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In this study, we investigated the use of manganese oxide-biochar nanocomposites (MnOx-BNC), synthesized from cofee husk
(CH) and khat leftover (KL) for the removal of methylene blue (MB) from wastewater. Pristine biochars of each biomass (CH and
KL) as well as their corresponding biochar-based nanocomposites were synthesized by pyrolyzing at 300°C for 1 h. Te biochar-
based nanocomposites were synthesized by pretreating 25 g of each biomass with 12.5mmol of KMnO4. To assess theMB removal
efciency, we conducted preliminary tests using 0.2 g of each adsorbent, 20mL of 20mg·L−1 MB, pH 7.5, and shaking the mixture
at 200 rpm and for 2 h at 25°C.Te results showed that the pristine biochar of CH and KL removed 39.08% and 75.26% ofMB from
aqueous solutions, respectively. However, the MnOx-BNCs removed 99.27% with manganese oxide-cofee husk biochar
nanocomposite (MnOx-CHBNC) and 98.20% with manganese oxide-khat leftover biochar nanocomposite (MnOx-KLBNC) of
the MB, which are signifcantly higher than their corresponding pristine biochars. Te adsorption process followed the Langmuir
isotherm and a pseudo-second-order model, indicating favorable monolayer adsorption.TeMnOx-CHBNC andMnOx-KLBNC
demonstrated satisfactory removal efciencies even after three and six cycles of reuse, respectively, indicating their potential
efectiveness for alternative use in removing MB from wastewater.

1. Introduction

Dyes are commonly used to color products in heavy in-
dustries such as textiles, paper, and food processing [1].
Globally, more than 700,000 tons of dyes are produced each
year, with approximately 100,000 diferent types of dyes
being used in various industries [2]. Literature reports in-
dicate that the discharge of dyes from industries contributes
to 20% of water pollution [3, 4].Tese dyes can have negative
efects on aquatic ecosystems, the food chain, and public
health [5]. Even at low concentrations, they reduce aesthetic
value, hinder light penetration, and impact gas solubility for
photosynthesis and respiration processes [6].

Methylene blue (MB) is an organic dye that is widely
used to color paper, print cotton, and dye leather and plastics
[7–9]. Prolonged exposure to MB can lead to tissue necrosis
and cyanosis and pose threats tomarine life [10]. It enters the
ecosystem through the discharge of untreated or partially
treated industrial efuents. Terefore, it is crucial to im-
plement appropriate treatment procedures before releasing
industrial efuents into the environment.

Various methods, including photocatalytic degradation
[11, 12], ultrafltration [7, 13], electrocoagulation [14], elec-
trochemical degradation [15], chemical precipitation [16], and
adsorption [17], have been used for dye removal from in-
dustrial efuents [18]. However, some of these methods have
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limitations such as high-energy consumption, cost, genera-
tion of toxic sludge, incomplete treatment, and signifcant
reagent consumption [19, 20]. Among these methods, ad-
sorption is a cost-efective, eco-friendly, and efcient solution
for removing organic and inorganic pollutants [2].

Te efciency of the adsorption method primarily relies
on the adsorbent materials used [21]. Activated carbon,
natural clay minerals, synthetic inorganic materials, synthetic
nanoparticles, and biomass have all been utilized as adsor-
bents to remove various contaminants from aqueous solu-
tions [22]. Recently, researchers have been focusing on
fnding low-cost, efcient, and selective materials for the
removal of toxic chemicals like dyes from wastewater [5].
While activated carbon is widely used for water treatment, its
raw materials and preparation methods are expensive and
labor-intensive [23]. Materials that are porous and possess
a high surface area are known to have good adsorption ca-
pacity. Nowadays, scholars are exploring the use of activated
biochar to overcome some of the drawbacks associated with
activated carbon [24]. Biochar is a porous material produced
through the pyrolysis of biomass at temperatures below 700°C
under oxygen-limited conditions. However, pure biochar also
has limited adsorption performance, so it needs to be
modifed by combining it with suitable nanomaterials [25].

Metallic oxide nanoparticles such as magnetic ferric
oxide, manganese oxide, titanium oxide, and magnesium
oxide which have high specifc surface areas have been used
in wastewater treatment [26]. However, nanoparticles ag-
gregation presents a challenge, necessitating the use of
supporting materials to enhance their stability and recy-
clability [3]. Te biochar-based nanocomposite involves the
use of a composite material that combines the advantages of
biochar, such as porosity and a higher specifc surface area,
with nanomaterials [16].

Metal salts such as AlCl3, CaCl2, MgCl2, KMnO4, MnCl2,
ZnCl2, and TiCl4 are commonly used to activate biochar,
resulting in the formation of Al2O3, AlOOH, CaO, MgO,
MnOx, ZnO, and TiO2 nanoparticles on the biochar surface
[27]. Most biochar-based nanocomposites are synthesized
by chemical activation using metallic ions. Te synthesis can
proceed in either a one-step or two-step modifcation
process [16]. In the one-step process, both carbonization and
activation are completed simultaneously in the presence of
an activator. In the two-step process, the biomass feedstock
is carbonized frst, followed by activation using the ap-
propriate salt. Te metal ions used for activation are either
attached to the surface or enter the interior of the biomass
upon impregnation or dipping into salt solutions. After
pyrolysis, the metal ions are transformed into nanometal
oxide ormetal hydroxide, and the biomass impregnated with
metal ions becomes biochar-based nanocomposites [26].

Some reports show that diferent metallic oxide nano-
composites such as Fe3O4 nanocomposites of saw dust, rice
husk, palm oil empty fruit bunch, spent cofee ground bio-
char, and activated carbon are employed to remove MB from
aqueous solutions [5, 28–32]. In addition, KMnO4-activated
sludge [33], pine [34], and MnO2 orange peel [35] biochar
nanocomposites are used for MB removal. KMnO4 is a strong
oxidizing agent that can be used for water disinfection and

oxidation of toxic matter. It can undergo mild oxidation of
biomass at room temperature [33]. Te KMnO4-activated
biochar production process ofers several advantages. It has
a shorter activation time at room temperature, a mild reaction
with organic materials, and produces a biochar with less ash
content. Additionally, it is more environmentally friendly
compared to other activation processes. Because of these
advantages, both manganese oxide-cofee husk and khat
leftovers biochar nanocomposite (MnOx-CHBNC and
MnOx-KLBNC) can be utilized as environmentally preferred
alternatives for the removal of pollutants from the
environment. However, to the best of our knowledge, no
investigation has been reported regarding the utilization of
MnOx-CHBNC and MnOx-KLBNC for the removal of MB
from aqueous solutions.

In Ethiopia, there is high production and consumption
of cofee (Cofea arabica) and khat (Catha edulis), which
generate tons of biomass waste that pollutes the envi-
ronment [36, 37]. Te unaddressed disposal of CH and KL
increases municipal waste, leading to higher trans-
portation costs when taken to the disposal area [38]. Te
objective of this study was to evaluate the conversion of
CH and KL into useful products, which ofers dual ad-
vantages: removing toxic pollutants from wastewater and
disposing of biomass waste from the environment. Te
MnOX-CHBNC and MnOX-KLBNC were synthesized,
characterized, and evaluated for their MB removal efcien-
cies. Te study also examined the efects of contact time,
adsorbent dose, initial concentration, and pH on the ad-
sorption efciency of MB for the two adsorbents. Addi-
tionally, the study investigated the kinetics and adsorption
isotherms and conducted desorption studies to assess the
regeneration or reusability of the adsorbents.

2. Materials and Methods

2.1. Chemicals and Materials. Cofee husk samples were
collected from cofee pulping industries in Mizan-Aman
town, and khat leftovers were collected from Jimma town,
both in Ethiopia. Tese two biomasses were chosen because
they are easily accessible and make a signifcant contribution
to themunicipal solid waste problem, which has led to severe
environmental pollution across the country.

Various chemicals and reagents were used in the study,
including KMnO4 (99%, Finkem), MB; C16H18N3SCl (99%,
NICE), HNO3 (69%, Qualikems Fine chemicals), ultrapure
NaOH (99%, Merck), and NaCl (99.5%, Sigma-Aldrich).

Te crystallinity of the materials was determined using
an X-ray difractometer (DRAWELL Artist of Science XRD-
7000, Shanghai, China). Te surface properties were ana-
lyzed using scanning electron microscopy (SEM FEI
QUANTA 250, Romania). Fourier transform infrared
(FTIR) spectroscopy (Spectrum 65 FTIR, PerkinElmer) was
used to analyze the surface functional groups of the mate-
rials. A mufe furnace (DRAWELL Artist of Science Mufe
Furnace 1000°C SX-4-10, Shanghai, China) was used for the
pyrolysis process. Double beam UV-Vis spectroscopy
(SPECORDR200 PLUS Analytik Jena, Japan) was used for
MB analysis.
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2.2. Preparation of MnOX-CHBNC and MnOX-KLBNC.
Khat (Catha edulis) leftovers were sliced into small pieces
and washed with distilled water. Tey were then dried at
105°C for 24 h, ground into powders, and preserved [29, 39].
Similarly, the cofee husk was cleaned, dried, ground, and
preserved using the same procedures.

For the synthesis of biochar nanocomposite materials, 25 g
of each biomass powder was separately immersed in a 300mL
solution containing various concentrations of KMnO4:12.5, 25,
50, and 75mmol [39–43]. After stirring for 1h, themixture was
evaporated to dryness in an oven at 80°C until the weight of the
mixture remained constant. Te dried sample was transferred
to a crucible, covered with aluminum foil, and placed into
a mufe furnace initially heated at 110°C. Te sample was
placed at 110°C for 30min and then heatedwith a heating ramp
of 10°Cmin−1 until it reached 300°C. Finally, it was pyrolyzed at
300°C for 1h. Te synthesized metal oxide/hydroxide-biochar
nanocomposites were then cooled to room temperature,
ground, and sieved with mesh sizes of 0.1mm-0.2mm. Te
pristine biochar was also synthesized using 25 g of dried
biomass powder. It was repeatedly washed with distilled water
until the washout became clear,then oven-dried at 80°C and
kept for further experiments. Te same procedures were fol-
lowed to synthesize the biochar nanocomposites of the spec-
ifed metallic oxides at 400 and 500°C. Te prepared biochar
nanocomposites were labeled as MnOX-CHBNC300, MnOX-
CHBNC400, MnOX-CHBNC500, MnOX-KLBNC300, MnOX-
KLBNC400, and MnOX-KLBNC500.

2.3. Adsorbent Selection. Following the procedures men-
tioned in the previous section, we produced 30 diferent
adsorbents. We then evaluated the synthesized materials to
determine the most efcient adsorbent for removing MB
from an aqueous solution. Te preliminary evaluations were
conducted to assess the efciency of each adsorbent in re-
movingMB.Tese evaluations were conducted using 0.2 g of
each adsorbent and 20mL of a 20mg·L−1 MB solution at
pH 7.5. Te mixture was then shaken at 200 rpm for 2 h,
following the experimental procedures reported by Giraldo
and coworkers [44]. After shaking, the mixture was
centrifuged at 5000 rpm for 10min. Te resulting super-
natant was then transferred to a cuvette for UV-Vis analysis
at λ= 665 nm. Each experiment was conducted in triplicate.

Te removal efciency of each adsorbent for MB was
calculated using equation (1), and the dye adsorption ca-
pacity of the materials was determined using equation (2).

%R �
Co − Ce( 􏼁

Co

× 100, (1)

qe �
Co − Ce( 􏼁V

m
. (2)

Co (mg·L−1) and Ce (mg·L−1) represent the initial and
equilibrium concentrations of the adsorbate, respectively, m
(g) is the mass of the adsorbent, and V (L) is the volume of
the sample solution [45].

2.4. Adsorption Isotherm and Kinetics. Batch adsorption
experiments were conducted using 20mL aqueous samples
containing diferent initial concentrations of MB ranging
from 10 to 500mg·L−1. To each dye solution, 0.2 g of MnOX-
CHBNC300 was added at 25°C. Similarly, for other sets of dye
solutions, 0.15 g of MnOX-KLBNC300 was added. Te
mixtures were then shaken at 200 rpm using a horizontal
shaker for 2 h. Subsequently, the samples were fltered, and
the equilibrium concentrations of MB in each solution were
measured by UV-Vis spectrometry at 665 nm.

2.5. Regeneration Studies. Te reusability of the adsorbents
was evaluated by performing, adsorption-desorption for six
cycles at 25°C following the experimental design reported by
Păcurariu and coworkers [3]. Accordingly, 2 g of MnOX-
CHBNC and 1.5 g of MnOX-KLBNC were separately dis-
persed in 200mL of a 20mgL−1 MB solution by shaking for
120min at pH 7.5. Te solutions were then centrifuged, and
the concentrations of MB in the supernatant were analyzed.
For desorption, 2 g of the MB-loaded adsorbents was dis-
persed in 50mL of 50% ethanol at pH 6.5. Te mixture was
shaken for 120min and then separated by fltration. After
each cycle, the MnOX-CHBC and MnOX-KLBNC adsor-
bents were washed with distilled water, dried at 70℃ for 2 h,
and reused for adsorption in the next cycle.

3. Results and Discussion

3.1. Adsorbent Selection. In this study, biochar-based nano-
composites were prepared by varying the pyrolysis temper-
ature and the mass of the activating agent, KMnO4. Table 1
presents the results of the preliminary experimental data for
the selection of adsorbents for the removal of MB from an
aqueous solution. Te experiments showed that the diferent
adsorbents synthesized in this study had varying efciencies
in removing MB from the aqueous solution.Tese diferences
can be attributed to the type of biomass, pyrolysis temper-
ature, and the amount of activating agent used.

Te efects of pyrolysis temperature and the activating
agent-to-biomass ratio on the efciency of MnOX-CHBNC
and MnOX-KBNC for removing MB from an aqueous solu-
tionwere investigated. Figures 1(a) and 1(b) show the efects of
pyrolysis temperature and activating agent-to-biomass ratio
on the efciency of MnOX-CHBNC and MnOX-KBNC. Te
efciency of MB removal from the aqueous solution increased
as the pyrolysis temperature of pristine CHB and KLB in-
creased. Yang and coworkers [46] reported that the pyrolysis
temperature can infuence both the yield and surface prop-
erties.Tey have found that higher pyrolysis temperatures lead
to a decrease in the amount of biochar and acidic functional
groups (-COOH and -OH), while alkaline functional groups,
ash content, and pH increase. Terefore, the pyrolysis tem-
perature can afect the adsorption efciencies of MnOX-
CHBNC andMnOX-KLBNC forMB. Treatment with KMnO4
signifcantly increased the adsorption efciency from 39.08%
to 99.26% for CHB and from 75.26% to 98.20% for KLB. Te
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Table 1: Preliminary experimental data for selection of adsorbents for removal of MB.

Adsorbent KMnO4 (millimole) Pyrolysis temperature (°C) MB removal efciency (%)
CHB300 0.0 300 39.08
CHB400 0.0 400 44.73
CHB500 0.0 500 80.78
MnOx-CHBNC300 12.5 300 99.23
MnOx-CHBNC400 12.5 400 89.96
MnOx-CHBNC500 12.5 500 96.10
MnOx-CHBNC300 25.0 300 97.20
MnOx-CHBNC400 25.0 400 96.95
MnOx-CHBNC500 25.0 500 93.99
MnOx-CHBNC300 50.0 300 84.40
MnOx-CHBNC400 50.0 400 95.33
MnOx-CHBNC500 50.0 500 95.51
MnOx-CHBNC300 75.0 300 66.65
MnOx-CHBNC400 75.0 400 97.46
MnOx-CHBNC500 75.0 500 86.38
KLB300 0.0 300 75.26
KLB400 0.0 400 76.41
KLB500 0.0 500 88.37
MnOx-KLBNC300 12.5 300 9 .01
MnOx-KLBNC400 12.5 400 97.14
MnOx-KLBNC500 12.5 500 96.86
MnOx-KLBNC300 25.0 300 97.39
MnOx-KLBNC400 25.0 400 95.99
MnOx-KLBNC500 25.0 500 96.73
MnOx-KLBNC300 50.0 300 89.45
MnOx-KLBNC400 50.0 400 95.45
MnOx-KLBNC500 50.0 500 97.30
MnOx-KLBNC300 75.0 300 86.64
MnOx-KLBNC400 75.0 400 86.75
MnOx-KLBNC500 75.0 500 96.80
Bold values show that the materials selected are adsorbent.
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Figure 1: Pyrolysis temperature and biomass to activating agent (KMnO4) ratio evaluation: (a) MnOX-CHBNC and (b) MnOX-CHBNC.
Experimental conditions: MB initial concentration, 20mg/L; adsorbent dose, 0.2 g/L; pH, 7.5; temperature, 25°C; contact time, 120min.
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results also indicated that the amount of activating agent has
an infuence on the removal efciency. In this study, the
highest efciency was observed when 25 g of each biomass was
pretreated with 12.5mmol of KMnO4 (2 :1 g·mmol−1 ratio).
Overall, the study revealed that MnOX-CHBNC and MnOX-
KLBNC synthesized by pretreating 25 g of biomass with
12.5mmol of KMnO4 and pyrolyzed at 300°C for 1 h exhibited
better efciency compared to other types of biochars syn-
thesized in this study.

3.2. Adsorbent Characterization. Figures 2(a) and 2(b) show
the XRD patterns of the pristine CHB and MnOX-CHBNC
and KLB and MnOX-KLBNC, respectively. All adsorbents are
composed of natural cellulose, lignin, and noncrystalline
hemicelluloses. Te difraction peaks at 2θ=16.1° and 22.4°
can be assigned to natural cellulose, which is consistent with
the fndings of Baig and coworkers [47]. Reports indicate that
the large d-spacing in the XRD peaks of biochar is due to the
presence of unconverted cellulose and -OH, C=C, and C-O
groups [48]. Crystallinematerials generally exhibit sharper and
more intense peaks compared to amorphous materials
[49, 50]. Te broadening of XRD peaks is primarily caused by
particle size and lattice strain arrangement. Scattering of X-
rays from the nonuniformly arranged surface materials and
pores within the biochar results in broad peaks [30, 51]. Weak
broad peaks at around 37.4° and 41.2° indicate the nonuniform
distribution of MnO2 in the biochar nanocomposite which
leads to X-ray scattering [52]. In addition, the porous nature of
biochar allows its pores to trap X-rays. Terefore, the dif-
fraction peaks in the XRD patterns of both adsorbents cannot
be indexed as crystallized. Generally, the pristine biochars of
MnOX-CHBNC and MnOX-KLBNC are all amorphous.

Figures 3(a)–3(d) show the SEM images of the activated
and pristine biochar, CHB, and KLB. Tese images confrm
that the synthesized biochars have amorphous and het-
erogeneous structures. Pores were observed in all biochars
due to the escape of volatile substances and the formation of
channel structures during pyrolysis [53]. Te formation of
porous structures is more prominent in activated biochars,
as shown in Figures 3(b) and 3(d). According to the liter-
ature, activation increases porosity and enlarges the di-
ameter of smaller pores created during pyrolysis [54].

Te FTIR spectra of pristine and activated biochar are
shown in Figure 4(a) for CHB and MnOX-CHBNC and in
Figure 4(b) for KLB andMnOX-KLBNC.Te spectra of both
pristine and activated biochars showed the presence of
functional groups such as O-H (3417–3426 cm−1), C-H
(2853–2920 cm−1), C�C (1611–1622 cm−1), and C-O
(1411–1466 cm−1) as reported in other literature [10, 17,
34, 55–57]. Tese functional groups may play a role in the
adsorption of MB through electrostatic interaction [58]. Te
broad bands of O-H observed in the MnOX-CHB and
MnOX-KLBNC spectra could be attributed to the additional
sources of the OH group from the moisture [37].

Furthermore, there are broadening peaks with decreased
intensity around 3425 cm−1 in the MB-adsorbed MnOx-
CHBNC and MnOx-KLBNC FTIR spectra, as shown in
Figures 4(a) and 4(b), which indicate the possibility of

chemisorption occurring on the surface of biochar. Tis
chemosorption leads to the formation of new compounds.
Te two main mechanisms of MB adsorption on biochar are
the electrostatic attraction of cationicMB by the large number
of OH groups in the solution at higher pH and the formation
of hydrogen bonds between the oxygen present inMB and the
OH groups of the biochars. Additionally, oxygen-containing
functional groups form complexes with MB molecules
through surface complexation resulting in MB adsorption on
the adsorbents. After adsorption, the spectra at 1620 and
1382 cm−1 changed, with an increase in peak intensity, in-
dicating an increase in the quantity of -C=C bonds caused by
the cyclic alkene, most likely due to MB adsorption.

Figures 5(a)–5(d) present the adsorption-desorption
isotherm and BET analysis plots for CHB, MnOX-CHBNC,
KLB, and MnOX-KLBNC. Based on the results of the BET
analysis, the specifc surface area, pore volume, and pore size
for CHB were reported as 0.519m2·g−1, 0.004 cm3·g−1, and
32.804 nm, respectively. For MnOX-CHBNC, the values were
1.289m2·g−1, 0.006 cm3·g−1, and 21.218 nm. Te values for
KLB were 0.826m2·g−1, 0.005 cm3·g−1, and 27.626 nm, while
for MnOX-KLBNC, they were 1.03m2·g−1, 0.006 cm3·g−1, and
19.511 nm. Te results revealed that MnOX-CHBNC and
MnOX-KLBNC have higher specifc areas, total pore volumes,
and smaller pore sizes than their pristine biochars. In addi-
tion, according to IUPAC, the adsorption-desorption iso-
therm and BETanalysis showed that the adsorbents exhibited
mesoporous structures [31].

3.3. Batch Adsorption Studies. Out of the various adsorbents
prepared in this study, MnOX-CHBNC and MnOX-KLBNC
were chosen based on the results of the preliminary ad-
sorbent selection experiment conducted in Section 2.3. Te
discussion of this selection is given, along with Table 1 and
Figure 1. Te parameters that can afect the adsorption
efciency of MnOX-CHBNC and MnOX-KLBNC were in-
vestigated at a constant temperature of 25°C.

3.3.1. Point of Zero Charge. Te point of zero charge
(pHPZC) of an adsorbent depends on the chemical and
electronic properties of the functional groups on its surface.
Figures 6(a) and 6(b) show the results of pHPZC of MnOX-
CHBNC and MnOX-KLBNC as well as the efect of pH on
the adsorption process. Te pHPZC values were approxi-
mated at pH 7.82 for MnOX-KLBNC and 8.43 for MnOX-
CHBNC. Terefore, pH values should be maintained above
these values to ensure that the negatively charged surfaces
favor adsorption through electrostatic attraction between
the adsorbents and the cation (MB).

3.3.2. Efect of pH. Te pH of the solution afects the ad-
sorption processes because it can change the surface charge
of the adsorbent and the ionizable organic dye molecules
[51]. Te pH also determines the competition between
cationic dyes and the adsorbent as well as the presence of
extra OH−/H+ ions in the solution. As a result, the ad-
sorption capacity of MB fuctuates.

Te Scientifc World Journal 5



In this study, the efect of pH was evaluated from 3 to 12
by adjusting it to the desired value using 0.10M HNO3 and
0.10M NaOH solutions. Figure 6(b) shows the impact of the
solution pH on the MB adsorption capacity of MnOX-
CHBNC and MnOX-KLBNC. Te initial MB concentration

was 20mg·L−1, with 0.2 g of MnOX-CHBNC and 0.15 g of
MnOX-KLBN used as adsorbents. Te contact times were
60min for MnOX-CHBNC and 80min for MnOX-KLBNC.
Te results showed that the adsorption capacity of MnOX-
CHBNC increased from 1.93 to 1.97mg·g−1 in the pH range
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Figure 2: XRD patterns of (a) CHB and MnOX-CHBNC and (b) KLB and MnOX-KBNC.
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Figure 3: SEM images of pristine and activated cofee husk and khat leftover biochar. (a) CHB, (b) MnOX-CHBNC, (c) KLB, and
(d) MnOX-KLBNC.
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Figure 5: Continued.
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of 2–8, while MnOX-KLBNC increased from 2.56 to
2.61mg·g−1 in the pH range of 2–6. Tis can be attributed to
the strong electrostatic repulsion generated by cationic MB
dye molecules on the surface of biochar, which contain high
concentration of H+ ions in an acidic environment. In
addition, as mentioned by Islam and coworkers [52], the
presence of the OH group on an adsorbent surface triggers
protonation of the OH groups and creates competition
between H+ ions and dye molecules for binding with active
sites, resulting in low uptake of sorbate molecules.

Generally, both adsorbents showed signifcant difer-
ences between the lowest adsorption capacities at pH 2 and
the maximum adsorption capacities at pH 12.Teminimum

removal efciency remained above 96%. Tis indicates that
the adsorbents can act as a bufer system, capable of resisting
pH changes.Terefore, MnOX-CHBNC andMnOX-KLBNC
can efectively remove MB in both acidic and alkaline media.

3.3.3. Efect of Contact Time. Contact time is one of the factors
that afect the adsorption efciency. In this study, the efect of
time was investigated over the range of 5–180min. Te dosage
used was 0.2 g, the pHwas 7.5, and the initial concentration was
20mg·L−1. Figure 7(a) illustrates that the adsorption of MB was
initially rapid during the early stage, but it gradually slowed
down after 60min. After 60min, the adsorption rate remained
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Figure 5: Adsorption-desorption isotherm of nitrogen on (a) CHB and MnOX-CHBNC and (b) KLB and MnOX-KLBNC, as well as BET
analysis plot of (c) CHB and MnOX-CHBNC and (d) KLB and MnOX-KLBNC.
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relatively constant. Te initial rapid adsorption rate can be
attributed to the availability of a sufcient adsorption surface,
which then decreases over time until equilibrium is attained.
Te presence of repulsive forces between the solute molecules
adsorbed on the solid and the bulk phase creates obstacles for
continuous adsorption on the remaining adsorption sites [53].
Kumar and coworkers also reported that the removal efciency
of alkaline-treated banana stem biochar for MB dye increases
with longer contact time [58].

3.3.4. Efect of Initial Concentration. Te efect of the initial
concentrations of MB was studied, ranging from 10 to
80mg·L−1.Te results indicate that as the initial concentration
of MB increased, the adsorption capacity also increased
(Figure 7(b)). Te adsorption capacity of MnOX-CHBNC
changed from 0.98 to 5.83mg·g−1, while MnOX-KLBNC
changed from 1.32 to 10.03mg·g−1.

In general, molecules tend to adsorb more readily at higher
initial concentrations due to the presence of a greater driving
force required for the mass transfer of dye molecules. In ad-
dition, higher initial concentrations required a longer equilib-
rium time. Tis is because, during the fnal stage of adsorption,
most of the sorbate molecules difuse into the porous structure
of the adsorbent as the adsorbent surface becomes saturated.
Tese results are consistent with a study on the removal of MB
by mangosteen peel biochar prepared via hydrothermal car-
bonization formethylene blue removal [54].Terefore, an initial
concentration of 20mg·L−1 was chosen as the optimal con-
centration, at which MnOx-CHBNC and MnOx-KLBNC re-
moved approximately 99.27% and 98.20% of MB, respectively.

Furthermore, Figure 7(c) demonstrates that under the
optimal conditions, 0.2 g ofMnOx-CHBNCcan remove 93.87%
of MB from a 20mL solution with a concentration of 40mg/L,
while 0.15 g of MnOx-KLBNC can remove 94.00% of MB from
a 20mL aqueous solution with a concentration of 80mg/L.
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Figure 7: (a) Te efect of contact time on MB adsorption capacity, (b) the efect of initial concentration on MB adsorption capacity, and
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3.3.5. Efect of Adsorbent Dose. Figure 8(a) shows the vari-
ation in the removal efciency of MB at diferent doses of
MnOX-CHBNC andMnOX-KLBNC.Te efects of adsorbent
dosage were evaluated within the range of 0.1–0.5 g for both
MnOX-CHBNC and MnOX-KLBNC, while keeping other
parameters constant (pH 7.5, initial concentration 20mg·L−1,
and contact time 60min). As shown in Figure 8(a), increasing
the dose of MnOX-CHBNC from 0.1 g to 0.2 g resulted in
a 4.34% increase in MB removal efciency. Similarly, in-
creasing the dosage ofMnOX-KBNC from 0.1 g to 0.15 g led to
2.83% increase in removal efciency. Tese improvements
can be attributed to the increased number of available ad-
sorption sites, which agrees with the fndings of a study re-
ported by Le and coworkers [55]. However, the adsorption of
MB only slightly increased when the dose exceeded 0.15 g for
MnOX-KLBNC and 0.2 g for MnOX-CHBNC, as the adsor-
bent surface eventually reaches a saturation state. Notably,
when the dose of MnOX-CHBNC exceeded 0.5 g, the removal
efciency of MB decreased to 97.74%. Tis decrease may be
attributed to the aggregation of adsorbents, which hinders the
accessibility of binding sites and alters the viscosity of the
solution, preventing the freemovement ofMBmolecules [56].
Based on these results, further studies were conducted using
0.15 g of MnOx-KLBNC and 0.2 g of MnOx-CHBNC.

On the other hand, the adsorbent dose had a negative
impact on the adsorption capacity (Figure 8(b)). Te value of
qe decreased rapidly when the dosage of MnOX-CHBNC and
MnOX-KLBNC increased from 0.1 to 0.5 g·L−1. Subsequently,
the slope of the adsorption capacity curves decreased because
at low adsorbent amounts, the active adsorption sites quickly
combine with the adsorbates and approach saturation. When
the amount of adsorbent exceeds a certain value, the in-
creasing adsorption sites fail to come into contact with ad-
sorbate molecules [57]. In addition, as the number of
adsorbents increases, they tend to aggregate, resulting in
a reduction in the specifc surface area of the sorbents [58].

3.3.6. Adsorption Isotherm and Kinetics Model. Adsorption
isotherms relate the concentration of the adsorbate and the
adsorption capacity at a specifc dose of adsorbent and
temperature [2]. Analyzing these isotherms helps in un-
derstanding the mechanisms of adsorption, which depend
on factors such as surface polarity, surface area, and porosity.
Te linear forms of the Langmuir and Freundlich isotherm
models can be used to quantify the equilibrium adsorption
data (equations (3) and (4)) [59]. Te Langmuir isotherm
(equation (3)) describes adsorption on a surface with uni-
form active sites, forming a monolayer. Te adsorption
equilibrium was studied by ftting the experimental data to
the linear equations of the Langmuir and Freundlich iso-
therm models [1].

Langmuir isothermmodel:
Ce

qe

�
1

KLqm

+
Ce

qm

, (3)

Freundlich isothermmodel: log qe � logKF +
1
n
logCe,

(4)

where qe (mg·g−1) is the amount of MB adsorbed, Ce

(mg·L−1) is the adsorbate concentration in the solution at
equilibrium, KL is the Langmuir adsorption constant, and
qm (mg·g−1) is the maximum adsorption capacity for
monolayer formation on the adsorbent [60].Te value of KF

is the adsorption or distribution coefcient, which repre-
sents the number of ions adsorbed onto the beads. Te value
of 1/n indicates surface heterogeneity; as its value gets closer
to zero, the surface becomes more heterogeneous [61]. A
fundamental characteristic of the Langmuir isotherm is to
predict the afnity between adsorbate and sorbent using
a dimensionless constant, known as the separation factor RL,
which can be calculated from the following equation:

RL �
1

1 + KLCo

, (5)

where Co (mg·L−1) is the adsorbate initial concentration.Te
value of RL ranges between 0 and 1 for favorable adsorption,
while RL > 1 represents unfavorable adsorption, RL � 1
represents linear adsorption, and RL � 0 represents irre-
versible adsorption processes [61].

Te Langmuir and Freundlich isotherm parameters were
investigated using the initial concentrations ranging from 20 to
500mg·L−1, and their results are presented in Figures 9(a)–9(d).

Te Langmuir and Freundlich isotherm parameters and
related correlation coefcients (Figures 9(a)–9(d)) are sum-
marized in Table 1. A higher correlation coefcient (R2)
indicates greater applicability of the Langmuir model with
R2 � 0.999 for MnOX-CHBNC and R2 � 0.991 for MnOX-
KLBNC, demonstrating the monolayer adsorption on a spe-
cifc site of a homogeneous surface of the adsorbent [4]. Te
Langmuir isotherm predicts that the adsorption energy is
uniform on the adsorbent surface and no interaction exists
between the adsorbed molecules [10]. Te low separation
factor values (RL � 0.080 for MnOX-CHBNC and RL � 0.048
for MnOX-KLBNC) imply a favorable physical adsorption
process. Te Freundlich isotherm demonstrates multilayered
adsorption for heterogeneous surfaces or surface-supporting
sites of diferent afnities [57].Te calculated value of n falling
in the range of 0 to 1 indicates favorable sorption. Further-
more, the Langmuir isotherm model has a higher regression
coefcient R2 than the Freundlich model (Table 2), showing
that the Langmuir model provides a better description. Tese
results suggest monolayer adsorption of MB on the surface of
MnOX-CHBNC and MnOX-KLBNC.

In terms of the nonlinearity of the Langmuir and
Freundlich isotherms, Figure 9 also shows that the adsorbed
amount of MB on both MnOx-CHBNC and MnOx-KLBNC
increases with increasing concentration but not linearly.
Specifcally, Figures 9(b) and 9(c) show that the adsorption
capacity will reach a plateau (saturation) at higher con-
centrations, especially for MnOx-CHBNC [62]. Tis sug-
gests that there are a limited number of binding sites
available on the adsorbent surface, which are eventually
occupied, and there is no binding interaction between the
MB molecules to form a multilayer. Tis is consistent with
the monolayer adsorption of the Langmuir isotherm model,
which is common nonlinear behavior [63, 64]. Te
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nonlinearity behavior suggests that the adsorption process is
not solely a physical interaction between the MB and the
adsorbent surface; there might be chemical interactions
involved.MnOx-KBNC appears to have a higher capacity for
MB than MnOx-CHBNC at diferent initial concentrations.

Kinetic studies were conducted using 20.0mL of MB
solution with an initial concentration of 20mg·L−1, pH 8.0,
0.2 g of MnOX-CHBNC, and 0.15 g of MnOX-KLBNC. Te
mixture was shaken for various time intervals (5, 10, 20, 30,
40, 60, 80, 120, 180, and 240min) at 200 rpm and 25°C,
following the previously reported procedure [54]. After-
wards, the solutions were centrifuged, and the concentra-
tions of MB in the supernatant were determined. Te
amount of MB adsorbed onto MnOX-CHBNC and MnOX-
KLBNC at time t (qt) was calculated using the following
equation:

qt �
Co − Ct( 􏼁V

m
, (6)

where Co is the initial concentration (mg·L−1), Ct is the
concentration at time t (mg·L−1), V is the volume (L), andm is
the mass of adsorbent (g). Two adsorption kinetics models
(pseudo-frst-order and pseudo-second-order) were employed.

Te pseudo-frst-order adsorption kinetics model used the
following equation:

ln qe − qt( 􏼁 � ln qe( 􏼁 − K1t, (7)

where qe and qt are the amounts of MB adsorbed (mg·g−1) at
equilibrium and time t (min), respectively, and K1 is the rate
constant for the pseudo-frst-order kinetics model. Te
pseudo-second-order kinetics model used the following
equation

t

qt

�
1

K2qt
2 +

t

qe

, (8)

where K2 is the rate constant for the pseudo-second-order
kinetic model of adsorption. Te adsorption parameters,
including R2 and other constants, were calculated for both
models and are listed in Table 3. Te results showed that the
adsorption mechanisms were better represented by the
pseudo-second-order model.

Te maximum MB adsorption capacities of various
adsorbents are listed in Table 4. Te adsorption capacities
achieved by the manganese oxide-biochar nanocomposites
prepared in this study were higher than those reported in

Table 2: Langmuir and Freundlich isotherm constants for adsorption of MB.

Isotherm model MnOX-CHBNC MnOX-KLBCN
Langmuir y� 0.0253x+ 0.0442 y� 0.023x+ 0.1281

qm 39.526 43.478
KL 0.572 1.000
RL 0.080 0.048
R2 0.999 0.991

Freundlich y� 0.3421x+ 2.4149 y� 0.3117x+ 2.2975
N 2.923 3.208
KF 11.189 9.949
R2 0.679 0.812
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Figure 9: (a) Langmuir isotherm for MnOX-CHBNC, (b) Freundlich isothermMnOX-CHBNC, (c) Langmuir isotherm for MnOX-KLBNC,
and (d) Freundlich isotherm MnOX-KLBNC.
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previous studies for certain adsorbents. Tis indicates that
MnOX-CHBNC and MnOX-KLBNC are efective in re-
moving MB from aqueous solutions. Furthermore, the
production of biochar nanocomposites using CH and KL
provides a valuable method for eliminating potential pol-
lutants and creating value-added treatment products. CH
and KL are low-cost biomass options for biochar pro-
duction, making this approach suitable for resource recovery
and environmental protection. Te KMnO4-activated bio-
char production process ofers several advantages, including
a shorter activation time at room temperature, a mild re-
action with organic materials, the formation of biochar with
lower ash content, and greater environmental friendliness
compared to other activation processes. Terefore, despite
their slightly lower removal efciencies compared to other

options, MnOx-CHBNC and MnOx-KLBNC are more
environmentally preferable to be used for the removal of MB
and other related organic pollutants from aqueous solutions.

3.4. Regeneration Studies. Te results revealed that one ad-
vantage of the proposed biochar nanocomposite adsorbents is
their easy separation from soluble waste and reusability. To
investigate the reusability, 2 g of MnOx-CHBNC and 1.5 g of
MnOx-KLBNC adsorbent were separately added to a 200mL
solution containing 20mg·L−1 of MB. Te study results are
shown in Figures 10(a) and 10(b). Te fndings demonstrated
that the relative adsorption efciency of MnOx-CHBNC
signifcantly decreased after three cycles, while the relative
adsorption efciency of MnOx-KLBNC showed negligible

Table 3: Constants of pseudo-frst-order and pseudo-second-order adsorption kinetic models.

Adsorbent Kinetic model
Initial MB concentration (mg·L−1)

20 100 300

MnOX-CHBNC

qexperimental 1.976 9.972 29.329
Pseudo-frst-order

qe 1.048 6.309 21.092
K1 3.44×10−2 5.20×10−3 1.10×10−3

R2 0.886 0.785 0.831
Pseudo-second-order

qe 2.085 9.443 26.352
K2 5.261× 10−2 2.311× 10−3 1.51× 10−2

R2 0.998 0.976 0.999

MnOX-KLBNC

qexperimental 2.629 13.240 33.104
Pseudo-frst-order

qe 1.546 3.428 25.280
K1 4.20×10−3 9.40×10−3 1.60×10−3

R2 0.908 0.867 0.767
Pseudo-second-order

qe 2.068 12.771 16.129
K2 3.458×10−2 1.379×10−2 2.298×10−3

R2 0.997 0.999 0.974

Table 4: Comparison of the MB removal efciency of some adsorbents from aqueous solution.

Adsorbent Co (mg·L−1) Vo (mL) m (g) qm (mg·g−1) %R Reference

Fe3O4/SDB nanocomposite 30.00 30.00 0.25 25.33 75.00 [3]
H3PO4-treated Beli biochar 10.00 50.00 0.30 12.32 90.00 [10]
Torrefed-Acacia nilotica biochar 50.00 50.00 2.00 158.30 ND [10]
Acacia nilotica biochar 50.00 50.00 2.00 85.68 ND [10]
Fe3O4@C core-shell comp 20.00 40.00 0.20 42.11 ND [19]
NaOH-treated banana stem 25.00 50.00 0.80 0.47 96.59 [58]
NaOH-treated cofee husk 37.78 50.00 0.74 200.00 93.52 [65]
Fe3O4 nanopowder 20.00 25.00 2.00 25.54 99.69 [66]
Wheat straw-biochar 100.00 10.00 0.60 12.03 ND [67]
KOH-activated CHBC 50.00 500.00 0.50 357.38 ND [68]
MnOx-CHBNC 20.00 20.00 0.20 39.52 99.26 Tis study
MnOx-KLBNC 20.00 20.00 0.15 43.47 98.20 Tis study
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decrease up to six cycles, indicating its better reusability
compared to the other adsorbent.

4. Conclusion

In this study, biochar-based MnOx nanocomposites, specif-
ically MnOX-CHBNC and MnOX-KBNC, were synthesized
through the pyrolysis of CH and KL and used for the removal
of MB from an aqueous solution. Te highest MB removal
efciencies were observed when 25 g of each biomass was
pretreated with 12.5mmol of KMnO4 (at a ratio of 2 :
1 g·mmol−1) and pyrolyzed at 300°C for 1 h. Te pristine
biochars (CHB and KLB) and their corresponding MnOX-
CHBNC and MnOX-KBNC possess porous amorphous
structures. However, the MnOx-activated BNCs exhibit even
more porous structures, higher specifc areas, total pore
volumes, and smaller pore sizes compared to the pristine
biochars. Both the pristine and MnOx-activated biochars
contain functional groups (O-H, C-H, C�C, and C-O) that
may participate in adsorption through electrostatic in-
teraction. Te adsorption-desorption isotherm and BET
analysis confrm the mesoporous structure of the adsorbents.

Various parameters that afect the adsorption efciencies
of MnOX-CHBNC andMnOX-KLBNC, such as solution pH,
contact time, adsorbent dose, and initial concentration, were
also investigated. Te results indicate that the solution’
pH has a negligible efect on the adsorption efciencies of the
adsorbents; therefore, a pH of 7.5 was chosen for the ex-
periment. Te optimal conditions for the other parameters
were found to be a contact time of 60min and an adsorbent
dose of 0.15 g for MnOX-KLBNC and 0.2 g for MnOX-
CHBNC.

Equilibrium adsorption studies reveal that both MnOX-
CHBNC and MnOX-KLBNC ft well with the Langmuir
isothermmodel. Furthermore, the kinetic study results show
that the adsorption mechanism of MB on both adsorbents
follows the pseudo-second-order model. MnOX-KLBNC
exhibited better stability compared to MnOX-CHBNC, with

little change in the relative adsorption efciency even after
six cycles.

Overall, the advantages of MnOx-CHBNC and MnOx-
KLBNC, such as their easy and fast production process, low
cost, regeneration cycle, and environmental friendliness,
make them suitable alternative adsorbents for MB removal.
Tese fndings can also serve as preliminary support for
future studies aimed at improving the removal efciency of
MB usingMnOx-based cofee husk and khat leftover biochar
nanocomposite.
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