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Medicinal plants are a rich source of antioxidants such as favonoids, phenols, tannins, and alkaloids among others and are
currently used as alternative and complementary drugs in the management of stress-related disorders. Strychnos henningsii and
Ficus sycomorus have been traditionally used by the people of Mbeere, Embu county, Kenya, as medicine for the treatment of
various oxidative stress-related disorders such as diabetes and rheumatism; however, no empirical data are available to au-
thenticate the said claim. Te aim of this study was to evaluate preliminary phytochemical screening and in vitro antioxidant
activity of dichloromethane (DCM) leaf extract of S. henningsii and stem bark extract of F. sycomorus using DPPH, hydrogen
peroxide, and ferric reducing power assays; total favonoids and phenolic compounds were also determined by colorimetric assay
and Folin–Ciocalteu reaction, respectively. Phytochemical screening showed that both extracts possessed saponins, favonoids,
phenols, steroids, alkaloids, and cardiac glycosides; however, terpenoids were found to be absent in S. henningsii. Te total
phenolic and favonoid content of the DCM stem bark extract of F. sycomorus was lower than that of the leaf extract of
S. henningsii. Tese extracts signifcantly exhibited strong antioxidant activities at diferent concentrations tested. Te IC50 values
of S. henningsii and F. sycomoruswere 0.325mg/ml and 0.330mg/ml for hydrogen peroxide and 0.068mg/ml and 0.062mg/ml for
DPPH, respectively. Both DCM leaf and stem bark extracts of S. henningsii and F. sycomorus were found to have strong ferric
reducing power. Terefore, both extracts showed signifcant nonenzyme-based antioxidant activities. Te two plants possess
phytochemicals that have signifcant antioxidant properties.

1. Introduction

Oxidative stress is the disparity between the production of
free radicals and antioxidant defenses in the body [1–5]. Free
radicals are defned as compounds with unpaired electrons,
making them highly reactive molecules that can attack any
stable molecules such as proteins, carbohydrates, and lipids
[6, 7]. Reactive oxygen species (ROS) are the most common
and widely known free radicals. Tey include superoxide
(O2

−), hydroxyl (HO−), hydrogen peroxide (H2O2), and
nitric oxide (NO−). Most biochemical reactions in the body
are known to generate ROS [8], which are potent in dam-
aging important biomolecules such as proteins, nucleic

acids, and lipids if they are not scavenged by antioxidants
[9]. Free radicals are well known to be involved in aging and
pathogenesis of stress-related disorders such as diabetes,
nephrotoxicity, hepatotoxicity, malignancy, cardiovascular
disorders, infammation, and neurological disorders
[10–12].

Human cells are well protected by antioxidant defense
systems against ROS attack; however, at low concentrations
of antioxidant enzymes, some cells have been shown to be
sensitive to ROS [13–16]. Te cellular antioxidant level is
used to determine the susceptibility of tissues to oxidative
damage. Tis level normally changes during oxidative
stress [17–19]. A wide variety of antioxidants are naturally
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obtained from plants that constitute our daily diet.
Commonly known dietary antioxidants are vitamins C and
E, carotenoids, and green tea [20, 21]. Te consumption of
food and fruits rich in antioxidants plays a signifcant role
in augmenting the body’s natural resistance to oxidative
stress [22, 23]. Plants also have many other nonnutrient
antioxidants such as phenols, favonoids, and alkaloids.
Tese polyphenol compounds have been extensively
studied and documented as quenchers of free radicals
[24, 25].

Since antioxidants hold a key in preventing oxidative
stress-related disorders, many plant extracts and their sec-
ondary metabolites are being explored for their antioxidant
efects [26, 27]. Te use of plant-based antioxidants plays an
important role in preventing the activation of the oxidation-
induced signaling pathways in our bodies [28]. Terefore,
the identifcation of the antioxidant activities of the DCM
leaf extract of S. henningsii and stem bark of F. sycomorus is
an important step in increasing our understanding about
their usage in the treatment of various stress-related
disorders.

Commercially available antioxidant drugs include bu-
tyrate hydroxyanisole, butylated hydroxytolune, propyl
gallate, and fuconazole [29–31]. However, studies have
shown that these synthetic antioxidants have toxic efects
and show negative health infuence [32, 33] and have led to
some restrictions being imposed on their use [34]. Re-
searchers now have focused their attention on plant-derived
antioxidants among others [35].

Globally, several plants have been traditionally used for
their antioxidant activities [36, 37]. Ethno-pharmacological
surveys indicate that medicinal plants play a vital role in the
management of oxidative stress-related disorders [38, 39].
Plant extracts naturally possess phytochemicals such as
favonoids, tannins, phenols, and alkaloids [40], which are
well-known antioxidants and are currently pursued as
alternative and complementary remedies against oxidative
stress-related disorders [41]. Several efcacy studies con-
ducted on herbal plants have shown that plant-based an-
tioxidants are relatively safe, cost efcient, and efective in
disease management [42].

Te genus Ficus is widely known to have strong anti-
oxidant properties due to its richness in phenols and fa-
vonoids [43–45]. Traditionally, Ficus sycomorus fruits, stem
barks, and roots have been used as herbal remedies for
several ailments such as diarrhea, liver disease, skin in-
fections, stomach disorders, helminthiasis, lactation disor-
ders, epilepsy, tuberculosis, sterility, and diabetes mellitus
[46–48]. S. henningsii is a widely distributed evergreen herb
in East Africa [47] and is used in the management of
rheumatism, snake bite, abdominal pain, gastrointestinal
pain, gynecological complaints, malaria, and diabetes mel-
litus [49]. Te crude extracts of Strychnos henningsii have
been documented to possess signifcant therapeutic efects
against stress-related disorders [50]. Based on traditional
pharmacology, it has been actively and successfully
employed by the Mbeere community in Embu county,
Kenya, in the management of diabetes, which is an oxidative
stress-related disorder.

In view of this background, the present study seeks to
investigate the in vitro antioxidant activities of dichlor-
omethanolic (DCM) leaf extract of S. henningsii and stem
bark extract of F. sycomorus. Te study aims to explore and
provide preliminary information on the in vitro antioxidant
activities of S. henningsii and F. sycomorus as possible
bioresources for the generation of herbal formulations used
in the treatment and management of oxidative stress-related
disorders. Te study also aims to reveal relevant research
gaps that need to be explored further.

2. Materials and Methods

2.1. Collection of Plant Materials. Te authors sought au-
thorization from Te National Commission for Science,
Technology and Innovation (NACOSTI/P89/6765/9816).
Plant materials of S. henningsii leaves and stem barks of
F. sycomorus were collected from their natural habitats from
Makunguru village, Mbeere north subcounty, Embu county,
Kenya, in October, 2015. Te GPS locations for S. henningsii
and F. sycomorus specimens were 0°34′11″S, 37°37′31″E and
0°35′28″S, 36°36′22″E, respectively. Te collection of these
samples was done based on ethnobotanical information
availed by local herbalists in the area.Te plant identifcation
was done by an acknowledged authority from Kenyatta
University authenticating their botanical identities.
S. henningsii and F. sycomorus were assigned voucher
specimen numbers (S. henningsii. (Wkw001/10/21015) and
F. sycomorus (Wkw 002/10/2015), respectively). Tey were
deposited in the Kenyatta University Herbarium for future
reference. Sample materials were carefully sorted, packed in
sealed bags, and transported to the Department of Bio-
chemistry and Biotechnology, Kenyatta University, where
further processing and subsequent study was undertaken.

2.2. Extract Preparations. Te fresh plant materials were air
dried at room temperature under a shade for a week. Te
dried leaves were milled into fne powder by use of an
electric mill.Te powdered plant materials were sieved using
a mesh pore of 0.5mm and packed in closed, dry sealed bags
and stored awaiting extraction. Two hundred and ffty grams
(250 g) of each powdered plant material was soaked in 1 litre
of dichloromethane (DCM) andmacerated for 24 hours.Te
resultant extract was poured into a clean dry conical fask
and then fltered using Whatman’s No. 1 flter papers. Te
fltrate was extracted using Soxhlet apparatus for 5-6 h and
then concentrated under reduced pressure and vacuum
using a rotary evaporator at a temperature of 40°C. Te
concentrates were placed in airtight containers weighed and
stored at −4°C awaiting use in bioassays.

2.3. Qualitative Phytochemical Screening. Qualitative phy-
tochemical screening of DCM extracts of S. henningsii and
F. sycomorus was performed to determine the presence or
absence of selected plant secondary metabolites using
standard methods described by Harbone [51] and Kotake
[52]. Secondary metabolites screened include favonoids,
cardiac glycosides, saponins, alkaloids, sterols, phenolics,
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and terpenoids. Tese phytochemicals are associated with
antioxidant activities.

2.4. Quantitative Phytochemical Determination

2.4.1. Determination of Total Phenolic Contents.
Folin–Ciocalteu reagent was used to determine the total
phenolic levels of the plant extracts as described by Spanos
et al. [53] and modifed by Lister and Wilson [54]. Briefy,
2ml of each plant extract, 2.5ml of 10% dilution of
Folin–Ciocalteu reagent and 2ml of Na2CO3 (7.5%, w/v)
were mixed and left to stand for 15minutes at 45°C. Te
absorbance of all the treatments was determined at 765 nm
spectrophotometrically. Gallic acid was used as the reference
to derive the calibration curve. Te total phenolic content
was determined using the linear equation based on the
calibration curve and contents expressed as milligrams of
gallic equivalent per gram of dry weight (mg GAE/g
dw) [55].

2.4.2. Determination of Total Flavonoid Contents. Te col-
orimetric methodology described by Lamaison and Carnet
[56] and Nurcholis et al. [57] was used to determine the total
favonoid contents of the extracts. Briefy, a volume of 1.5ml
of the extracts was mixed with an equivalent volume of 2%

AlCl3.6H2O (2 g in 100ml methanol) solution. Te solution
was vigorously shaken to mix and then incubated for
10minutes, and the absorbance was read at 430 nm using
a spectrophotometer. Rutin was used as the reference to
generate the calibration curve. Te total favonoid content
was expressed as milligrams of rutin equivalent per gram of
dry weight (mg RE/g dw) based on the calibration curve [55].

2.5. Determination of In Vitro Antioxidant Activities

2.5.1. Determination of In Vitro Hydrogen Peroxide Scav-
enging Activity. Te in vitro hydrogen peroxide scavenging
potential of DCM extracts of S. henningsii and F. sycomorus
was determined following the protocol described by Ruch
et al. [58]. Briefy, 50Mm, pH 7.4, phosphate bufer solution
was used to prepare 250ml solution of hydrogen peroxide
(40mM). Hydrogen peroxide solution at a volume of 0.6ml
was added to 1ml of varying concentrations (0.1–0.5mg/ml)
of the plant extract and ascorbic acid (standard). Te
mixture was left to stand for 10minutes, after which the
absorbance was determined at 560 nm using a UV spec-
trophotometer. Te blank solution containing phosphate
bufer was used as the negative control. Tis was done in
three replicates. Te percentage radical scavenging activity is
as follows:

%Hydrogen scavenging activity �
Abs. of control − Abs. of sample/standard

Abs. of control
x 100, (1)

where Abs. is the absorbance.

2.5.2. Determination of In Vitro Diphenyl-2-picrylhydrazyl
(DPPH) Radical Scavenging Activity. Te abilities of the
DCM extracts of S. henningsii and F. sycomorus to scavenge
DPPH radicals in vitro were determined based on the
method documented by Mehrotra et al. [59–61]. Following
this method, 2.66mg of DPPH was dissolved in 50ml of
ethanol to form a concentration of 0.135mM. Various di-
lutions, namely, 0.2, 0.1, 0.05, 0.025, and 0.0125mg/ml, of
the plant extracts and ascorbic acid (standard) were pre-
pared. One milliliter of the DPPH solution dissolved in

methanol was mixed with 1ml of each diluted plant extract
and ascorbic acid (reference drug). Te mixtures were then
agitated thoroughly and left in a dark room for 30minutes at
room temperature. Tree replicates of the assays were
prepared. Te absorbance of the mixture was then measured
at 517 nm using a spectrophotometer. Te actual decrease in
absorbance was measured against that of the control. Te
negative control was a blank solution containing ethanol
without H2O2. Te percentage DPPH scavenging abilities of
the plant extracts were then derived using the following
equation:

%DPPH scavenging activities �
Abs. of control − Abs. of sample/standard

Abs. of control
x 100, (2)

where Abs. is the absorbance.

2.5.3. Calculation of Half Maximal Inhibitory Concentrations
(IC50) in Hydrogen Peroxide and DPPH Radicals. Te half
maximal inhibitory concentration (IC50) of DCM extracts of
S. henningsii, F. sycomorus, and ascorbic acid (standard)
were analyzed using linear regression analysis in MS Excel.

Te IC50, which represents the concentration at which 50%
of the radicals were scavenged by test samples, was de-
termined from a graph of percentage scavenging activity
against the concentration of the test sample.

2.5.4. In Vitro Ferric Reducing Power Assay. Te in vitro
ferric reducing power of the DCM extracts of S. henningsii
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and F. sycomorus alongside ascorbic acid (positive control)
was established according to the protocol described by
Oyaizu [62]. In brief, various concentrations (0.2–1mg/ml)
of 1ml of the plant extracts and ascorbic acid were added to
2.5ml of 0.2M phosphate bufer of pH 7. Te resulting
solution was then mixed with 2.5ml of potassium ferricy-
anide and incubated at 50°C for 20minutes. Afterwards,
2.5ml of trichloroacetic acid (10%) was then added to the
mixture and centrifuged for 10minutes at 3000 rpm. Ten,
2.5ml was drawn from the upper layer of the solution and
then added to 2.5ml of distilled water and 0.5ml freshly
prepared ferric chloride (FeCl3) solution (1%) was added.
Te assay was done in triplicates. Te absorbance of the
extracts and ascorbic acid was determined at 700 nm using
a spectrophotometer.

2.6. Statistical Analysis. Te data were subjected to de-
scriptive statistics using Minitab Statistical Software 17.0
(State College, Pennsylvania) and expressed as mean-
± standard error of mean (SEM). One-way analysis of
variance (ANOVA) was performed to determine the sta-
tistically signifcant diference among treatments. Tukey’s
tests were performed for pairwise comparison of means.
Unpaired student’s t-test was used for the comparison of
mean total phenolic and favonoid contents of DCM leaf
extract of S. henningsii and stem bark of F. sycomorus. Te
values of p≤ 0.05 were considered to be signifcantly dif-
ferent. Te data obtained were presented in a tabular and
graphical form. Te phytochemical screening was done
qualitatively, and the result obtained (positive/negative) for
each test was recorded in a table.

3. Results

3.1. Qualitative Phytochemical Screening. Te phytochem-
istry of the leaf extract of S. henningsii revealed the presence
of alkaloids, phenols, saponins, cardiac glycosides, favo-
noids, and steroids while terpenoids were absent. On the
other hand, F. sycomorus contained saponins, favonoids,
alkaloids, steroids, phenols, cardiac glycosides, and terpe-
noids (Table 1).

3.2. Quantitative Phytochemicals Screening

3.2.1. Total Phenolic Contents. Te total phenolic concen-
tration in the leaf extract of S. henningsii and stem bark
extract of F. sycomorus were quantifed and expressed as
milligrams of garlic acid equivalent per gram of dry weight
(mg GAE/g dw) (Table 2) using a standard gallic acid cal-
ibration curve (y � 1.52x + 0.234; R2 � 0.9782). Generally, at
all the concentrations tested (0.2, 0.4, 0.6, 0.8, and 1.0mg/
ml), the two extracts had signifcantly diferent phenolic
contents (p≤ 0.05), with S. henningsii extract having the
highest phenolic content (Table 2).

3.2.2. Total Flavonoid Contents. Te total favonoid contents
of the DCM leaf and stem bark extracts of S. henningsii and
F. sycomorus were calculated from the standard rutin

calibration curve (y � 2.535x − 0.047; R2 � 0.9778). Te leaf
extract of S. henningsii had signifcantly higher favonoid
concentrations than the F. sycomorus stem bark extract
(p≤ 0.05; Table 2). However, the rutin equivalence at the
lowest concentration of 0.1mg/ml for both extracts was not
signifcantly diferent (p> 0.05; Table 3).

3.3. In Vitro Hydrogen Peroxide Radical Scavenging Activities
of DCM Extracts of S. henningsii and F. sycomorus. Te
in vitro hydrogen peroxide scavenging potential of the DCM
leaf extract of S. henningsii and stem bark extract of
F. sycomorus was analyzed, as shown in Figure 1. Generally,
both extracts of S. henningsii and F. sycomorus showed
remarkable in vitro hydrogen peroxide scavenging activity at
all the concentrations (0.1, 0.2, 0.3, 0.4, and 0.5mg/ml). Te
extracts showed H2O2 scavenging activities in a dose-related
manner. Te H2O2 scavenging activities of both extracts
were signifcantly lower than that of the standard (ascorbic
acid). However, there was no signifcant diference in the
hydrogen peroxide scavenging activities of S. henningsii and
F. sycomorus at all the tested concentrations (p> 0.05;
Figure 1 and Table 4).

3.4. In Vitro DPPH Radical Scavenging Activities of DCM
Extracts of S. henningsii and F. sycomorus. As shown in
Figure 2 and Table 5, both extracts of S. henningsii and
F. sycomorus as well as the ascorbic acid demonstrated dose-
dependent scavenging of DPPH radicals. At all the tested
doses (0.00125–0.2mg/ml), the two extracts showed lower
DPPH scavenging activities than the standard (ascorbic
acid).Te extract activities were found not to be signifcantly
diferent at all the tested concentrations.

3.5. IC50 forHydrogenPeroxideandDPPH. Te half maximal
percentage inhibition (IC50) value is widely used as
a quantitative measure of extracts, antioxidant potential.Te
two extracts showed a lower IC50, as shown in Table 6.

3.6. InVitro Ferric Reducing PowerActivities of DCMExtracts
of S. henningsii and F. sycomorus. In this assay, the extracts
were tested for their ability to reduce Fe3+ to Fe2+ via
electron donation. Te results showed a dose-related ferric
reduction by the DCM extracts of S. henningsii and
F. sycomorus. Te leaf extract of S. henningsii was

Table 1: Phytochemical screening of DCM leaf extracts of
S. henningsii and stem bark of F. sycomorus.

Composition F. sycomorus S. henningsii
Saponins + +
Alkaloids + +
Terpenoids + −

Flavonoids + +
Steroids + +
Phenolics + +
Cardiac glycosides + +
+, present; −, absence.
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comparable to that of standard ascorbic acid at the lowest
concentration of 0.2mg/ml. However, at this concentration,
the stem bark extract of F. sycomorus had signifcantly lower
ferric reducing power than ascorbic acid. At all the other
tested concentrations (0.4–1mg/ml), the ferric reducing
power activities of the two extracts had no signifcant dif-
ference (p> 0.05). However, they were signifcantly diferent
from that of the standard (ascorbic acid) (p≤ 0.05; Figure 3
and Table 7).

4. Discussion

4.1. Qualitative and Quantitative Analysis. Te search for
natural antioxidants has grown rapidly amongst clinical and
medical practitioners due to the interest generated by re-
active oxygen species (ROS) and pathogenesis of oxidative
stress-related disorders [63, 64]. Plant leaves, stems, fowers,
fruits, and roots have been known for centuries to possess
therapeutic value and, therefore, have been extensively

Table 2: Total phenolic contents of DCM extracts of S. henningsii and F. sycomorus.

Mass in mg/g gallic acid equivalent
Groups 0.1mg/g 0.2mg/g 0.3mg/g 0.4mg/g 0.5mg/g
S. henningsii 4.3± 0.01a 10.7± 0.01a 16.7± 0.01a 22.0± 0.01a 29.0± 0.01a
F. sycomorus 2.3± 0.01b 5.0± 0.01b 9.7± 0.01b 16.0± 0.01b 23.0± 0.015b

Values are expressed as mean± SEM of the three replicates. Columnmeans followed by the same superscript letters are not signifcantly diferent (p> 0.05) by
the unpaired Student’s t-test.

Table 3: Total favonoid content of DCM extracts of S. henningsii and F. sycomorus.

Mass in mg/g rutin equivalent
Groups 0.2mg/g 0.4mg/g 0.6mg/g 0.8mg/g 1.0mg/g
S. henningsii 15.7± 0.00a 22.7± 0.00a 37.7± 0.00a 44.3± 0.00a 53.0± 0.00a
F. sycomorus 10.3± 0.01a 16.0± 0.01b 23.7± 0.01b 34.3± 0.00b 38.3± 0.00b

Values are expressed as mean± SEM of the three replicates. Columnmeans followed by the same superscript letters are not signifcantly diferent (p> 0.05) by
the unpaired Student’s t-test.
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Figure 1: Percentage hydrogen peroxide inhibition of the DCM leaf extract of S. henningsii, the stem bark extract of F. sycomorus, and the
standard ascorbic acid. Values are expressed as mean± SEM of the three replicates. Column means followed by the same superscript letters
were not signifcantly diferent (p> 0.05) by one-way ANOVA followed by Tukey’s post hoc test.

Table 4: % in vitro hydrogen peroxide radical scavenging activities of DCM extract of S. henningsii and F. sycomorus.

Concentrations
Groups 0.1mg/ml 0.2mg/ml 0.3mg/ml 0.4mg/ml 0.5mg/ml IC50 value
Ascorbic acid % 27.72± 2.38a 42.25± 2.27a 60.38± 1.77a 74.24± 2.68a 88.05± 2.55a 0.245mg/ml
F. sycomorus % 15.71± 1.47b 31.07± 4.15b 47.24± 2.38b 61.41± 2.81b 75.85± 1.66b 0.330mg/ml
S. henningsii % 14.22± 2.69b 30.45± 2.64b 48.27± 2.50b 61.57± 2.92b 75.22± 2.12b 0.325mg/ml
Values are expressed as mean± SEM for three replicates. Column means with the same superscript were not signifcantly diferent by ANOVA followed by
Tukey’s post hoc test (p> 0.05).
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studied to provide alternative answers to the diverse stress-
related disorders. Arguably, plants tend to ofer better al-
ternatives for varied sources of medicinal remedy including
antioxidants.

Based on phytochemical studies, the yield and the an-
tioxidant activity of a plant extract depend on the selected
extraction solvent [65–67]. Diferent solvents are employed
to isolate diferent antioxidant compounds based on their
disparities in polarities [68]. In this study, dichloromethane
solvents were used as a midpolar solvent for extraction of
polyphenols and other midpolar phytochemicals. Several
assays (DPPH radical scavenging assay, hydroxyl radical
assay, hydrogen peroxide radical scavenging assay, ferric
reducing power, and total determination of favonoid and
phenolic contents, among others) have been developed for
the determination of in vitro nonenzymatic antioxidant
activities of medicinal plants [69, 70].

Flavonoids and phenols naturally exhibit strong scav-
enging abilities for free radicals due to their hydroxyl groups
[71, 72], which are attached to their aromatic ring structures
and help to quench the radicals either by donating their
electrons thus neutralizing them or via the electron
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Figure 2: Percentage DPPH scavenging activities of S. henningsii, F. sycomorus, and standard ascorbic acid. Values are expressed as
mean± SEM of the three replicates. Column means followed by the same superscript letters were not signifcantly diferent (p> 0.05) by
one-way ANOVA followed by Tukey’s post hoc test.

Table 5: % in vitro DPPH radical scavenging activities of DCM extracts of S. henningsii and F. sycomorus.

Concentrations
Groups 0.0125mg/ml 0.025mg/ml 0.05mg/ml 0.1mg/ml 0.2mg/ml IC50 value
Ascorbic acid % 42.84± 1.05a 50.00± 1.85a 64.06± 1.75a 80.13± 2.06a 91.39± 1.38a 0.025mg/ml
S. henningsii % 30.38± 1.61b 34.93± 2.42b 46.60± 1.49b 61.71± 1.69b 78.33± 1.65b 0.068mg/ml
F. sycomorus % 29.73± 2.21b 37.94± 1.15b 46.45± 2.74b 63.81± 2.27b 76.38± 1.92b 0.062mg/ml
Values are expressed as mean± SEM of the three replicates. Column means followed by the same superscript letters were not signifcantly diferent (p> 0.05)
by one-way ANOVA followed by Tukey’s post hoc test.

Table 6: IC50 values of DCM extracts of S. henningsii and
F. sycomorus.

Hydrogen peroxide DPPH
S. henningsii 0.330mg/ml 0.068mg/ml
F. sycomorus 0.325mg/ml 0.062mg/ml
Ascorbic acid 0.245mg/ml 0.025mg/ml
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Figure 3: Analysis of ferric reducing power of S. hennningsii,
F. sycomorus, and the standard ascorbic acid. Values are expressed
as mean± SEM of the three replicates. Column means followed by
the same superscript letters were not signifcantly diferent
(p> 0.05) by one-way ANOVA followed by Tukey’s post hoc test.
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delocalization over all three ring systems achieved by ortho-
dihydroxy of the B-ring and 4-oxo group of the ring C of the
favonoid, which actively reduce radicals such as DPPH and
Fe3+ to Fe2+ ions [73, 74]. Tus, polyphenols directly aug-
ment the antioxidant potential through the restoration of
redox balance [75].

In most plant extracts, there is a positive correlation
between antioxidant activity and the amount of poly-
phenolic compounds [76, 77]. However, some studies
have reported that there is no positive relationship be-
tween the polyphenolic compounds and their antioxidant
activities [78, 79]. Te total phenolic and favonoid
content of the DCM stem bark extract of F. sycomorus was
lower than that of the leaf extract of S. henningsii at all the
tested concentrations. Tis partly explains why
S. henningsii had a better result against % DPPH radical
scavenging activities and ferric reducing power assay
(Figures 1 and 2) than F. sycomorus. Nevertheless, the
diference in polyphenolic content between the two ex-
tracts was not statistically signifcant against hydrogen
peroxide scavenging abilities (Figure 3). In this study, the
antioxidant activity observed against hydrogen peroxide,
DPPH radicals, and FARP were due to the presence of
phenolic and favonoid components. Terefore, a positive
correlation was noted between the amount of poly-
phenolics and the antioxidant activity.

4.2. Statistical Analysis. Hydrogen peroxide (H2O2) is
a harmless and less reactive molecule, which becomes
harmful, toxic, and reactive to the cell when it is converted to
hydroxyl radical [80, 81]. Hydroxyl compounds are among
the most deleterious ROS produced by mitochondria,
causing oxidative damage, and are clinically linked to causes
of various stress-related disorders [82]. Tus, the removal of
H2O2 is a critical step for maintaining a functional anti-
oxidant defense system in cells or food systems [83, 84].

DCM leaf extract of S. henningsii and stem bark extract
of F. sycomorus showed signifcant antioxidant activity
against hydrogen peroxide in a dose-associated trend.
Sirisha et al. [85] also demonstrated similar in vitro anti-
oxidant activity while working on the methanolic leaf extract
of F. carica. Te dose-dependent activities of both extracts
showed that an increase in the concentration of the extract
increased the levels of bioactive antioxidant compounds
[86]. Similarly, studies conducted on diferent Ficus species
by Ahoua et al. reported the species exhibit strong hydrogen
peroxide antioxidant activity in a dose-dependent manner
[87]. Te strong scavenging potential of the extracts is

refected in their low IC50 value. A lower IC50 is normally
associated with a higher radical scavenging activity [88].

Te fndings of this study showed that both S. henningsii
and F. sycomorus extracts had low IC50 of 0.330mg/ml and
0.325mg/ml, respectively, against the H2O2 radicals. Tus,
the low IC50 values obtained from the study indicate that the
two extracts have strong H2O2 scavenging activities. Te
IC50 value obtained for F. sycomorus was similar to that
obtained by Deo et al. [89] working on some selected herbal
extract inhibitory properties against protein glycation and
angiotensin enzyme linked to type II diabetes. Additionally,
P. amarus and L. pumila var. alata medicinal plants have
been shown to possess potent radical inhibiting properties
with low IC50 values of 3.4 and 5.7 µg/ml, respectively [90].

Te potential of plant extracts to inhibit the DPPH
radical is strongly linked to their ability to donate electrons
to the radical [46, 91]. Normally, DPPH radical is stable in
various solvents including methanol, ethanol, and water.
Terefore, the radical is usually prepared in a solution of
either ethanol or methanol [70, 92]. Te results obtained in
this study showed dose-dependent DPPH scavenging ac-
tivities of the two extracts. It was, however, noted that the
DCM leaf extract of S. henningsii and F. sycomorus stem bark
extract had lower DPPH scavenging abilities than ascorbic
acid [93]. Tis could be due to the crude nature of extract as
compared to the refned standard drug. Tis result corre-
sponded to the observations of Igbinosa et al. [94] who
found that Jatropha curcas had lower DPPH activities than
ascorbic acid (standard).

Te results of the stem bark extract of F. sycomorus agree
with a study by Kambli et al. [95], who found that the DPPH
scavenging activity of F. racemosa was considerable but not
higher than that of the standard drug. Te good antioxidant
property of F. sycomorus stem bark extract against DPPH
corroborates well with the fndings of Santiago and Mayor
[96], who noted that F. odorata had a good antioxidant
activity against DPPH radicals. Te DCM leaf extract of
S. henningsii also showed a good antioxidant activity against
DPPH. However, studies conducted by Oyedemi et al. [48],
while working on the stem bark extract of S. henningsii,
reported a weaker antioxidant activity against DPPH radi-
cals and attributed it to low levels of favonoids in the stem
bark extract compared to that of the leaf. Te potential
antioxidant activities of the DCM extract of S. henningsii and
F. sycomorus against DPPH radicals in this study can be
positively related to their higher total phenolic (R2 � 0.9782)
and favonoid (R2 � 0.9778) compounds (Tables 2 and 3).
Tis higher antioxidant activity of the two extracts was
a refection of the lower IC50 values obtained (0.062mg/ml

Table 7: In vitro ferric reducing power activities of the DCM extracts of S. henningsii and F. sycomorus.

Concentrations
Groups 0.2mg/ml 0.4mg/ml 0.6mg/ml 0.8mg/ml 1.0mg/ml
Ascorbic acid (nm) 0.427± 0.02a 0.612± 0.02a 0.705± 0.04a 0.864± 0.02a 0.915± 0.02a
S. henningsii (nm) 0.317± 0.04ab 0.452± 0.02b 0.524± 0.02b 0.643± 0.02b 0.730± 0.02b
F. sycomorus (nm) 0.217± 0.04b 0.316± 0.04b 0.486± 0.02b 0.603± 0.02b 0.703± 0.02b

Values are expressed as mean± SEM of the three replicates. Column means followed by the same superscript letters were not signifcantly diferent (p> 0.05)
by one-way ANOVA followed by Tukey’s post hoc test.
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and 0.068mg/ml, Table 1). In DPPH assay, it has been
strongly suggested that samples with lower IC50 values of
50 µg/ml are very strong antioxidants, while with a range of
50–100 µg/ml are strong antioxidants, and with values above
150 µg/ml are weaker antioxidants [97].

Te potential of the two extract samples to reduce Fe3+ to
Fe2+ via electron donation was determined by the amount of
Fe2+ complex generated and measured in terms of the ab-
sorbance of Perl’s Prussian blue colour at 700 nmwavelength
[98]. Te change of yellow colour of the test solution to
various shades of green and blue indicated the reducing
power of the extract [99]. Te phytochemicals in an extract
either directly bind the metal ions or indirectly suppress
their chelating reactivity by occupying their coordination
sites [100, 101]. Te ultimate outcome of the reduction
reaction in the antioxidant defense system is to terminate the
radical chain reactions, which may otherwise be very det-
rimental to tissues.

It was evident that increased extract concentrations
increased the ferric reducing power of the two DCM
extracts. Basically, as a result of more Fe3+ being reduced
to Fe2+ as more electrons were being donated by anti-
oxidant components [102, 103]. High absorbance is an
indicative of the increased ferric reducing ability of the
extracts. Both extracts were, however, found to have
a lower reducing capacity at all the tested concentrations
compared to ascorbic acid, the reference compound. Tis
observation was starkly diferent from the one done by
Daniel and Dluya [46] in which they demonstrated that
the methanolic stem bark extract of F. sycomorus had
a higher ferric reducing power than ascorbic acid (ref-
erence drug) which could be the case of diferent solvents
used. Nevertheless, the fndings correlate with one done
by Ahoua et al. [87] on eight diferent Ficus species and it
was noted that the majority had signifcantly lower re-
ducing power against the ascorbic acid.

5. Conclusions and Recommendations

Te fndings of this study demonstrate that the DCM ex-
tracts of S. henningsii and F. sycomorus possess alkaloids,
phenols, saponins, cardiac glycosides, favonoids, and ste-
roids while F. sycomorus contains saponins, favonoids, al-
kaloids, steroids, phenols, cardiac glycosides, and
terpenoids. Te total phenolic and favonoid content of the
DCM stem bark extract of F. sycomorus was lower than that
of the leaf extract of S. henningsii. Te said phytochemicals
possess antioxidant activity. Te DCM extracts of
S. henningsii and F. sycomorus signifcantly exhibited strong
radical scavenging activities against hydrogen peroxide and
DPPH solution at diferent concentrations used. Te IC50
values of S. henningsii and F. sycomorus were 0.325mg/ml
and 0.330mg/ml for hydrogen peroxide and 0.068mg/ml
and 0.062mg/ml for DPPH, respectively. Both the DCM leaf
extract and stem bark extract of S. henningsii and
F. sycomorus were found to have strong ferric reducing
power at all the tested concentrations. Terefore, both ex-
tracts exhibited signifcant nonenzyme-based antioxidant
activities.

Terefore, the DCM leaf extract of S. henningsii and stem
bark extract of F. sycomorus studied plants can be potential
antioxidant compound sources and alternatives for the
management of oxidative stress. In addition, studies aimed
at investigating the in vivo antioxidant efcacy of the studied
plant extracts are encouraged.
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