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Red pepper (Capsicum annum L.) is an increasingly important economic crop in the world. Tus, this study aimed to investigate
the growth, physiological, and biochemical responses of red pepper cultivars under drought stress conditions. A pot culture
experiment was conducted in a completely randomized design with three replications, four treatments, and three cultivars. Totally,
36 pots and six seeds per pot were used to grow the seeds. After fve weeks, the cultivars were exposed to diferent drought stress
conditions (100% FC or control, 80% FC or low stress, 60% FC or moderate stress, and 40% FC or severe stress). All the collected
data were subjected to an analysis of variance (ANOVA). Shoot length was reduced signifcantly (p< 0.05) in the Hagerew cultivar
under severe drought stress. Te photosynthesis rate was reduced by 21.11% (p< 0.05) in the Mitmita cultivar under severe
drought stress. Te highest percentage reduction of chlorophyll content (77.28%) was recorded in the Hagerew cultivar. Both
Markofana and Mitmita responded to drought stress by increasing the accumulation of proline and phenolic compounds. Te
root-to-shoot ratio was increased signifcantly in both Markofana and Mitmita cultivars (27.91% and 50.92%), respectively, under
drought-stress conditions. Tis study depicted that the cultivar Mitmita was the most drought-tolerant cultivar among the three
cultivars.

1. Introduction

Red pepper (Capsicum annum L.) belongs to the family
Solanaceae and originated in the world’s tropics and sub-
tropics over 2000 years ago [1]. Te crop is grown widely
under various environmental and climatic conditions. Hot
pepper is the world’s third most important vegetable, next to
potatoes and tomatoes [2, 3], which produced approximately
40 in 2020 (World) and 7.70 (Africa) million tons of green
fruit [4]. Red pepper cultivars are widely grown in various
parts of Ethiopia, particularly in the Amhara, Oromia, and
Southern Nations Nationalities, and Peoples Regional States
regions [5]. According to MoARD [6]; the total pepper
production was 0.25 million tons from 118, 987 hectares in
Ethiopia.Te production in the green formwas 220, 791 tons

from 97, 712 ha, and 118, 514 tons in the dry form from an
area of 300,000 ha [7]. Peppers are important cash crops for
smallholder farmers in countries like Ethiopia [8] and are
good sources of nutrients in the human diet [9, 10].
However, their productivities are less since they are sus-
ceptible to horticultural plant drought stress [11–13].

Te economies of most developing countries are based
on agriculture, which is fully dependent on nature [14].
However, this agriculture has been afected by diferent
biotic and abiotic factors such as drought, salinity, heat, and
waterlogging stress [15, 16]. Among these, drought stress is
an important issue that greatly afects agriculture pro-
ductivity [17]. Te insufciency of water caused by erratic
and poorly distributed rainfall causes tremendous global
losses in agriculture [18]. Drought decreases the productivity
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and quality of crops [19] and also limits the successful
utilization of land throughout the world [20]. Te meta-
bolism activities such as physiological processes become
highly disturbed in plants when exposed to drought stress
[21, 22]. According to Alqudah et al. [23] and Lamaoui et al.
[24], drought stress is considered the most important abiotic
factor that adversely afects the yield and quality of many
feld crops by altering the growth, physiology, and metabolic
activities of plants. In particular, it reduces plant growth by
afecting various physiological and biochemical processes,
such as osmotic adjustments, water relations [25, 26], and
photosynthetic activity [27, 28], and consequently causes
a reduction in fower production [29–31].

Te best approach to cope with the adverse efects of
drought stresses is screening (testing) the available red
pepper cultivars for water scarcity [32]. Te adaptive re-
sponses to water defcit include morphological, physiolog-
ical, and biochemical changes such as changes in growth
rate, stomatal conductance, photosynthesis rate, chlorophyll
content, and the root-to-shoot ratio [33]. Morphological and
some leaf-related characteristics were also used as indicators
for the detection of drought stress in chili pepper [34].
However, drought stress on the parameters of growth,
physiological, and biochemical was not conducted com-
prehensively on the response of red pepper cultivars in the
studied area to get the red pepper cultivars tolerant to
drought stress. Terefore, the objective of this research was
to study the efect of drought stress on selected morpho-
logical, physiological, and biochemical parameters of red
pepper cultivars so that the responses of the cultivars were
evaluated against drought stress.

2. Materials and Methods

Te research was performed with three red pepper (Cap-
sicum annum L.) cultivars in response to drought stress,
namely, Hagerew, Markofana, and Mitmita. Te seeds of
these cultivars were obtained from the Bahir Dar Agricul-
tural Research Centre. Te experiment was carried out at the
Botany Laboratory of the University of Gondar (12°35′ 11.7″
N and 37°26′ 27″ E, 2148m above sea level). Te annual
average of the maximum and minimum temperature lies
approximately 27°C and 16°C, respectively, while mean
relative humidity and precipitation are approximately 56%
and 1161mm, respectively. Te annual wind speed and
pressure for the area were found to be 7.1 km/h and
1023mbar, respectively. During the experimental period
(March to April), the relative humidity was 50.5%, the
maximum and minimum daily temperatures were found to
be 29.1°C and 18°C, respectively, and no rainfall occurred.
Te red pepper crops have a growing period of 120–210 days
[35], and these three cultivars have approximately the same
development periods.

Tereafter, the seeds of the three red pepper cultivars
(Capsicum annum L.) were sterilized with ethanol (80%) for
around 15min, bathed with distilled water, and then sown in
plastic pots (25 cm wide× 26 cm height) containing 6 kg of
farmyard manure and soil in a 1 : 3 ratio (25% FYM and 75%
soil). Te soil texture was determined using the hydrometer

method and it was identifed as sandy loam soil (Table 1).
Te physical and chemical properties of the soil sample used
to grow the pepper plants were analyzed as follows.

Soil moisture content was determined using an in-
strument (IMKO, Trime-Pico TDR) in each pot under study
up to the end of the experiment.Ten, the moisture readings
were taken directly by inserting the instrument deep into the
soil after the instrument was calibrated [36]. Te moisture
data were recorded at regular intervals up to the end of the
experiment for each treatment (Figure 1) and then irrigation
was performed carefully.

After 2 weeks of germination, uniform-sized seedlings of
the cultivar were allowed to continue in plastic pots.
Terefore, each plastic pot had three seedlings up to the end
of the experiment to observe the response of the cultivars
against drought stress (Figures 2(a)–2(c)). Te potted
seedlings were watered with tap water daily at a feld capacity
of 100% (FC) for up to 2weeks, which was considered the
accommodation period. After 4weeks, a completely ran-
domized design (CRD) with three replications and four
treatments was adopted for the three cultivars.

2.1.Drought StressCondition. Drought condition is a feature
of climate that appear when the rainfall is defcient com-
pared to the statistical multiyear average for a region, over an
extended period of a season or year, or even more [37]. To
realize the drought stress, plants were subjected to the
following three drought levels along with the control fol-
lowing the method used by Al-Maskri et al. [38]. Tese were
low stress, or 80% FC, moderate stress, or 60% FC, severe
stress, or 40% FC, and the control group, or 100% FC. For
the experiment, there were 40 days of drought exposure on
the seedlings for all the treatments.

2.2. Irrigation Water Application. Te irrigation water ap-
plication was done following the method used by Kazgöz
Candemi̇r et al. [39]. Te pots used to grow the seedlings
have pores underneath for water leakage. Tree pots were
used where irrigation water was applied with a specifc
beaker at certain intervals until water began to leak from
underneath the pots to determine the irrigation water
amount before each irrigation. As soon as leakage was seen
from underneath the pot, water application was stopped to
determine the volume of water (in ml). Tis amount de-
termined corresponded to the 100% FC, while 80% FC, 60%
FC, and 40% FC of this amount were applied to the other
pots. Accordingly, the amount of water applied per irri-
gation to maintain the soil feld capacity was 600ml for
100% FC, 480ml for 80% FC, 360ml for 60% FC, and
240ml for 40% FC, with a scheduled irrigation interval of
3 days.

Te tap water was irrigated within the three days interval
up to the end of the experiment. Te electrical conductivity
of the tap water used in the experiment was on an average of
0.0066 dS/m, and the average pH was found to be 6.99.
According to Ayers and Westcot [40]; the quality of water
used in the experiment was within the permissible levels
required for irrigation water.
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2.3. Data Collection

2.3.1. Growth Measurements. Shoot length, root length,
number of leaves, stem thickness, number of branches, leaf
area, leaf width, leaf length, and canopy diameter were
measured after beginning the water treatments. Changes in
the shoot and root growth of the cultivars within 10 days
intervals till the end of the experiment were recorded. All the
leaves and branches were counted individually in each

replica at the end of the stress period. Te stem thickness of
each plant per pot was measured by using a Digital Vernier
hand caliper meter (AP-961) and the average stem diameter
of the individual plants in the replicate was taken as the stem
thickness at the end of the stress period. A leaf area meter
(AM 300, ADC Bio Scientifc Limited, UK) was used to
measure leaf area and leaf width at the end of the experi-
ment. Te canopy diameter was measured within each pot
following the method of Delelegn et al. [41]. Ten, the mean
values of the North-South and East-West measurements
were taken as canopy diameters.

2.3.2. Physiological Measurements. Te physiological pa-
rameters such as leaf relative water content (LRWC),
chlorophyll fuorescence (CF), net photosynthesis rate (A),
transpiration rate (E), and stomatal conductance (gs) were
measured.

LRWC was determined from the leaves collected from
the cultivars in all treatments following Kirnak et al. [42].
Similarly, sample fresh leaves were taken following the
method of Moradi et al. [43] and immediately weighed using
a digital electronic balance to get a fresh weight (FW). Ten,
the leaves were immersed in large Petri dishes containing
distilled water for twenty-four (24) hours. After 24 hours, the
turgid weight (TW) was determined. Te leaves were then
placed in a preheated oven at 72°C for 24 hours and dried to
obtain their dry weight (DW). Ten, the LRWC was calcu-
lated using the formula given by Kirnak et al. [42] as follows:

LRWC �
F.W − D.W
T.W − D.W

x100, (1)

where F.W� fresh weight; D.W� dry weight; and
T.W� turgidity weight of leaves.

Chlorophyll fuorescence was measured using a portable
multimode OS5P Chlorophyll Fluorometer (Opti-Sciences,
Inc., USA) from 10:00 to 11:00AM using the methods of
Husen et al. [44]. Before it was recorded, the upper surface of
the leaf was predarkened for 30minutes by using leaf clips to
secure a complete relaxation of all the reaction centers, as
recommended by Kauser et al. [45]. PSII efciency (F0/Fm)
readings were taken from the whole plants per pot (9 leaves
were taken from each plant in the pots) as recommended by
Almeselmani [46]. Terefore, the maximum quantum yield
of PSII efciency (Fv/Fm) was directly taken from the in-
strument reading.

Te net photosynthesis rate, transpiration rate, and
stomatal conductance were measured at the fnal using a gas
analyzer (LC Pro + Photometer, ADC Bio Scientifc Ltd.,
Hoddesdon, United Kingdom). Fully expanded attached
leaves were taken and all these measurements were per-
formed on 10 leaves from each plant as recommended by
Husen et al. [44].

2.3.3. Biochemical Measurements. Biochemical parameters
such as chlorophyll content, internal proline content, and
total phenolic compounds were determined. To determine
the chlorophyll “a,” “b,” and total chlorophyll, leaf samples
were taken from each plant per replica. Fresh samples and
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Figure 1: Soil moisture content depletion on diferent days before
irrigation (WP� permanent wilting point of the soil).

Figure 2: Seedlings of potted plants for the three cultivars: (a)
Hagerew; (b) Markofana; (c) Mitmita.

Table 1: Physical and chemical properties of the experimental soil.

Properties examined Units Values
Sand % 62.57
Silt % 22.68
Clay % 14.75
Moisture saturation % 30.4
Wilting point value % 10.1
Field capacity moisture % 24.5
Textural classifcation Sandy loam soil
Electrical conductivity ms/cm 0.68
pH 7.21
OM % 0.22
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homogenization were done as shown in Figures 3(a) and
3(b). In the end, the concentration of chlorophyll “a” and “b”
total chlorophyll content was determined using the formula
given in Arnon [47] as follows:

Chl. a (mgg-1FW)� 12.7× (A663)− 2.69× (A645)
Chl. b (mgg-1FW)� 2.9× (A663)− 4.68× (A645)

Total chlorophyll concentration (mg/g FW)� 20.2×A663+
8.02A645.

Here (A663) and (A645) represent absorbance values
read at 663 and 645 nm wavelengths. Tis was collected at
the end of a drought stress period to compare the chloro-
phyll content between stressed and nonstressed red pepper
plants.

Proline content was determined following the method
used by Bates et al. [48] based on the reaction of proline
with ninhydrin. Ten, the absorbance at 520 nm was de-
termined using a microprocessor UV-Visdouble-beam
spectrophotometer. Te total phenolic content of the ex-
tracts was determined following the method of Rispail et al.
[49] using the following formula at the end of the
experiment.

Total phenolic content� gallic acid equivalent (mg/L)×

total volume of the methanol extract x sample weight (kg/g)/
Dilution factor (L/mL).

2.3.4. Biomass Estimation. In the end, plants were harvested
carefully. Ten, the shoot and root fresh weights (SFW and
RFW) of each replica of the treatments for the three cultivars
were measured using a digital electronic balance (CY510,
Citizen Scale, Poland), and themean values were taken as the
shoot and root fresh weights of the red pepper cultivars.
Shoot and root dry weights (SDW and RDW) for the cul-
tivars were also measured using a digital electronic balance.

To get the root-to-shoot ratio of biomass, the whole
plants were uprooted, rinsed, separated into shoot and root,
and oven-dried for 24 hours at 72°C. Ten, the root-to-shoot
ratio was computed using the formula given by Luvaha et al.
[50] as follows:

Root: Shoot �
Root dr y weight
Shoot dr y weight

X100%, (2)

2.4. Data Analysis. All collected data were subjected to
analysis of variance (ANOVA), mean comparisons were
performed using LSD, and graphical comparisons were
presented using the SPSS version 20 software. Te signif-
cance level of the data was accepted at p< 0.05 and rejected
when p> 0.05 confdence interval level. A one-way ANOVA
was used to determine statistically signifcant diferences
between the means of the parameters of the three red pepper
cultivars under diferent drought levels. Te parameters of
each of the cultivars were measured on the same in-
dependent variable after having undergone the same con-
dition. On the other hand, a two-way ANOVA was used to
analyze the interaction efect of both the cultivar type and
watering regime. A correlation was also made to determine

the direction of the relationship and to measure the strength
of the association between two continuous variables.

3. Results and Discussion

3.1. Shoot Length. Changes in the shoot growth of the
cultivars within 10 days intervals till the end of the exper-
iment were recorded. Te results showed that drought stress
decreased the shoot length by 19.75%, 21.87%, and 31.02% at
80% FC, 60% FC, and 40% FC, respectively, in the Hagerew
cultivar in the frst 10 days of drought exposure compared to
the control (Figure 4(a)). Similarly, the shoot length declined
by 23.83%, 35.94%, and 45.19% at 80% FC, 60% FC, and 40%
FC on the 20th day of drought exposure in the Hagerew
cultivar. At prolonged drought exposure (40th day), shoot
length declined by 21.44%, 43.46%, and 52.91% in similar
treatments, and the variation was statistically signifcant
(F� 39.89, p< 0.05).

Te Markofana shoot length (SL) was also reduced by
19.91%, 23.25%, and 36.44% on the 10th day of drought
exposure and by 26.08%, 36.62%, and 49.66% on the 20th
day of drought exposure at 80% FC, 60% FC, and 40% FC,
respectively (Figure 4(b)). At prolonged stress (40th day),
the efect was statistically signifcant (F� 37.27, p< 0.05).
Similarly, shoot length was reduced in the Mitmita crop by
1.23%, 19.90%, and 13.74% on the 10th day of drought
exposure and by 11.47%, 26.09%, and 35.67% on the 20th
day of drought exposure (Figure 4(c)) at 80% FC, 60% FC,
and 40% FC, respectively, compared to the control. At severe
drought stress (40th day), the efect was statistically sig-
nifcant (F� 45.01, p< 0.05). Te fnding in shoot reduction
is in agreement with the reports on soybean [51, 52], rice
[53], common bean [54], maize [55], and turfgrass [56].
Shoot length is reduced by up to 25% in citrus seedlings
under drought stress conditions [57]. Tis is related to the
reduction in cell turgor, which decreases the rate of cell
division and cell expansion due to the inhibiting efect of
water shortage on growth-promoting hormones [58, 59].
Another reason [60] is diminished cell expansion and
a higher leaf senescence rate. According to Farooq et al. [61],
the imposition of plants to drought stress disrupts water fow
from the xylem to the surrounding elongating cells and
causes a reduction in shoot lengths as well.

3.1.1. Number of Leaves. It was found that the number of
leaves decreased by 52.28% in the Hagerew cultivar
(Figure 5(a)), by 52.15% in the Markofana cultivar
(Figure 5(b)), and by 47.08% in the Mitmita cultivar
(Figure 5(c)). In this study, the number of leaves decreased
signifcantly in the Markofana cultivar at p< 0.05 level. Tis
fnding is similar to the previous reports by Anjum et al. [62]
on plants and maize [55]. Others [63–65] also found that
a water defcit could limit the growth of the plant, which can
be seen by the reduced leaf number. Tis might be due to
a reduction in leaf formation and the abscission of lower
leaves. It may also be the result of leaf senescence caused by
increased carbon remobilization from the leaves and their
redistribution to stems and roots [66].
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3.2. Root Length andCanopyDiameter. Te root length (RL)
of the three red pepper cultivars that were measured after
40 days of drought exposure is displayed in Figure 6(a). As
the results showed, root length was reduced by 20.99% at
40% FC (the 40th day of drought exposure) in the Hagerew

cultivar.Te inhibitory efect was also signifcantly increased
(F� 11.46; p< 0.05) in the Markofana cultivar at 40% FC as
compared to the control group. Te root length was reduced
from 18.83 cm in the control to 10.00 cm in the 40% FC in
the cultivar. On the other hand, root length declined by
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Figure 4: Shoot variations in (a) Hagerew, (b) Markofana, and (c) Mitmita cultivars after 40 days of drought exposure.
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Figure 3: (a) Extraction and (b) determination of chlorophyll content from sample leaves.
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27.64% in the Mitmita cultivar under severe drought stress,
or 40% FC compared to the control group. Similar fndings
were found in marigolds [56] and mung bean plants [67].
Water defcit stress is initially sensed by the root and root
growth becomes afected [68]. Similarly, diferent scholars
reported that root length becomes impeded by drought at
the early stages in alfalfa plants [69] and sunfowers [70, 71]
and became shrinking in lengthened drought stress [72].

Te average canopy diameter of the three red pepper
cultivars was recorded from the growing plants
(Figure 6(b)). Severe drought stress signifcantly reduced
canopy diameter by 32.47%, 38.84%, and 37.18% in the
Hagerew, Markofana, and Mitmita cultivars, respectively, as
compared to the control. Te decrease in canopy diameter
was signifcant under severe drought stress irrespective of
the control (F� 8.70; p< 0.05).Tis fnding is in line with the
work of Al-Mahmud et al. [73]; which showed that canopy
diameter was signifcantly decreased under severe drought

stress in potato plants. Tese might be due to the traits they
inherited, and they may determine the yielding potential of
the crop. Te water defcits reduced the canopy growth of
strawberries [65].

3.3. Stem Tickness and Leaf Data. Te efects of drought
stress on stem thickness, number of leaves, branches, leaf
area, leaf width, and length of the three cultivars were
recorded and presented in Table 2. Te results revealed that
severe drought stress or 40% FC reduced the stem thickness
by 30.93% in the Hagerew cultivars compared to the control
group.Te stem thickness of theMarkofana cultivar was also
reduced by 29.33% under severe drought stress as compared
to the control. On the other hand, severe drought stress
decreased the stem thickness by 30.43% in the Mitmita
cultivar compared to the control. Te decline in stem di-
ameter was signifcant in severe drought stress compared to
the control. Tis result is in agreement with the report of
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Figure 5: Variations in the number of leaves in the (a) Hagerew, (b) Markofana, and (c) Mitmita cultivars after 40 days of drought exposure.
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Luvaha et al. [50] on mango seedlings and maize crops [55].
Te result was also consistent with the previous report by
Alordzinu et al. [36] on tomato plants.

Te number of branches in the Hagerew cultivar was
signifcantly afected by severe drought stress (F� 18.25,
p< 0.05). Similarly, the number of branches was signif-
cantly afected under severe drought stress in both the
Markofana and Mitmita cultivars (F� 6.11, p< 0.05;
F� 17.23, p< 0.05), respectively. A similar fnding was re-
ported by Ichwan et al. [74] in red chili peppers under water
defcit conditions. Te number of branches decreased under
severe drought stress in sweet peppers [75]. However, leaf
width was insignifcantly afected by severe drought stress in
the Hagerew, Markofana, and Mitmita red pepper cultivars.
Te leaf length was also signifcantly reduced by 24.29%,
46.49%, and 41.06% under severe drought stress in the
Hagerew, Markofana, and Mitmita cultivars.

Te leaf area was also afected by severe drought stress in
all three cultivars. As the result showed, the efect of severe
drought stress on the leaf area was statistically signifcant
(F� 48.76, p< 0.05) in the Hagerew cultivar as compared to
the control. Te leaf area in the Markofana cultivar was also
signifcantly reduced (F� 12.13, p< 0.05). Similarly, the leaf
area was signifcantly afected (F� 68.46, p< 0.05) in the
Mitmita cultivar under severe drought stress. Te result was
consistent with the study done by Zhang et al. [76] on
soybean. Te reduction of leaf area under water defcit stress
was also previously reported in many plants such as wheat
cultivars [77], marigold plants [56], and strawberries
[65, 78]. Drought stress reduced leaf area by 51.6% during
the vegetative stage of cowpea due to the inhibition of cell
growth [79]. According to Manandhar et al. [80], limited
water availability decreases leaf area, thereby reducing plant
yield. Te reason for leaf growth reduction might be turgor
loss and increased synthesis of abscission acid under stress

[81, 82]. Tis is to achieve a balance between the water status
of plant tissues and the water absorbed by the plant roots
[83]. According to Blum [84]; a small leaf area is benefcial
under drought stress to avoid hydration.

3.4. Te Physiological Responses of Red Pepper Cultivars to
Drought Stress

3.4.1. Leaf Relative Water Content. Drought stress greatly
reduced the physiological efciency of leaves in the three
cultivars in comparison with the controls. Te degree of
reduction of LRWC was high in the Hagerew cultivar
(20.26%), followed by the lowest reduction of LRWC for the
Mitmita cultivar (15.92%). LRWC also declined by 17.33% in
the Markofana cultivar (Table 3). LRWC was signifcantly
reduced as drought stress increased compared to control in the
Hagerew cultivar. In line with this fndingDaCosta andHuang
[85] also found that a water defcit reduces LRWC in wheat
cultivars. Tis was also confrmed in the previous reports
[86–90]. Te LRWC decreased as a result of high water stress
levels and increasing resistance to water fow in the stems and
leaves of plants [77, 91, 92]. However, the LRWC between the
control and severe drought stress in the Markofana and
Mitmita cultivars was statistically insignifcant. Tis may be
due to the variation in the ability of red pepper cultivars to
avoid stress by maintaining tissue turgor osmotically. Tezera
et al. [82] also found that reduced water availability in soil
lowers leaf water content, causing guard cells to lose turgor,
and hence the size of stomatal pores is reduced.

3.4.2. Chlorophyll Fluorescence. Under severe drought
stress, the percentage reduction of chlorophyll fuorescence
(Fv/Fm) was 3.33% in the Hagerew, 3.70% in theMarkofana,
and 2.89% in the Mitmita cultivars (Table 3). In the present
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study, drought stress imposed for 40 days had a statistically
signifcant efect on the PSII photochemical efciency
(Fv/Fm) of red pepper cultivars. Tis is in agreement with
the earlier reports by Liu et al. [93] on plants, Wang et al.
[94] on apple tree leaves, and Widuri et al. [34] on chili
pepper plants. A signifcant reduction was also perceived in
barley, young wheat, and pepper crop plants under drought
stress [95–97]. Tis may be because of the suppression of
PSII by decreasing electron transport and the release of
magnesium and calcium ions from their binding [98, 99].
Te changes in PSII activity under water defcit stress are
related to photoinhibition rather than to direct damage to
PSII [100]. Moreover, the reduction might be due to the
development of slowly relaxing quenching processes [101].

3.4.3. Photosynthetic Rate and Stomatal Conductance.
Te analysis of variance in the photosynthetic rate of both
Hagerew and Markofana cultivars showed signifcant vari-
ation at p< 0.05 (Table 3) under severe drought conditions.
However, there was an insignifcant variation in the pho-
tosynthesis rate of the Mitmita cultivar. TeMitmita cultivar
had the highest assimilation rate of 15.00 μmolem−2 S−1

followed by Markofana at 13.56 μmolem−2 S−1, and the
lowest was noted in the Hagerew cultivar with a mean value
of 12.78 μmolem−2 S−1. Stomatal conductance was also re-
duced by 4.33%, 10.97%, and 11.45% in the Mitmita,
Markofana, and Hagerew cultivars, respectively, under se-
vere drought stress conditions. In the present study, the
photosynthetic rate was signifcantly afected under severe
drought stress conditions in the Hagerew cultivar, which was
consistent with the reports on sorghum [102], rice [103], and
chickpea cultivars [104]. Zhang et al. [105] also proved that
water stress inhibited the process of photosynthesis in maize.
Drought stress decreases guard cells and causes the stomata
to close, which in turn inhibits the uptake of CO2 needed for
photosynthesis [106–108]. Te stomatal conductance also
decreasedwith increasing drought stress levels.Tis determines
plant tolerance to drought [109]. Tis is because the closing of
stomata to restrict gas exchange between the atmosphere and
the leaf is one of the frst responses of plants to drought.
Mafakheri et al. [102] also reported that the decrease in
photosynthesis rate can be due to both stomatal and non-
stomatal factors. Related to this, Berahim et al. [110] described
how stomatal movement is a critical attribute in monitoring
water transpiration and CO2 absorption under drought stress.
Stomata activity causes a change in the photosynthetic rate
under drought stress conditions [111]. Chaves and Oliviera
[112] also presented that stomatal conductance only afects the
photosynthesis rate under severe drought stress. In this study,
however, moderate drought stress also decreased the photo-
synthesis rate. In line with this fnding, Flexas and Medrano
[113] found that mild andmoderate drought stresses decreased
photosynthesis due to the stomatal closure and the resulting
CO2 defcit in the chloroplasts.

3.4.4. Transpiration Rate. Te cultivars showed a signif-
cant diference in transpiration rates at p< 0.05 (Table 3).
Te Mitmita red pepper cultivar had a signifcantly higher

transpiration rate than the other cultivars. Te highest
transpiration rate was observed in the Mitmita cultivar
with a mean value of 4.99mmol m−2 S−1 under severe
drought conditions. Relatively, the Hagerew cultivar
showed the lowest transpiration rate (3.23mmol m−2 S−1)
followed by the Markofana cultivar (4.11mmol m−2 S−1).
Table 3 shows that the higher the drought stress level (40%
FC) is, the lower the transpiration rate of all red pepper
cultivars. Tis fnding agrees with the previous reports on
wheat crops [114]. A signifcant reduction in the tran-
spiration rate was also observed under drought stress
conditions in crops such as wheat, rice, and maize
[115, 116].

3.5. Te Biochemical Responses of Red Pepper Cultivars to
Drought Stress

3.5.1. Chlorophyll Content. Te leaf pigments (chlorophylls
“a,” “b”, and total chlorophyll) were quantifed and the
results indicated that the chlorophyll content declined with
an increase in the drought stress level (Table 4). Under
severe drought stress, chlorophyll “a” was reduced by
72.14%, chlorophyll “b” by 28.49%, and total chlorophyll by
77.28% in the Hagerew cultivar. In the Markofana cultivar,
chlorophyll “a” was reduced by 57%, chlorophyll “b” by
23.33%, and total chlorophyll by 45.19% at 40% FC.
Similarly, in the Mitmita cultivar chlorophyll “a” was re-
duced by 52.35%, chlorophyll “b” by 18%, and total
chlorophyll by 45.45% under severe drought stress or at
40% FC compared to the control group (Table 4). Tis
reduction in pigment content was previously reported in
several crop plants, including bread wheat [117], sorghum
[3], millet [118], red chili varieties [119], and diferent
sunfower varieties [70]. Others [65, 120, 121] also found
that lower water feld capacity tends to decrease total
chlorophyll in chamomile, strawberries, and peanut plants,
respectively. Te reduction may be because of the low
activity of the photosynthetic elements under stress. It may
also be because of the reduced synthesis of the main
chlorophyll pigment complexes encoded by the Cab gene
family due to drought stress [122]. Chloroplasts are des-
tructed by the reactive oxygen species under drought stress
[123–125]. Chiral macroaggregates of light-harvesting
chlorophyll “a” or “b” pigment-protein complexes may
also be destructed [126]. On the other hand, there were
insignifcant diferences in the treatments of both the
Markofana and the Mitmita cultivars compared to the
control. Tis may be due to the production of osmolytes
during stress in the cultivars. Similarly, Ichwan et al. [74]
reported that red chili pepper increases osmolytes as the
mechanism of drought stress tolerance.

3.6. Proline Content and Total Phenolic Compound.
Proline content was signifcantly increased under water
defcit stress in the Markofana cultivar (Table 5). However,
the increase in proline content was not signifcantly afected
by the stress in the Hagerew cultivar. Proline content in-
creased by 37%, and by 22.14% in the Hagerew and
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Markofana cultivars, respectively. Similarly, drought stress
also infuenced the total leaf phenolic content (p< 0.05) in
the cultivars (Table 5). Under severe drought stress, total
phenolic content increased by 22.57%, 44.12%, and 47.11%
in the Hagerew, Markofana, and Mitmita cultivars, re-
spectively. Crops respond to drought stress by accumu-
lating osmolytes in response to stress [127–129]. In the
present study, there was a signifcant increase in the
proline content in the Markofana and Mitmita cultivars
under severe drought stress. Tis agrees with the previous
reports on pepper plants [130]. Similar fndings were also
previously reported on pea cultivars [131], Petunia hybrida
[132], and soybean genotypes [133–135] under drought
stress. Ghorbanli et al. [136] and Choudhary et al. [137]
also reported that an increase in proline content keeps cell
water levels under drought stress. Increased proline pro-
vides osmoprotective functions during drought stress
[93, 138, 139]. Te higher proline content under water
stress signals multiple responses as part of the adaptation
process in plants [140, 141]. Tere was a great efect of
drought stress on the total phenolic content of the three
cultivars (p< 0.05). In the present study, the total phenolic
content in the sample leaves increased signifcantly
with increasing drought stress levels in the Markofana
cultivar. Tis agrees with the previous reports on capsicum
species [96]. Te synthesis of phenolic compounds due to
drought stress has also been reported in many studies
[131, 142–144]. Tis and other phenolic compounds are
highly involved in protection against drought stress [145].
According to Heim et al. [146]; phenolic compounds
protect against oxidative damage to cells and increment
the stability of cell membranes.

3.7. Biomass Estimation

3.7.1. Shoot and Root Fresh Weight. At the end of the ex-
periment, all plants were collected for biomass analysis. As
the results revealed, shoot fresh weight declined by 83.83%,
77.99%, and 77.50% in the Hagerew, Markofana, and
Mitmita cultivars, respectively, under severe drought stress
compared to the control group (Figure 7(a)). Te result of
this study also revealed that the highest shoot fresh weight
reduction was observed in the Hagerew cultivar. Similarly,
the fresh root weight of the Hagerew, Markofana, and
Mitmita cultivars was reduced by 80.93%, 69.95%, and
73.09%, respectively, under severe drought stress condi-
tions (Figure 7(b)). Tere was a signifcant reduction in dry
matter (biomass) of red pepper cultivars (p< 0.05) at severe
drought stress compared to the control group. Tis is in
agreement with the previous reports by [42, 147–149]. Tis
may be because of the reduction in the leaf area index that
resulted in reduced photosynthesis. Another possible
reason might be the close of leaves openings by signals of
roots, which leads to a reduction in leaf gas exchange and
ultimately lead to decreased biomass [150]. Nam et al. [151]
also described that inhibition of dry matter production is

largely due to the inhibitory efects of drought on leaf
expansion, leaf development, and consequently reduced
light interception.

3.8. Shoot and Root DryWeight. Drought stress signifcantly
afected both the shoot and root dry weights of the cultivars
(Table 6). Under severe drought stress, the shoot dry weight
declined by 75.29%, 83.23%, and 81.97% in the Markofana,
Hagerew, and Mitmita cultivars, respectively, compared to
the control. In this stress condition, both shoot and root
dry biomass were signifcantly (p< 0.05) increased com-
pared to the control in the Markofana and Mitmita cul-
tivars. Tis is in agreement with the reports of Kerepesi and
Galiba [152] on wheat plants. Te fnding also confrmed
the work of Westgate and Boyer [153] and Wu and Cos-
grove [154]. Leport et al. [155] and Liu et al. [93] also
reported that drought stress decreases shoot and root dry
weight with more infuences on shoots than on roots, which
increased the root-to-shoot ratio. Tis may be the result of
increased root length rather than inhibited shoot growth
under severe drought stress. It may also be due to the more
extensive growth of adventitious and tap roots in plants
exposed to severe water defcits than the control ones [50].
Tis in turn may be due to an increase in phytohormones
under stress conditions than in the normal period. Chaves
and Oliveria [112] also reason that higher root growth
under water defcit conditions can increase drought tol-
erance in plants.

3.9. ANOVAResults. Te interaction efect of watering level
and cultivar type on the shoot length, leaf area, shoot fresh
weight, root fresh weight, root dry weight, and total chlo-
rophyll is presented in Table 7. As the results showed, there
was a statistically signifcant interaction between the efects
of watering level and cultivar type on the root fresh weight of
the cultivars (p � 0.003). However, there was a statistically
insignifcant interaction between the efects of the cultivar
type and watering level on shoot length, leaf area, shoot fresh
weight, total chlorophyll, and root dry weight among the
three cultivars. Te results also showed there was no sta-
tistically signifcant diference in shoot fresh weight
(p � 0.055) and total chlorophyll (p � 0.415) between the
cultivars. On the other hand, there were statistically sig-
nifcant diferences between shoot length, leaf area, and
shoot fresh weight (p< 0.05).

3.10. Correlation Results in the Tree Cultivars.
Correlations between various morphological and physi-
ological parameters were made and summarized as fol-
lows presented in Tables 8–10 for Hagerew, Markofana,
and Mitmita cultivars (p< 0.01, or p< 0.05 level). As the
result revealed the most correlated parameters were shoot
fresh weight and shoot dry weight in Hagerew (r � 0.985,
p< 0.01), in Markofana (r � 0.997, p< 0.01), and in
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Figure 7: (a) Efect of drought stress on the shoot. (b) Root fresh weight of the three cultivars. Columns with diferent letters are the mean
values± SE of the three replicates. Bars with diferent letters show signifcant diferences at p< 0.05 (LSD).

Table 6: Efects of drought stress on the biomass formation of red pepper cultivars.

Cultivars Treatments RDW (g) SDW (g) Root: shoot ratio

Hagerew

Control 3.26± 0.51a 26.72± 2.11a 12.07± 1.18a

Low stress 2.31± 0.09a
(29.14)

15.27± 0.85b
(11.45)

15.25± 1.35a
(26.35)

Moderate stress 1.14± 0.06b
(65.03)

6.59± 0.49c
(75.34)

17.64± 2.28a
(46.15)

Severe stress 0.91± 0.29c
(72.09)

4.48± 0.38d
(83.23)

19.97± 5.57a
(65.45)

Markofana

Control 2.08± 0.13a 16.55± 0.35a 12.61± 0.91a

Low stress 1.98± 0.12a
(4.81)

12.99± 1.83b
(21.51)

15.74± 2.16b
(24.82)

Moderate stress 0.89± 0.09b
(57.21)

6.16± 0.28c
(62.78)

14.65± 0.77c
(16.18)

Severe stress 0.66± 0.00c
(68.27)

4.04± 0.06d
(75.29)

16.13± 0.24d
(27.91)

Mitmita

Control 2.44± 0.32a 18.03± 0.46a 13.51± 1.74a

Low stress 1.84± 0.24a
(24.59)

11.38± 0.75b
(36.88)

16.09± 1.59b
(19.09)

Moderate stress 0.91± 0.12b
(62.70)

5.12± 0.58c
(71.60)

17.87± 1.46c
(32.27)

Severe stress 0.51± 0.08c
(79.89)

3.25± 0.97d
(81.97)

20.39± 0.06d
(50.92)

Te values represent the mean± SE of the three replicates. Numbers followed by diferent letters in the columns indicate signifcant diferences (p< 0.05)
according to the LSD test values within parenthesis are percent variations as obtained from the control plants of respective cultivars.

Table 7: ANOVA results of the efect of drought stress on some parameters of the three red pepper cultivars.

Mean squares
Sources of variation Df SL LA SFW RFW RDW Total chl
Watering level (W) 3 1083.796∗∗ 56266014.028∗∗ 14770.054∗∗ 360.722∗∗ 7.188∗∗ 879.703∗∗
Cultivar type (C) 2 70.919∗∗ 18690886.861∗∗ 292.381ns 95.109∗∗ 0.936∗∗ 148.565ns

WXC 6 8.373ns 1867180.194ns 182.825ns 25.969∗∗ 0.167 ns 152.930ns

Error 21 3.45 4.67 4.55 2.78 0.36 3.97
ns-not signifcant and ∗∗-signifcant at p< 0.05.
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Mitmita (r � 0.989, p< 0.05). Tis indicates that an in-
crease in shoot fresh weight increases the shoot dry weight
in the cultivars. On the other hand, the least correlated
parameters were root length with shoot fresh weight
(r � 0.754) at the 0.01 level in the Hagerew cultivar. Root
fresh weight with shoot length is the least correlated
parameter in both Markofana (r � 0.873) and Mitmita
(r � 0.753) at a 0.01 level.

4. Conclusion

Based on the results, it can be concluded that cultivar
Mitmita was the most drought tolerant among the three
cultivars. Tis was manifested by insignifcant reduction
values of root length, shoot length, stem thickness, leaf
width, leaf relative water content, chlorophyll fuorescence,
photosynthesis rate, transpiration rate, chlorophylls “a,” “b”,
and total chlorophylls, shoot fresh weight, and root fresh
weight. Te cultivar also had a higher accumulation of
biochemical metabolites, mainly proline and total phenolic
compounds, against drought stress. To fully utilize the
potential of the studied cultivar Mitmita, further studies on
molecular and biochemical drought response mechanisms
of the cultivars and agronomic and nutritional evaluation
experiments are recommended.

Symbols and Abbreviations

Fo: Minimum fuorescence
F M: Maximum fuorescence
Fv: Variable fuorescence
LSD: List signifcance diference
Chl. a: Chlorophyll a
Chl. b: Chlorophyll b
Total chl: Total chlorophyll
SDW: Shoot dry weight
RDW: Root dry weight
df: Degree of freedom
SL: Shoot length
LA: Leaf area
RFW: Root fresh weight
SFW: Shoot fresh weight
W: Watering level
C: Cultivar type
RL: Root length
FAO: Food and agriculture organization of the united

nations
MoARD: Ministry of agriculture and rural development
FYM: Farmyard manure
FC: Field capacity
ppm: Parts per million

Table 8: Correlation between diferent morphological and physiological parameters in the Hagerew cultivar.

Parameters SL RL SFW RFW SDW RDW Total chl
SL 1 0.677∗ 0.925∗∗ 0.942∗∗ 0.926∗∗ 0.886∗∗ 0.722∗∗
RL 1 0.754∗∗ 0.651∗ 0.690∗ 0.598∗ 0.359
SFW 1 0.977∗∗ 0.985∗∗ 0.955∗∗ 0.615∗
RFW 1 0.978∗∗ 0.962∗∗ 0.670∗
SDW 1 0.943∗∗ 0.655∗
RDW 1 0.547
Total chl 1
∗Correlation is signifcant at the 0.05 level (2-tailed). ∗∗ Correlation is signifcant at the 0.01 level (2-tailed).

Table 9: Correlation between diferent morphological and physiological parameters in the Markofana cultivar.

Parameters SL RL SFW RFW SDW RDW Total chl
SL 1 0.889∗∗ 0.922∗∗ 0.873∗∗ 0.932∗∗ 0.895∗∗ 0.895∗∗
RL 1 0.913∗∗ 0.896∗∗ 0.915∗∗ 0.922∗∗ 0.313
SFW 1 0.952∗∗ 0.997∗∗ 0.957∗∗ 0.280
RFW 1 0.935∗∗ 0.990∗∗ 0.199
SDW 1 0.942∗∗ 0.329
RDW 1 0.247
Total chl 1
∗∗Correlation is signifcant at the 0.01 level (2-tailed).

Table 10: Correlation between diferent morphological and physiological parameters in the Mitmita cultivar.

Parameters SL RL SFW RFW SDW RDW Total chl.
SL 1 0.885∗∗ 0.942∗∗ 0.753∗∗ 0.944∗∗ 0.883∗∗ 0.322
RL 1 0.830∗∗ 0.761∗∗ 0.846∗∗ 0.842∗∗ 0.447
SFW 1 0.806∗∗ 0.989∗∗ 0.914∗∗ 0.346
RFW 1 0.817∗∗ 0.966∗∗ 0.238
SDW 1 0.926∗∗ 0.398
RDW 1 0.321
Total chl 1
∗∗Correlation is signifcant at the 0.01 level (2-tailed).
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LRWC: Leaf relative water content
CF: Chlorophyll fuorescence
A: Photosynthetic rate
E: Transpiration rate
gs: Stomatal conductance
TW: Turgid weight
DW: Dry weight
FW: Fresh weight.
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