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Tis study presents the development of an analytical solution for the dynamic response of a cantilever beam with a fexible root
taking into account the infuence of temperature. Te investigated cantilever beam has a uniform rectangular cross-section with
fnite lengths. Te dynamic response of the cantilever was investigated under three conditions, namely, rigid root, resilient root,
and resilient root accompanied by diferent surrounding temperatures. Te selected lengths for the beam were 0.3175, 0.1588,
0.1058, 0.0794, 0.0635, 0.0529, 0.0454, 0.0397, 0.0353, and 0.03175m.Te chosen linear spring coefcients were 0.01, 0.1, 100, and
∞N/m while rotational spring coefcients were 0.01, 0.1, 100, and ∞N·m/rad. Te surrounding temperatures for the third
condition were −100, 25, 100, and 200°C. A MATLAB code was developed to calculate the fundamental natural frequency under
diferent surrounding temperatures and spring coefcients. Te proposed mathematical solution was validated with real ex-
perimental data and the verifcation fndings revealed a good match between them. For the rigid condition, the fnding revealed
goodmatching between the analytical model and experimental results, particularly at the length range of 0.3175−0.1058m. For the
resilient condition, the fundamental natural frequencies were found to be highly afected by decreasing beam length and increased
at 100N/m and 100N·m/rad and higher coefcients. Finally, there was a reduction in the calculated natural frequencies with
increasing temperature.

1. Introduction

Mathematical modeling of dynamic behavior for the
structural part is an important topic. It is quite necessary to
predict the natural frequency during the design stage by
deriving a reliable analytical solution. Historically, distin-
guished eforts have been made in the feld of estimation of
natural frequencies as well as mode shapes of fexible root
cantilever beams [1–6].

Qiao et al. [7] presented an exact solution for solving
single and two degrees of freedom for the free fexural vi-
bration of a nonuniform Euler Bernoulli beam. Te pre-
sented model was efcient in terms of computation with
a signifcant reduction in determinant order compared with
other methods. Te vibration behavior of a functionally

graded beam was investigated by Hein and Feklistova [8]
using both the Euler–Bernoulli theory and the Haar tech-
nique. Some classic wavelets were applied to simplify and
transform the governing equation of the beam system. Te
beam was investigated under various cross-sections, mass
density, rigidity, and diferent coefcients of translational
and rotational stifness. Te Haar wavelet approved its ca-
pability through the achieved results where the applied
approach was accurate, simple, and soft. Ahmed [9] con-
ducted an experimental and numerical study to analyze the
free vibration behavior of a cantilever beam with notched
and unnotched geometrical conditions. Te beam was made
of Kevlar-reinforced epoxy. Good agreement was obtained
when the results were compared with published works. Te
author found a reduction in the computed natural
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frequencies with increasing notch depth. Also, fber orien-
tation has some infuence on the convergence and di-
vergence between numerical and experimental fndings.
Majeed et al. [10] modeled a fexible smart cantilever beam
based on Euler–Bernoulli and piezoelectric theories using
state space and fnite element techniques. Te aim of the
modeled smart structure was to reduce beam vibration and
settling time where the achieved results showed efective
performance of the proposed technique. Also, a sliding
mode observer was designed for vibration suppression of the
fexible cantilever beam by Al-Samarraie et al. [11].

Zhang et al. [12] derived an analytical solution for the
free vibration analysis of a nonuniform fexible Timoshenko
beam with multiple discontinuities. Te model results were
accurate when verifed with the fndings of fnite element
simulation and the literature. A rare case of free vibration for
the Timoshenko beam under elastic restraints as stated by
Shi et al. [13] was investigated. An exact solution was
achieved by applying the Fourier series where simultaneous
satisfaction was obtained from the governing equation and
boundary condition for any defned level of accuracy. New
results for the elastic retrained beam were presented to be
used as a benchmark solution for future work. An im-
proved Fourier–Ritz method was adopted by Wang et al.
[14] for the free vibration analysis of an axially loaded
cantilever beam made of the laminated composite under
diferent boundary conditions. Tey reported that the
model derived using this approach was accurate and re-
liable and had fast convergence.

Pham and Nguyen [15] employed Euler–Bernoulli’s
theory for a 3D cantilever beam having a moving hub and
fexibility. Tey applied Hamilton’s principles to derive
the equation of motion and also used the Galerkin ap-
proach to reduce the model order. Both simulation and
experimental data validated the derived dynamical model
where good matching was achieved. Te free vibration
problem of the double beam under restrained and cou-
pling conditions was solved by Chen et al. [16] by using an
improved Fourier approach. Te reliability of the pro-
posed analytical solution was compared with a numerical
model. An improved Fourier–Ritz method was applied by
Hao et al. [17] to analyze the characteristics of free vi-
bration for the double beam under restrained stifness and
elastic layer conditions. Te displacement discontinuities
and its derivative were removed using the Fourier series
and polynomial function to speed up the model con-
vergence rate. Also, numerical simulation was performed
for the investigated beam using diferent shapes and
material properties. Te mathematical model was com-
pared with the published works to confrm its reliability
and accuracy. Chen and Du [18] took into account the
efect of restrained stifness and rotation speed when
deriving an analytical solution based on the Fourier series
for a rotational beam. Te efectiveness of the analytical
solution was approved by comparison with numerical
results.

Zhao [19] applied the shape function method to solve the
free vibration problem of the axially loaded beams under
arbitrary elastic support with concentrated masses and

nonconventional boundary conditions. Te free vibration
governing equation was reformulated by using Dirac’s delta
function to solve the shape function approach. Good
agreement was obtained when the results of the derived
mathematical model were with the fndings of the published
works. Also, Zhao [20] studied the special geometry of
double beams having concentrated masses. Te author
obtained themode shapes of free and forced vibration for the
investigated beam by applying the shape function method. A
new orthogonality form condition was derived and the
reliability of the model was achieved via comparison with
a numerical example.

Te free vibration characteristics of the functionally
graded material beam were investigated by Kim et al. [21]
using the Haar wavelet method.Te governing equation was
constructed by applying Hamilton’s principles to make
a generalization of the boundary conditions for the four
locations along the beam. Validation of the derived model
with published results and numerical fndings approves its
accuracy and efectiveness.

Paridie et al. [22] developed an artifcial neural network
(ANN)model to predict the natural frequency of a cantilever
beam with various cross-sections and under the efect of
magnitude and load location. Te ANN model was trained
and tested with fnite element (FE) simulation data for the
beam under investigation. Good matching was achieved
between ANN and FE models.

Analytical analysis methods showed and proved their
capability by solving various engineering problems. Par-
ticularly, the analytical solutions to fnd the dynamic be-
havior for vital engineering parts such as cantilever beams
have found a wide range of engineering applications (e.g.,
rotating, blade, cantilever bridges, balconies, cranes, over-
hanging roofs such as stadium roofs, and shelters). In
general, cantilever beams are used in diferent environments;
therefore, providing an analytical solution to fnd the dy-
namic response under diferent environments is a crucial
task. A comprehensive search in the available literature was
achieved, and it was found that the compound efects of
thermal and root stifness on the dynamic response of the
cantilever beam have not been addressed before by any
researchers. Terefore, this study investigates the combined
efect of temperature and fexible root for a cantilever beam
to estimate the dynamic response represented by the fun-
damental natural frequency. Te investigation is conducted
based on developing an analytical solution whose results are
verifed with real fndings.

2. Development of the Analytical Solution for
Free Vibration Cantilever Beam under
Surrounding Temperatures and
Resilient Conditions

In this section, an analytical model will be developed to
identify the fundamental natural frequencies for the canti-
lever beam, taking into account the efect of a fexible root at
one end of the beam and the infuence of temperature. Te
fexible root in this study is taken as linear and rotational
springs.
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2.1. Derivation of the Analytical Solution of the Free Vibration
Cantilever Beam. Te diferential equation that governs the
sinusoidal vibrational motion of the cantilever beam is as
follows[2]:

EIxxY
′′′′

f
4
nY � 0, (1)

where E represents the beam modulus of elasticity, Ixx is the
area moment of inertia, and (fn) is the natural frequency.

Te prime symbols at Y refer to the diferentiability per
nondimensional parameters; let us call it Z, where Z � z/L,
where L is the total length of the cantilever beam.

Calculating the frequency variable is possible by using
the following equation:

fn
4

�
ρAω2

L
4

E(T) Ixx

, (2)

where ρ is the beam density, A is the beam cross-sectional
area, ω is the angular natural frequency, and T is the
temperature in °C. As stated at the beginning of this section
that the cantilever beam under investigation has a resilient
root represented by linear and rotational springs at the left
end, in this analytical solution, it was taken into consider-
ation the efect of the surrounding temperature, where any
change in the surrounding temperature will signifcantly
afect the material properties of the beam (modulus of
elasticity). Terefore, it was assumed that the modulus of
elasticity of the beam is a function of surrounding tem-
peratures E(T). Tis surrounding temperature leads to
a change in the magnitude of stifeness of the structure/
beam, and eventually, the values of natural frequency will be
changed too. Terefore, this study aims to show how the
dynamic response of a cantilever beam is infuenced by the
change in the surrounding temperature assuming the re-
silient root conditions (the linear and rotational springs at
the root of the beam).

Tese springs have stifness of K1 and K2. If boundary
conditions are applied to such beam depicted in Figure 1, the
following can be attained:

At z � 0,

Y
′′′

� −STY(0),

Y
′′
(0) � SRY

′
(0),

At z � L,

Y
′′′

(L) � 0,

Y
′′
(L) � 0,

(3)

where

ST �
K1L

3

E(T) Ixx

,

SR �
K2L

E(T) Ixx

,

(4)

where ST and SR represent the coefcients of linear and
rotational springs, respectively.

Te mode shape given in equation (5) satisfes the
boundary conditions:

y(Z) � A Z
4

− 4Z
3

+ 6Z
2

+ 12S
∗
RZ + 24S

∗
T . (5)

Here,

S
∗
R �

1
SR

,

S
∗
T �

1
ST

.

(6)

When we substitute equation (5) into equation (2) while
minimizing the resulting error using Galerkin integral, we
get the following equation to calculate the fundamental
natural frequency:

f
4
n �

36288X4

60840X1 + 2912X2 + 72546X3( 
, (7)

where

X1 � S
∗2
R + 12S

∗2
T , (8)

X2 � 1 + 9S
∗
R, (9)

X3 � S
∗
T 1 + 5S

∗
R( , (10)

X4 � 1 + 5S
∗
R + 20S

∗
T. (11)

If the stifness of linear spring approaches to infnity
(ST⟶∞), then S∗T � 0 and equation (7) will become

f
4
n �

36288 1 + 5S
∗
R( 

2912 + 26208S
∗
R + 60840S

∗2
R 

. (12)

Similarly, if the stifness of the rotational spring ap-
proaches to infnity (SR⟶∞), then S∗R � 0 and equation
(7) will become

f
4
n �

36288 1 + 20S
∗
T( 

725760S
∗
T + 2912 + 72576S

∗2
T 

. (13)

Finally, if the rigid conditions exist (i.e., both S∗R and S∗T
equal zero), the fundamental natural frequency will be

fn � 1.878854. (14)

L
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Y E, A, ρ, Ixx

K2
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Figure 1: Cantilever beam with the resilient root.
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2.2. Development of MATLAB Code. To program the dif-
ferential equation so as to calculate the fundamental natural
frequencies of the cantilever beam under the given condi-
tions, a MATLAB code was written to perform this task. Te
fow chart of the developed code is depicted in Figure 2. It
consists of several steps as follows:

(1) Enter the dimensions of the cantilever beam and its
density

(2) Enter the modulus of elasticity for the beam based on
the selected surrounding temperatures

(3) Enter the linear and rotational stifness coefcients
(4) Determine the moment of inertia and other geo-

metrical parameters
(5) Calculate the fundamental natural frequencies using

equations (7)–(14) based on the boundary conditions
(6) Present the natural frequency under a given sur-

rounding temperature
(7) Select another temperature within the specifed

range and follow steps 2–6
(8) Plot the fundamental natural frequencies as a func-

tion of linear and torsional stifness coefcients and
temperatures

In fact, the time spent understanding and analyzing
the mathematical model of the problem and then for-
mulating the equations of motion, taking into account the
thermal and root stifness (linear and rotational) efects,
is considerable (approximately four months). At this
stage, it was verifed that the accuracy of the results of the
analytical solution was verifed by comparing it with the
results of other researchers who used other approaches.
Te last stage is to build the code based on the analytical
solution to reduce the computational time to minimum.
Tus, the execution time (computational cost) was
relatively short (approximately 30 min and maybe
more according to the case study and the range of the
variables) to run and collect the data of the developed
MATLAB code.

3. Results and Discussion

Tis section provides and analyzes the achieved fndings
of the developed analytical solution that was developed
essentially to determine the fundamental natural fre-
quency of the cantilever beam. Te dynamic response of
the cantilever beam was investigated under the following
conditions:

(1) Cantilever beam with the rigid root
(2) Cantilever beam with the resilient root (linear and

rotational springs)
(3) Cantilever beam with rigid and resilient roots under

the efect of temperature.

Te results of the abovementioned conditions have been
verifed with real experimental data as will be seen in the
following subsections.

3.1. Efect of the Rigid Root on the Dynamic Response of the
Cantilever Beam. Tis subsection presents the results of
the calculated fundamental natural frequency for the
cantilever beam under free vibration, ambient tempera-
ture, and rigid root conditions. Te fn was calculated at
diferent beam lengths, and the results were compared
with experimental and theoretical fndings [2] Meanwhile,
the error % was calculated to show how the results of the
derived analytical solution were close or near to the
published fndings. Te three results are tabulated and
given in Table 1. On one side, it can be seen that there is
a very close matching between the analytical model and
the theoretical model. On the other side, there is good
matching with the experimental work, particularly at
0.3175−0.1058m. After that range, some divergence is
noticed. Te experimental work is normally associated
with some noise factor that shifts its results from the
theoretical and analytical solutions. It includes human
error, environmental conditions, and the accuracy of the
utilized apparatuses.

3.2. Efect of the Resilient Root on the Dynamic Response of the
Cantilever Beam. When the fexible root is attached to one
end of the cantilever beam, the dynamic response changes
according to the conditions of the impeded resilient root.
Te efect of both linear and rotational coefcients on the
natural frequency is included in the analytical model. Te
fundamental natural frequencies are plotted against linear
and rotational spring coefcients at diferent beam lengths as
depicted in Figures 3–12.

Investigation of Figures 3–12 reveals the following
points:

(1) Te fundamental natural frequency is highly afected
by decreasing the cantilever beam length

(2) When increasing the linear spring coefcient coac-
tively with the rotational coefcient (CRS), the
fundamental natural frequency is highly increased at
100N/m and 100N·m/rad and higher coefcients.

(3) At a low linear spring coefcient (0.1N/m), there is
no noticeable increase in natural frequency re-
gardless of the values of the rotational spring co-
efcient and vice versa.

To sum up, there are no high diferences in fundamental
natural frequencies at a length range of 0.3175m, regardless
of linear and rotational coefcients. Based on the men-
tioned mathematical formula, it is well known that there is
an inverse proportion between frequency and the taken
period (time). Terefore, a long cantilever beam takes more
time to come back to the original coordinates. In other
words, a low natural frequency is produced. Terefore, the
length of the cantilever beam must be taken into consid-
eration. Also, to resist the dynamic bending of the beam,
a precaution has to be considered in the material selection
for the cantilever beam. A more stif material is preferred to
maintain the stability of the beam. On the other hand, at
low linear or rotational coefcients (0.01N/m or 0.01 N·m/
rad), the values of natural frequency are low and
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comparable, and vice versa, for higher linear and rotational
coefcients. Te higher values of linear and rotational
spring coefcients mean that these springs are stifer than
those with low coefcients. Terefore, a cantilever beam
with a stifer spring means that it returns faster to the
relaxed position. Quick pull-back motion produces an
overshoot, which generates a high amount of oscillation

and accordingly a higher natural frequency. In contrast,
slowly pulling back to the original position is done by the
cantilever beam attached to the springs having low linear
and rotational coefcients. Terefore, low resistance to the
oscillational motion is obtained because the cantilever
beam makes a slow response and hence low natural fre-
quency is produced.

Start

Input the dimensions of cantilever
beam and material density

Input the modulus of elasticity under a
specific surrounding temperature

Change temperature value Input the linear and rotational spring
coefficients

Calculate the moment of inertias and all the
geometrical factors

Compute the natural frequency under a
specific temperature

Present natural frequencies under a specific
temperature

Present natural frequencies as a function of
surrounding temperature, linear and rotational

spring coefficients

End

Figure 2: Flowchart of the developed MATLAB code.

Table 1: Dynamic response of the cantilever beam with the rigid root.

Length Current study Experimental work [2] Teoretical work [2]
Error %

Exp. Teo.
0.3175 90.67 88.9 91.30 1.99 0.68
0.1588 362.45 345.3 365.10 4.96 0.72
0.1058 816.55 747.8 821.50 9.19 0.60
0.0794 1451.64 1300.0 1460.50 11.66 0.60
0.0635 2268.35 1968.3 2282.20 15.44 0.60
0.0529 3268.49 2736.8 3286.30 19.42 0.54
0.0454 4437.58 3594.7 4473.10 23.44 0.79
0.0397 5803.33 4550.0 5842.40 27.54 0.66
0.0353 7340.22 5513.5 7394.30 33.13 0.73
0.03175 9073.7 6731.80 9128.70 34.78 0.60
Min 90.67 8.9 91.3 1.99 0.79
Max 9073.7 6731.8 9128.7 34.78 0.54
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3.3. Efect of Temperature on the Dynamic Response of the
Cantilever Beam with Resilient Roots. Te efect of tem-
perature combined with fexible root is illustrated in this
subsection. Te fundamental natural frequency was
calculated for each temperature-spring coefcient pair.
Two alloys were taken as a case study to illustrate the
infuence of temperature on the fundamental natural
frequency, namely, N-based alloy and AA5054 aluminum

alloy. Te material properties represented by the Young
modulus of elasticity were taken as a function of tem-
perature. Te selected temperatures were −100, 25, 100,
and 200°C, respectively. Tey include subzero, normal,
and high temperatures to show how the dynamic re-
sponse of the cantilever beam will be impacted under
these conditions (i.e., variable temperatures and fexible
root). Table 2 presents the modulus of elasticity (E) of
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Figure 3: Dynamic response of cantilever beam with the resilient
root and diferent stifness values (L� 0.3175m).
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Figure 4: Dynamic response of cantilever beam with the resilient
root and diferent stifness values (L� 0.1588m).
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Figure 5: Dynamic response of cantilever beam with the resilient
root and diferent stifness values (L� 0.1058m).
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those two materials as a function of the selected
temperature range.

When E-values are replaced in the derived fundamental
natural frequency of equation (7), Tables 3 and 4 are obtained.
Tese tables reveal a reduction in fundamental natural

frequency with increasing temperature for both materials. As
indicated in equation (2), the material properties of the can-
tilever beam represented by Young’s modulus of elasticity were
taken as a function of temperature. Consequently, the fun-
damental natural frequency will be changed accordingly.
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Figure 9: Dynamic response of cantilever beam with the resilient root and diferent stifness values (L� 0.0454m).
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Figure 10: Dynamic response of cantilever beam with the resilient root and diferent stifness values (L� 0.0397m).
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Figure 11: Dynamic response of cantilever beam with the resilient root and diferent stifness values (L� 0.0353m).
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4. Conclusions and Remarks

In this study, a mathematical model was developed to in-
vestigate the efects of linear and rotational spring co-
efcients conjugated with temperature infuence. Based on
the presented results and discussion, the following con-
clusions can be drawn:

(1) Te analytical model was successfully derived.
(2) Te proposed analytical solution was verifed under

rigid conditions and revealed excellent compatibility
with the theoretical fndings and goodmatching with

experimental results, particularly at the beam length
range of 0.3175−0.1058m.

(3) Te fundamental natural frequency drastically in-
creased with a decrease in cantilever beam length
under rigid conditions.

(4) Tere were no high diferences in fundamental
natural frequencies for the beam under fexible root
conditions.

(5) Te efect of fexible roots on the dynamic behavior
of the cantilever beam started to appear with in-
creasing beam length.

Table 2: Young modulus of elasticity for N-based alloy and AA5054 aluminum alloy for diferent temperatures.

No. Alloy
Young modulus of elasticity for diferent temperatures

−100 25 100 200
1 Ni-Fe-Cr 800 207 196 193 186
2 AA 5054 74.1 70.3 67 55.7

Table 3: Fundamental natural frequency of Ni-Fe-Cr 800 alloy as a function of temperature and fexible root.

Temperature (°C)
−100 25 100 200

Rotational spring coefcient (N·m/rad)

0.01 458.1 446.23 442.823 434.793
1.0 4020.85 3990.3 3917.95 3844.23
100.0 8828.13 8670.8 8507.73 8270.08
∞ 9003.64 8837.3 8590.50 8580.50

Linear spring coefcient (100N/m).

Table 4: Fundamental natural frequency of AA 5054 alloy as a function of temperature and fexible root.

Temperature (°C)
−100 25 100 200

Rotational spring coefcient (N·m/rad)

0.01 11.9029 11.5937 11.3183 10.3198
1.0 106.4389 103.6738 101.2112 92.28239
100.0 231.2885 225.28 219.9288 200.5268
∞ 235.7298 229.6059 224.152 204.3774

Linear spring coefcient (100N/m).
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Figure 12: Dynamic response of cantilever beam with the resilient root and diferent stifness values (L� 0.03175m).
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(6) Te natural frequency was afected by increasing
temperature as the beam modulus of elasticity was
taken as a function of temperature.

Te current study can be extended in future work to fnd
the dynamic response of the rotating cantilever beam
(turbomachine blades) working in diferent environmental
conditions with diferent root stifness. Also, the infuence of
the defect in the cantilever beam on the dynamic response
under diferent working conditions can be investigated.
Furthermore, the current analytical solution can be en-
hanced to study the vibration characteristics of a micro-
cantilever working under high-temperature conditions.
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