic nature of
cancer, as evidenced by the large number of mutations
observed. Tese mutations can confer resistance to treat-
ment or lead to drug tolerance [42]. Terefore, the objective
of the present theoretical work was to analyze the most
prevalent deleterious missense mutations in the PD-1 gene
utilizing various bioinformatics methods.

Upon selection of the golden standard tools, SIFT,
PolyPhen-2, and MutationAssessor, 4 consensus missense
variants were obtained. Unfortunately, the application of
multiple tools, whether sequence-based or structure-based,
failed to confrm the fndings of the preliminary assortment.
Only DEOGEN and MUpro showed identical results,
whereas other tools used resulted in conficting output.
From an evolutionary perspective, R94C and D117V are in
the highly conserved hotspot region and adopt functional
roles in the protein as predicted by using the ConSurf web
server. Moreover, from the protein topology results, it can be
inferred that all four variants lie within the extracellular
domain at the N-terminal, where the cognate ligands bind
[43]. Tis confrms the deleterious efects of the shortlisted
variants. Te structural comparison among the found
missense variants along with the wild-type protein had no
impact on the whole protein fold as the TM-score was
predicted to be 1, indicating almost complete typical
alignment. However, docking to PD-L1 via the HDock
platform demonstrated strong binding of the four variants
compared to control which refects tumor-promoting and
antiapoptotic actions. It should be noted that DeepDDG
results were substantially compatible with protein docking
output with the notion that all the four variants decreased
PD-1 stability in addition to sorting R94C and D117V as the
most dangerous ones. Once bound to PD-L1, PD-1 plays
a critical role in dampening the immune response and in-
ducing self-tolerance through interfering with external

apoptotic signaling cascade initiation particularly in tumor
cells [44]. Protein fuctuations expressed as RMSF of all
variants emphasized the destabilizing impact of the exam-
ined missense mutations. Overall, the cumulative demon-
strations in the current study confrm the deleterious efect
of R38C, D61V, R94C, and D117V on the PD-1 protein
structure and binding afnity accounting for the impact of
mutation on cancer progression and consecutively on re-
sistance to drugs.

5. Conclusion

Te objective of this study was to identify the most path-
ogenic missense variants in the PD-1 gene through the
utilization of three widely recognized tools: SIFT, PolyPhen-
2, and MutationAssessor. As a result, four highly deleterious
mutations were identifed and further investigated through
sequence-based predictions and subsequently through
structure-based predictions using a comprehensive set of 17
servers. Notably, the analysis conducted with the ConSurf
tool revealed that two of these mutations (R94C and D117V)
occurred in highly conserved regions, indicating their po-
tential damaging efects. In addition, structural superim-
position demonstrated minimal diferences in the overall
protein structure among the variants. Te subsequent step
involved docking simulations against the natural ligand PD-
L1, which further confrmed the pathogenic nature of the
mutations R38C, D61V, R94C, and D117V. Furthermore,
the assessment of protein fexibility corroborated the sig-
nifcance of these mutations in cancer progression and the
recurrence of tumors following immunotherapy treatment.
It is worth noting that for assessing the stability efects of
mutations on proteins, the DeepDDG web portal is rec-
ommended as a preferable tool. Tese fndings shed light on
the detrimental impact of specifc missense mutations in the

Table 4: Protein docking profle between the wild-type PD-1 and the top 4 missense variants by HDock.

Receptor Wild-type R38C D61V R94C D117V
Docking score (kcal/mol) −224.08 −259.43 −237.61 −238.76 −237.32
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1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117

Mutant 1
Mutant 2
Mutant 3

Mutant 4
Native PD-1

Figure 9: RMSF of all variants compared with native PD-1 protein.
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PD-1 gene, providing valuable insights into their role in
cancer progression and resistance to immunotherapy. Fu-
ture research may beneft from employing the DeepDDG
web portal to further evaluate the stability efects of these
mutations on the protein structure and function.
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