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Inspired by some open conjectures in a rational dynamical system by G. Ladas and Palladino, in this paper, we consider the
problem of solving a third-order diference equation. We comment the conjecture by Ladas. A third-order rational diference
equation is solved analytically.Te solution is compared with the solution to the linearized equation. We show that the solution to
the linearized equation is not good, in general. Te methods employed here may be used to solve other rational diference
equations. Te period of the solution is calculated. We illustrate the accuracy of the obtained solutions in concrete examples.

1. Introduction

Te use of recurrences to solve mathematical problems dates
back to Babylon in 2000 B.C.E. in the context of the ap-
proximate resolution of algebraic equations and the ap-
proximate calculation of square roots. In Greek times, the
Pythagoreans (ffth century B.C.E.) implicitly used non-
autonomous diference equations to study the numbers
associated with fgures or pentagonal numbers.

Te Fibonacci sequence, continued fractions, bi-
nomial coefcients, the calculus of fnite diferences, the
Newton–Raphson method, and the numerical methods
to approximate the solutions of a diferential equation
are just some of them (see [1, 2] for more details). In the
frst half of the twentieth century, great interest arose in
the development of numerical methods, which was
greatly enhanced by the appearance of powerful com-
puter calculation tools.

In the 50s of the last century, moreover, nonlinear
diference equations began to be used as applied models,
especially in ecology. Later, the discovery that even the
simplest models exhibit enormous complexity led to the
introduction of mathematical chaos and renewed interest in
the theory of diference equations.

Nonlinear diference equations and their systems are hot
topics that have attracted the attention of several researchers.
A signifcant number of papers are devoted to this feld of
research. One can consult, for example, the papers[3–10],
where one can fnd concrete models of such equations and
systems, as well as understand the techniques used to solve
them and investigate the behavior of their solutions.

Recently, an increased interest has been witnessed in
studying the theory of discrete dynamical systems, specif-
cally of their associated diference equations. A sizable
number of works on the behavior and properties of per-
taining solutions (boundedness and unboundedness) have
been published in various areas of applied mathematics and
physics. Te theory of diference equations fnds many
applications in almost all areas of natural science [11]. Te
diference equations with discrete and continuous argu-
ments play important role for understanding nonlinear
dynamics and phenomena [8]. Te increased interest in
diference equations is partly due to their ease of handling.

Although diference equations have very simple forms, it
is extremely difcult to completely understand the global
behavior of their solutions. One can refer to [4–6] and the
references therein. Diference equations have always played
an important role in the construction and analysis of
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mathematical models of biology, ecology, physics, and
economic processes. Te study of nonlinear rational dif-
ference equations of higher order is of paramount impor-
tance, since we still know little about such equations.

Let m≥ 1 be a natural number. Given f: Rm⟶ R

which we will call iteration function, a diference equation
(DE) of order m in explicit form is any expression like the
following:

xn+1 � f xn−m+1, . . . , xn( . (1)

Te above formula allows us to build a family of se-
quences called the set of solutions of the DE, whose def-
nition is as follows: fxed a vector X � (x−m+1, . . . , x0), the
solution of (1) from initial conditions X or generated by the
initial conditions X is the sequence (xj)

∞
j�−m+1 whose frst m

terms are the components of X and the rest are obtained
inductively by formula (1). When for some r≥ 0, the vector
(xr−m+1, . . . , xr) does not belong to the domain of defnition
of f, the construction of (xj)

∞
j�−m+1 cannot be realized. In

such a case, we say that X is an element of the forbidden set
of (1), denoting it by P.

Te expression solution of the diference equation is
reserved for the sequences generated from the elements of
B � Rn/P, called the good set of the DE. Occasionally, the
term fnite solution is used. When X ∈ P and r is the largest
integer such that xm is well defned, refer to (xj)

r

j�−m+1. But,
unless otherwise indicated, the word “solution” is associated
with sequences of infnite terms. To emphasize this difer-
ence, we will sometimes say that such solutions are well
defned. Solutions of a DE are also called trajectories or
orbits. Such nominations are inspired by the terminology of
dynamic systems.

In this paper, we will consider the following third-order
rational diference equation:

xn+1 �
a0 + a1xn + a2xn−1 + a3xn−2

b0 + b1xn + b2xn−1 + b3xn−2
,

n � 0, 1, 2, . . . ,

(2)

X � x−2, x−1, x0(  � c−2, c−1, c0( . (3)

Te most important solutions to equation (2) are the
periodic solutions, those formed by a quantity fnite number
of terms which repeat itself indefnitely. Teir relevance lies
in the fact that, on many occasions, the equation can be
described qualitatively by identifying its periods and the
behavior of the rest of the solutions with respect to them. For
example, a common situation is that some periods behave as
attractors of the rest of the solutions, which implies that the
model associated with DE will consist, in the long run, of
a certain cycle.

Even when the dynamics of the ED are not so clear, the
determination of the periodic solutions is still relevant in-
formation to give us an idea of what is happening.

In [7],Abo-Zeid has discussed the global behavior of all
solutions of the diference equation:

xn+1 �
xnxn−1

axn + bxn−1
, (4)

where a and b are real numbers and the initial conditions x1
and x0 are real numbers. A class of third-order rational
diference equations of form (2) with nonnegative co-
efcients is considered in [12].

2. The Solution

We seek approximate analytical solution in the ansatz form

xn � μ0 + μ1r
n
1 + μ2r

n
2 + μ3r

n
3

+ μ1,1,0r
n
1r

n
2 + μ1,0,1r

n
1r

n
3 + μ0,1,1r

n
2r

n
3

+ μ2,0,0r
2n
1 + μ0,2,0r

2n
2 + μ0,0,2r

2n
3 .

(5)

We defne the residual as

R(n) � b0 + b1xn+2 + b2xn+1 + b3xn( xn+3 + a0 + a1xn+2 + a2xn+1 + a3xn( . (6)

Ten,

R(n) � κ0 + P r1( z1 + P r2( z2 + P r3( z3

+ κ1,1,0z1z2 + μ1,0,1z1z3 + μ0,1,1z2z3

+ κ2,0,0z
2
1 + κ0,2,0z

2
2 + κ0,0,2z

2
3 + · · · ,

(7)

where zj � rn
j(j � 1, 2, 3) and
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κ0 � a0 + a1 + a2 + a3 + b0( μ0 + b1 + b2 + b3( μ20,

P(ζ) � a3 + b3μ0 + a2 + b2μ0( ζ + a1 + b1μ0( ζ2 + b0 + b1 + b2 + b3( μ0( ζ3,

κ2,0,0 � a3μ2,0,0 + a1r
4
1μ2,0,0 + a2r

2
1μ2,0,0 + b3μ0μ2,0,0 + b0r

6
1μ2,0,0 + b1μ0r

6
1μ2,0,0

+ b2μ0r
6
1μ2,0,0 + b3μ0r

6
1μ2,0,0 + b1μ0r

4
1μ2,0,0 + b2μ0r

2
1μ2,0,0 + b1μ

2
1r

5
1 + b2μ

2
1r

4
1 + b3μ

2
1r

3
1,

κ0,2,0 � a3μ0,2,0 + a1r
4
2μ0,2,0 + a2r

2
2μ0,2,0 + b3μ0μ0,2,0 + b0r

6
2μ0,2,0 + b1μ0r

6
2μ0,2,0

+ b2μ0r
6
2μ0,2,0 + b3μ0r

6
2μ0,2,0 + b1μ0r

4
2μ0,2,0 + b2μ0r

2
2μ0,2,0 + b1μ

2
2r

5
2 + b2μ

2
2r

4
2 + b3μ

2
2r

3
2,

κ0,0,2 � a3μ0,0,2 + a1r
4
3μ0,0,2 + a2r

2
3μ0,0,2 + b3μ0μ0,0,2 + b0r

6
3μ0,0,2 + b1μ0r

6
3μ0,0,2

+ b2μ0r
6
3μ0,0,2 + b3μ0r

6
3μ0,0,2 + b1μ0r

4
3μ0,0,2 + b2μ0r

2
3μ0,0,2 + b1μ

2
3r

5
3 + b2μ

2
3r

4
3 + b3μ

2
3r

3
3,

κ1,1,0 � a3μ1,1,0 + a1r
2
2r

2
1μ1,1,0 + a2r2r1μ1,1,0 + b3μ0μ1,1,0

+ b0r
3
2r

3
1μ1,1,0 + b1μ0r

3
2r

3
1μ1,1,0 + b2μ0r

3
2r

3
1μ1,1,0 + b3μ0r

3
2r

3
1μ1,1,0

+ b1μ0r
2
2r

2
1μ1,1,0 + b2μ0r2r1μ1,1,0 + b1μ1μ2r

2
2r

3
1 + b3μ1μ2r

3
1

+ b2μ1μ2r2r
3
1 + b1μ1μ2r

3
2r

2
1 + b2μ1μ2r

3
2r1 + b3μ1μ2r

3
2,

κ1,0,1 � a3μ1,0,1 + a1r
2
3r

2
1μ1,0,1 + a2r3r1μ1,0,1 + b3μ0μ1,0,1

+ b0r
3
3r

3
1μ1,0,1 + b1μ0r

3
3r

3
1μ1,0,1 + b2μ0r

3
3r

3
1μ1,0,1 + b3μ0r

3
3r

3
1μ1,0,1

+ b1μ0r
2
3r

2
1μ1,0,1 + b2μ0r3r1μ1,0,1 + b1μ1μ3r

2
3r

3
1 + b3μ1μ3r

3
1

+ b2μ1μ3r3r
3
1 + b1μ1μ3r

3
3r

2
1 + b2μ1μ3r

3
3r1 + b3μ1μ3r

3
3,

κ0,1,1 � a3μ0,1,1 + a1r
2
3r

2
2μ0,1,1 + a2r3r2μ0,1,1 + b3μ0μ0,1,1

+ b0r
3
3r

3
2μ0,1,1 + b1μ0r

3
3r

3
2μ0,1,1 + b2μ0r

3
3r

3
2μ0,1,1 + b3μ0r

3
3r

3
2μ0,1,1

+ b1μ0r
2
3r

2
2μ0,1,1 + b2μ0r3r2μ0,1,1 + b1μ2μ3r

2
3r

3
2 + b3μ2μ3r

3
2

+ b2μ2μ3r3r
3
2 + b1μ2μ3r

3
3r

2
2 + b2μ2μ3r

3
3r2 + b3μ2μ3r

3
3.

(8)

Te number μ0 is an equilibrium point, and it satisfes
the quadratic equation

a0 + a1 + a2 + a3 + b0( μ0 + b1 + b2 + b3( μ20 � 0. (9)

Te numbers r1, r2, and r3 bare the roots to the cubic
equation

a3 + b3μ0 + a2 + b2μ0( ζ + a1 + b1μ0( ζ2 + b0 + b1 + b2 + b3( μ0( ζ3 � 0. (10)

Te constants μi,j,k are obtained from the system
κi,j,k � 0(i, j, k � 0, 1, 2). Tey read
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μ0,0,2 � −
μ23r

3
3 b1r

2
3 + b2r3 + b3 

a1r
4
3 + a2r

2
3 + a3 + b3μ0 + b1μ0r

6
3 + b2μ0r

6
3 + b3μ0r

6
3 + b1μ0r

4
3 + b2μ0r

2
3 + b0r

6
3

,

μ0,1,1 � −
μ2μ3 b1r

2
3r

3
2 + b3r

3
2 + b2r3r

3
2 + b1r

3
3r

2
2 + b2r

3
3r2 + b3r

3
3 

a1r
2
2r

2
3 + a2r2r3 + a3 + b3μ0 + b1μ0r

3
2r

3
3 + b2μ0r

3
2r

3
3 + b3μ0r

3
2r

3
3 + b1μ0r

2
2r

2
3 + b2μ0r2r3 + b0r

3
2r

3
3

,

μ0,2,0 � −
μ22r

3
2 b1r

2
2 + b2r2 + b3 

a1r
4
2 + a2r

2
2 + a3 + b3μ0 + b1μ0r

6
2 + b2μ0r

6
2 + b3μ0r

6
2 + b1μ0r

4
2 + b2μ0r

2
2 + b0r

6
2

,

μ1,0,1 � −
μ1μ3 b1r

2
3r

3
1 + b3r

3
1 + b2r3r

3
1 + b1r

3
3r

2
1 + b2r

3
3r1 + b3r

3
3 

a1r
2
1r

2
3 + a2r1r3 + a3 + b3μ0 + b1μ0r

3
1r

3
3 + b2μ0r

3
1r

3
3 + b3μ0r

3
1r

3
3 + b1μ0r

2
1r

2
3 + b2μ0r1r3 + b0r

3
1r

3
3

,

μ1,1,0 � −
μ1μ2 b1r

2
2r

3
1 + b3r

3
1 + b2r2r

3
1 + b1r

3
2r

2
1 + b2r

3
2r1 + b3r

3
2 

a1r
2
1r

2
2 + a2r1r2 + a3 + b3μ0 + b1μ0r

3
1r

3
2 + b2μ0r

3
1r

3
2 + b3μ0r

3
1r

3
2 + b1μ0r

2
1r

2
2 + b2μ0r1r2 + b0r

3
1r

3
2

,

μ2,0,0 � −
μ21r

3
1 b1r

2
1 + b2r1 + b3 

a1r
4
1 + a2r

2
1 + a3 + b3μ0 + b1μ0r

6
1 + b2μ0r

6
1 + b3μ0r

6
1 + b1μ0r

4
1 + b2μ0r

2
1 + b0r

6
1

.

(11)

Finally, the constants μ1, μ2, and μ3 are obtained from the
initial conditions

x−2 � c−2,

x−1 � c−1,

x0 � c0.

(12)

3. Some Particular Cases

Example 1 (Ladas–Palladino conjecture). Let us consider
the DE

xn+1 �
α + βxn + cxn−1

xn−2
  for α, β, c≥ 0 and positive  initial  conditions x−2, x−1   and x0. (13)

Ladas–Palladino conjecture claims that the solutions to
third-order DE are bounded if β � c. In this case,

a0 � α,

a1 � β,

a2 � c,

a3 � 0,

b0 � b1 � b2 � 0.

b3 � 1.

(14)

Let us fnd an approximate solution for this DE.

μ0 �
1
2

�����������

4α +(β + c)
2



+ β + c . (15)

Te numbers r1, r2, and r3 are the roots to the cubic

μ0ζ
3

+ βζ2 + cζ + μ0 � 0. (16)

Te discriminant to the cubic in (16) equals

∆ � β2c2
− 4μ0 β3 + c

3
  + 18βcμ20 − 27μ40 < 0  for any α, β, and c> 0. (17)

Tus, we have one real root and two complex roots.

First case (β≠ c). In this case, at least one of the roots of
the cubic in (16) will have magnitude greater than the
unity. Te approximate solution will be unbounded.
We will not consider this case.

Second case (β � c). In this case, one of the roots of the
cubic in (16) equals −1 and the other two are complex
and they lie on the unit circle |z| � 1. Tat is, all roots
have magnitude 1. Te approximate solution will be
bounded. In order to simplify the matters, let xn � zn/β
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and c � p/β2. Ten, the dynamics of (13) can be re-
written as

xn+1 �
p + xn + xn−1

xn−2
, (18)

just with one parameter p≥ 0. Te numbers r1, r2, and
r3 are given by

r1 � − 1,

r2 � cos θ + i sin θ,

r3 � cos θ − i sin θ � r
−1
2 ,

(19)

where

θ � tan− 1

���������������
3p + 4

�����
p + 1


+ 3

p + 4
�����
p + 1


+ 5



⎛⎝ ⎞⎠. (20)

Te solution is written as

xn � μ0 + μ1(−1)
n

+ μ3R
− n

+ μ2R
n

+
μ1μ2 R

2
+ R + 1 

μ0 R
2

+ R + 1  + R
(−1)

n
R

n
+

μ1μ3 R
2

+ R + 1 

μ0 R
2

+ R + 1  + R
(−1)

n
R

− n

−
μ23

μ0 R
6

+ 1  − R
2

R
2

+ 1 
R
3− 2n

−
μ22

μ0 R
6

+ 1  − R
2

R
2

+ 1 
R
2n+3

+
μ2μ3 R

6
+ 1 

2R
3 1 − μ0( 

−
μ21

2 − 2μ0
,

(21)

where

R � cos θ + i sin θ � r2. (22)

Example 2. Let p � 1. Tis is known as the Todd equation.
Let us consider the initial conditions (see Figures1–4)

x−2 � &9; 1 +
�
2

√
,

x−1 � &9;
3
4

+
�
2

√
,

x0 � &9;
1
2

+
�
2

√
.

(23)

Te linear approximation xn � (1/12)

((−1)n+1 − 3
�
3

√
sin(πn/3) + cos(πn/3) + 12

�
2

√
+ 12) for

this problem is not good (red and blue points correspond to
that of Todd’s equation solutions).

Te approximate solution is given by

xn � 0.0501063 − 0.00100115(−1)
n

(  cos
πn

4
  − 0.0565135(−1)

n
+ 0.0103055(−1)

n sin
πn

4
 

− 0.515776 sin
πn

4
  − 0.00535239 sin

πn

2
  − 0.0272878 cos

πn

2
  + 2.44891.

(24)

Te solution is periodic with period T � 7. Example 3. Now, let p � 0.5 for the initial conditions
x−2 � 2.22474, x−1 � 1.97474, and x0 � 1.72474. Te solu-
tion reads
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xn � 2.26354 − 0.0140538 sin(2.2804 − 1.52026n) + 0.00814246 cos(2.2804 − 1.52026n)

+ 0.0489589 − 0.00101907(−1)
n

(  cos(0.760132n) − 0.0548054(−1)
n

+ 0.0110165(−1)
n

− 0.529262(  sin(0.760132n) − 0.0101714 sin(1.52026n + 2.2804)

+ 0.012663 cos(1.52026n + 2.2804).

(25)

Te solution is periodic with period T � 57.
Let p � 3 for the initial conditions x−2 � 3, x−1 � 2.75,

and x0 � 2.5. Te solution reads

2 4 6 8 10 12 140
n

X n
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Figure 1: Solution to xn+1 � (1 + xn + xn−1/xn−2) given that x−2 � 1 +
�
2

√
, x−1 � (3/4) +

�
2

√
, and x0 � (1/2) +

�
2

√
.

2 4 6 8 10 12 140

n

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

X n

Figure 2: Linearized Solution to xn+1 � (1 + xn + xn−1/xn−2) given that x−2 � 1 +
�
2

√
, x−1 � (3/4) +

�
2

√
, and x0 � (1/2) +

�
2

√
.

10 20 30 40 50 600
n

X n

2.0

2.5

3.0

Figure 3: Solution to xn+1 � (0.5 + xn + xn−1/xn−2) given that x−2 � 2.22474, x−1 � 1.97474, and x0 � 1.72474.
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xn � 3.0257 − 0.00729324 sin(2.52321 − 1.68214n) + 0.00650347 cos(2.52321 − 1.68214n)

+ 0.0551657 − 0.000978734(−1)
n

(  cos(0.841069n) − 0.0608287(−1)
n

+ 0.0086946(−1)
n

− 0.490065(  sin(0.841069n) − 0.00375297 sin(1.68214n + 2.52321)

+ 0.00902229 cos(1.68214n + 2.52321).

(26)

Te solution is periodic with period T � 29.

4. Conclusions and Future Work

We have shown in our paper that approximate analytical
solutions of a rational dynamical system, namely, third-
order diference equation, are periodic and bounded but
this may not happen to the exact solution of such a rational
dynamical system. We may use the same methods of line-
arization to predict orbits and boundedness solutions for
other rational dynamical systems such as diference equa-
tions of a fourth degree or more, rather than that we may
prove or disprove other open conjectures in rational dy-
namical systems which are proposed by G. Ladas.
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Figure 4: Solution to a third-order diference equation.
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