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Crocodile oil is a highly efective treatment for ailments ranging from skin conditions to cancer. However, the efects of the oil on
liver detoxifcation pathways are not well studied. Tis study aimed to investigate the efects of crocodile oil on the detoxifcation
enzyme activities and the mRNA expressions of cytochrome P450 1A2 (CYP1A2), cytochrome P450 2E1 (CYP2E1), and
glutathione S-transferase (GST) in rats. Te rats were divided into four groups (n� 7/group): rats received a standard diet (C),
a high-fat diet or HFD (H), and HFDwith 1ml (HCO1) and 3ml (HCO3) of the oil per kg body weight. Interestingly, the oil yields
from this study presented alpha-linolenic acid (0.96%) at similar levels compared with fsh oil. Te results revealed that HFD
signifcantly increased the activity and relative gene expression of CYP1A2 in the H group (P< 0.05), whereas 3% crocodile oil
normalized the enzyme activities compared to the C group. Tis suggested inhibiting the HFD-induced expression of CYP1A2
mediated by the omega-3 fatty acids found in the oil. Also, crocodile oil supplementation did not reduce the activities of GST.
However, the relative gene expression of GSTA1 was signifcantly decreased (P< 0.05) in the HCO1 and HCO3 groups compared
to the H group, which might be attributed to the lower lipid peroxidation that occurred in the liver tissues. Terefore, it could be
suggested that using crocodile oil could help in liver detoxifcation through the CYP1A2 even when ofered with a HFD.

1. Introduction

Obesity is caused by an imbalance between energy intake and
expenditure.Tis condition has become a global epidemic, with
over 650 million afected adults [1]. Obesity is associated with
many chronic diseases such as cardiovascular diseases, type 2

diabetes mellitus (T2DM), metabolic syndromes, and fatty liver
disease [2–4]. A high-fat diet (HFD) induces overconsumption
and weight gain, leading to obesity [5]. Moreover, HFD and
a low-carbohydrate diet revealed both intracellular and extra-
cellular adaptations that have been shown to elicit favorable
cardio-metabolic changes associated with obesity [6].
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Crocodile oil (CO) is one of the traditionally used
natural oils documented to be highly efective in treating
several ailments ranging from skin conditions to cancer. For
example, the oil is used to alleviate illnesses including
asthma, infuenza, and a constant phlegmatic cough [7].
Moreover, a previous study found that the oil had antimi-
crobial activities against Staphylococcus aureus and Klebsi-
ella pneumonia, and it also exhibited fungal specifcity
against Candida albicans. Also, the anti-infammatory re-
sponse results showed that the oil exhibited a relatively short
duration of action from the oral administration route and an
acute, relatively long action from the topical application [8].
Additionally, the oil from Crocodylus siamensis could heal
burn wounds, create new skin cells, and collect skin collagen
[9]. However, the efects of the oil on liver detoxifcation
pathways have not been investigated.

Te liver reacts to drugs and toxins once they enter the
bloodstream.Many of these toxic compounds are fat soluble;
thus, they are difcult to excrete from the body. Accordingly,
the role of liver detoxifcation pathways is to convert these
compounds into less harmful andmore soluble forms, which
are readily excreted from the body [10]. Liver detoxifcation
typically involves two sets of chemical pathways. Phase I
detoxifcation is the frst part of the defense mechanism.
Toxins are converted into intermediate forms by oxidation,
reduction, and hydrolysis reactions [11, 12]. Tese reactions
are mediated by a group of enzymes known as the cyto-
chrome P450 superfamily of enzymes (CYP450). However,
these conversions produce damaging free radicals, which
can still pose a toxic threat to the body [10, 12]. Terefore, it
is the role of phase II detoxifcation to provide fnal neu-
tralization of the byproducts and other remaining toxins.
Te converted chemicals are then attached to another
substance via a conjugation reaction [13, 14]. Tis renders
the compounds even less harmful and makes them water-
soluble. Te water-soluble compounds can then be excreted
from the body through urine via the kidneys. One of the
critical phase II detoxifcation enzymes is a group of glu-
tathione S-transferases (GSTs), which are found mainly in
the cytosol [14, 15].

CYP450 is generally the frst defense employed by the
body to biotransform various xenobiotics, steroid hormones,
and pharmaceuticals [12]. Te CYP1A family participates in
the metabolism of procarcinogens, hormones, and phar-
maceuticals [16]. Te major hepatic isoform of the CYP1A
family is CYP1A2 [17]. It is well known for its role in the
carcinogenic bio-activation of polycyclic aromatic hydro-
carbons (PAHs), heterocyclic aromatic amines or amides,
polychlorinated biphenyls (PCBs), and other endogenous
and exogenous substances [16, 18]. At the same time,
CYP2E1 is well known for metabolizing nervous system
agents such as halothane, isofurane, chlorzoxazone, and
ethanol. Moreover, it also bio-activates procarcinogenic
nitrosamines and afatoxin B1, a hepatocarcinogen that
causes liver cancer [11]. Another targeted enzyme in this
study is glutathione S-transferase (GST), whose primary
function is to catalyze the conjugation of glutathione (GSH)
conjugates for the biotransformation of metabolites [14].
Additionally, it is widely recognized that antioxidant

enzymes, such as superoxide dismutase (SOD), catalase
(CAT), and GST, exert natural and essential defenses against
oxidative impairment [19]. Consequently, this study focused
on these three kinds of detoxifcation enzymes to determine
the detoxifcation efects of oral administration of CO.

Terefore, this study aimed to investigate the efects of
CO supplementation on the liver detoxifcation enzyme
activities of CYP1A2, CYP2E1, and GST and the gene ex-
pressions in rats that were fed a HFD Te insight gained
from this study could be applied to further investigate the
hepatoprotective mechanism induced by CO.

2. Materials and Methods

2.1. Oil Extraction. Oil samples were obtained from the
abdominal fat of Siamese crocodile (Crocodylus siamensis)
certifed by Good Farm Practice (GFP) crocodile farms in
Nakhon Pathom and Kanchanaburi, Tailand. Te samples
were then stored at −20°C until the extractions were
performed.

According to a previous study, CO was extracted using
the wet cold-pressed method [20]. In brief, the fat samples
were mechanically pressed through two layers of flter cloth
with distilled water using a proportion of 1 :1 (w/v). Te
solution was subsequently stored until the transparent oil
layer was separated. Te oil layer was then evaporated and
stored at 25°C until used.

2.2. Fatty Acid Composition. Te identifcation and quanti-
fcation of the fatty acids were conducted by gas chromatog-
raphy (Agilent 7890B, Santa Clara, CA, USA). Te instrument
was ftted with a fame ionization detector, and fatty acid
separation was conducted on a fatty acid methyl ester column
(CP-Sil 88, Agilent, Santa Clara, CA, USA) with a length of one
hundred meters, an internal diameter of 0.25mm, and a sta-
tionary phase flm thickness of 0.20µm. Identifcation of fatty
acids was achieved by comparison of the retention times with
authentic standard fatty acid methyl esters.

2.3. Animal Treatments. Male Wistar rats (24 weeks old)
were obtained from the Nomura Siam International Co.,
Ltd., M-CLEA Bioresource Co., Ltd., Bangkok, Tailand.

Te rats were housed in a temperature-controlled room
(25± 2°C) at 60–70% humidity and a 12 h artifcial light/dark
cycle. Te rats were randomly divided into four groups (7
rats/group): rats received standard diet (C, control group),
HFD (H), HFD supplemented with 1ml of CO (HCO1) per
kg body weight, and HFD supplemented with 3ml of CO
(HCO3) per kg body weight. Rats in the same group were
housed together. All groups were fed ad libitum with the
standard diet (51.00% carbohydrates, 4.60% fats, and 24.90%
proteins: Nomura Siam International Co., Ltd., Bangkok,
Tailand) and HFD (27.46% carbohydrates, 41.04% fats, and
20.18% proteins) until the end of the experiment (Table 1).
After 20 weeks of the experimental period, the HCO1 and
HCO3 groups were supplemented with the extracted CO by
oral gavage once daily for nine weeks, whereas the C and H
groups received water instead.
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2.4. Sample Collection. At the end of the experimental
protocol, rats were fasted for 8–12 h and euthanized for liver
dissection by intraperitoneal injection of 40mg/kg pento-
barbital sodium. Te liver samples were dissected and
fushed with a cold sucrose bufer (0.25M sucrose, 1mM
EDTA, Tris-HCL 20mM, pH 7.4) and stored at −80°C until
analyses were performed.

2.5. Cytosolic and Microsomal Fractions. Te cytosolic and
microsomal fractions were extracted by using the method
from the previous studies [21, 22] with slight modifcations.
In brief, 4 g of frozen liver tissues was homogenized in
homogenization bufer (0.25M sucrose, 0.2mMDTE, 1mM
EDTA, 10mM Tris-HCl, pH 7.4). Te samples were then
centrifuged at 10, 000g for 10min. Subsequently, the su-
pernatant was ultra-centrifuged at 105, 000g for 1 h. Te
supernatant, the cytosolic fraction, was stored at −80°C.
After that, the pellet was re-homogenized in sucrose bufer
and ultra-centrifuged again. Te pellet, the microsomal
fraction, was then stored at −80°C until analyzed. Te
protein concentrations were measured by the method of
Bradford [23] by using a reagent for protein assay (Bio-Rad
Protein Assay, Bradford Reagent catalog number B6916,
Sigma-Aldrich, Inc., MO, USA), and bovine serum albumin
(Albumin, Bovine Serum, Fraction V, RIA and ELISA
Grade, Sigma-Aldrich, Inc., MO, USA) was used as the
standard protein. Te determination was achieved by using
an ultraviolet (UV)-visible spectrophotometer (BioTek
Synergy H1, Winooski, VT, USA) at 595 nm.

2.6. EnzymeActivities. Determination of CYP450 activity in
the microsomal fraction was performed according to the
method of a previous study [24]. In brief, the microsomal
fractions (0.25mg protein) were added to react with the
reaction mixture containing 100 µM 3-cyano-ethoxy-
coumarin (CEC, a substrate for CYP1A2), 2.6mM
β-NADPH, 3mM MgCl2, 0.8 U glucose-6-phosphate de-
hydrogenase (G-6-PD), 6.6mM glucose-6-phosphate (G-6-
P), and 50mM potassium phosphate bufer pH 7.4 by using
the excitation wavelength of 409 nm and an emission of
460 nm. Additionally, in the same way as CYP1A2, 7-

methox-4-trifuoromethyl coumarin (7-MFC, a substrate for
CYP2E1) was used instead at the excitation of 409 nm and
the emission of 530 nm for detection of CYP2E1 activities.
Te enzyme activities were determined by using a fuores-
cent spectrophotometer (BioTek Synergy H1, Winooski,
VT, USA).

GST activity was detected using BioTek Synergy H1
microplate reader (Winooski, VT, USA) according to the
previous studies [25, 26] with slight modifcations. In brief,
the cytosolic fractions (1mg protein) were added to start the
reaction with 1mM 2,4-dinitrochlorobenzene (CDNB,
a substrate for universal-GST), 1mMGSH, and 0.1M sodium
phosphate bufer (pH 6.5). Te activity was then determined
by using the UV-visible spectrophotometer at 340 nm.

2.7. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). Te total RNA in each 30mg liver
tissue sample was extracted using an RNeasy® Mini Kit
(Qiagen, Inc., Hilden, Germany). Removal of genomic DNA
from the RNA (1 µg) preparations was conducted by using
DNase I, RNase-free (Termo Fisher Scientifc Inc., Wal-
tham, MA, USA). Te prepared RNA was reverse tran-
scribed into cDNA according to the iScript™ Reverse
Transcription Supermix for RT-qPCR (Bio-Rad Laborato-
ries, Inc., Hercules, CA, USA). Te synthesized cDNA was
stored at −80°C. A reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR) determined the mes-
senger RNA (mRNA) levels for CYP1A2, GSTA1, GSTM1,
and B2m genes (as an internal control) in each sample by
using the PrimePCR™ SYBR®Green Assay of each gene (Catno. 10025636, Bio-Rad Laboratories, Inc., Hercules, CA,
USA). RT-qPCR was conducted with an iTaq™ Universal
SYBR® Green Supermix (Bio-Rad Laboratories, Inc., Her-
cules, CA, USA) on a CFX96 Touch Deep Well RT-PCR
System (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Te reaction conditions were as follows: polymerase acti-
vation and DNA denaturation at 95°C for 30 s, a total of forty
cycles of denaturation at 95°C for 5 s, and annealing/ex-
tension at 60°C for 30 s. Te 2−ΔΔCt method was used to
calculate the relative mRNA level of each gene [27].

2.8. Statistical Analysis. Data were reported as mean± SD.
Te results were analyzed by using one-way ANOVA, fol-
lowed by Bonferroni’s post hoc test (multiple comparisons)
using GraphPad Prism 5. A value of P< 0.05 was considered
a statistically signifcant diference.

3. Results

3.1. Identifcation andQuantifcation of FattyAcids. Te fatty
acid profle of the CO extracted from the fat of Crocodylus
siamensis is depicted in Table 2. It was shown that the three
fatty acids with the highest content were oleic (41.07%), linoleic
(21.08%), and palmitic (19.92%) acids. Moreover, the omega-3
fatty acids were found at 1.18%, including alpha-linolenic acid
(ALA) and docosahexaenoic acid (DHA) (Table 2).

Table 1: Formulations of standard diet and high-fat diet (HFD).

Diet components Standard
diet (g/100 g diet)

HFD (g/100 g
diet)

Moisture 8.90 N/D
Crude protein 24.90 20.18
Fat 4.60 41.04
Fiber 4.10 5.35
Nitrogen-free extract (NFE) 51.00 27.46
Crude ash
Calcium 1.06 1.25
Phosphorus 0.99 0.97
Sodium 0.31 0.12
Chlorine N/D 0.18
Others 4.24 4.74

Veterinary Medicine International 3



3.2. CO-Induced Alteration in the Activities of CYP1A2 and
GST. Te enzyme activity plots are shown in Figure 1. It was
shown that HFD signifcantly increased the activity of
CYP1A2 in the H group (3,720.47± 428.85 µmol/ml/min).
In contrast, their combined administration with 1ml and
3ml per kg body weight of CO normalized the activity of the
enzyme and signifcantly reduced (P< 0.05) the activity of
HCO3 group (2,303.73± 731.20 µmol/ml/min) to their
normal levels compared to the control group
(1,941.00± 541.19 µmol/ml/min) (Figure 1(a)). However, no
signifcant diference was found in the activities of CYP2E1
and GST (Figures 1(b) and 1(c)).

3.3. Relative mRNA Expressions of CYP1A2, GSTA1, and
GSTM1. Quantitative RT-PCR determined the mRNA ex-
pressions of all samples to investigate the detoxifcation
enzyme-related efects of CO supplementation on CYP1A2,
GSTA1, and GSTM1 expressions in rats, as shown in Fig-
ure 2.Te results showed that 3ml per kg body weight of CO
decreased the mRNA expression of CYP1A2 (1.758± 0.999)
in the liver tissues of HFD-fed rats compared to the H group
(2.250± 1.092) (Figure 2(a)). Moreover, 1ml (0.640± 0.354)
and 3ml (0.744± 0.462) per kg body weight of CO signif-
icantly decreased (P< 0.05) the mRNA expressions of
GSTA1 to similar levels to the control group (1.000± 0.000)
when compared to the H group (1.712± 0.946) (Figure 2(b)).
However, no signifcant diference was found in the ex-
pressions of GSTM1 (Figure 2(c)).

4. Discussion

Tis study aimed to investigate the efects of CO on the liver
detoxifcation enzymes in rats by the oral administration of 1
and 3ml per kg body weight of CO according to our pre-
vious studies [28, 29]. Since 1 and 3ml per kg body weight of
CO was suggested to beneft liver function by increasing
energy metabolites, including oxaloacetate, and 3ml per kg

body weight of CO also ameliorated hepatic steatosis of the
rats, the doses of CO were selected to be used in this study.
Te results of food consumption of the rats showed that the
rats that received HFD had lower food intakes per day than
those in the C group. However, due to the higher calories of
the diet and the oil, groups of rats that received HFD had
higher calories intakes per day (63.60–66.83 kcal/day/rat)
compared to those in the C group (57.50 kcal/day/rat). Also,
the percentages of body weight gain of the rats in H, HCO1,
and HCO3 groups (9.50%, 8.47%, and 8.84%, respectively)
were signifcantly higher (P< 0.05) than those in the C group
(4.35%), suggesting that the obesity occurred in the HFD-fed
groups (data not shown). Moreover, the serum lipid profle
of the rats, including total cholesterol (CHOL), tri-
acylglycerol, high-density lipoprotein cholesterol (HDL-C),
and low-density lipoprotein cholesterol (LDL-C), was also
investigated. However, signifcant diference was found only
in the CHOL levels, of which the levels in HCO3 group
signifcantly decreased compared to those in the C group
(data not shown). Terefore, it could be suggested that oral
administration of CO had no efect on serum lipid profle of
the rats except for lowering the CHOL level compared to the
C group.

Tis study revealed the increases in CYP1A2 activity and
the mRNA expression in the HFD-fed group although other
studies found opposite efects on various kinds of CYP450
[30–32]. Interestingly, the previous studies reported that
HFD activated the aryl hydrocarbon receptor (AHR), which
regulates lipid metabolism, vascular homeostasis, and
metabolic dysfunction [33, 34]. Also, the increases in
CYP1A1 and CYP1A2 expressions responded to the AHR
agonists and AHR-dependent pathway as demonstrated in
mice, rat, and human hepatocytes [17, 35, 36], although there
is the dose-response divergence between the expressions of
these two enzymes [37, 38]. Consequently, the increases in
CYP1A2 activity and mRNA expression of the HFD-fed rats
in this study might be attributed to the activation of AHR,
which was afected by HFD ingestion.

However, the previous studies found that inhibiting
CYP450 by essential oils constituents decreased formation of
toxic metabolites, as CYP450 plays a vital role in pro-
carcinogen activation [39, 40]. For instance, a study dem-
onstrated the production of reactive oxygen species (ROS)
stimulated by the overexpression of recombinant CYP1A1
and CYP1A2 in human lymphoblast-derived microsomes
[41]. Also, the commercial fsh oil decreased oxidative stress
in the study of HFD-fed mice supplemented with fsh oil
[42]. Although a previous study found that long-chain
unsaturated fatty acids, including oleic acid (approxi-
mately 40% in CO in this study), inhibit the activities of
several CYP450s, including CYP1A2 [43], the results in this
study suggested that the combination of fatty acids might
help in attenuating this efect. Moreover, ALA is an omega-3
essential fatty acid that humans and other animals inevitably
consume in their diet [44]. ALA can be converted into
bioactive eicosapentaenoic acid (EPA) and then into DHA.
Interestingly, the oil yields from this study presented ALA
(0.96%) at similar levels compared with fsh oil (1.45%)
which is considered an omega-3-rich oil [45, 46].

Table 2: Te fatty acid profle of crocodile oil obtained from
Crocodylus siamensis (data are expressed as mean± standard de-
viations of triplicate measurements).

Fatty acid % methylated content
Lauric acid 0.11± 0.036
Myristic acid 0.57± 0.060
Palmitic acid 19.92± 0.307
Stearic acid 5.42± 0.029
Arachidic acid 0.13± 0.012
Myristoleic acid 0.10± 0.006
Palmitoleic acid 3.83± 0.137
Heptadecenoic acid 0.11± 0.010
Oleic acid 41.07± 0.549
Linoleic acid 21.08± 0.180
Alpha-linolenic acid (ALA) 0.96± 0.049
Gamma-linolenic acid 0.18± 0.006
Eicosenoic acid 0.41± 0.026
Eicosadienoic acid 0.27± 0.035
Eicosatrienoic acid 0.27± 0.035
Arachidonic acid 0.82± 0.092
Docosahexaenoic acid (DHA) 0.22± 0.015
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Figure 2: CYP1A2 (a), GSTA1 (b), and GSTM1 (c) messenger RNA (mRNA) expressions in the liver tissues of rats that were fed standard
diet (C), HFD (H), and HFD with 1ml (HCO1) and 3ml (HCO3) per kg body weight of crocodile oil (n� 7/group). Quantitative reverse
transcription polymerase chain reaction analysis was used to examine those mRNA levels. Te data are presented as relative mRNA
expression. Diferent letters in the same graph show statistically signifcant diferences between groups (P< 0.05).
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Figure 1: Plots of the enzyme activities of CYP1A2 (a), CYP2E1 (b), and GST (c) in the liver tissues of rats that were fed standard diet (C),
HFD (H), and HFD with 1ml (HCO1) and 3ml (HCO3) per kg body weight of crocodile oil (n� 7/group). Diferent letters in the same
graph show statistically signifcant diferences between groups (P< 0.05).
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Furthermore, it was demonstrated that administration of
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is an
obesogenic-related ligand of the AHR, in omega-3 fatty
acids-fed mice reduced the growth rates of lung carcinoma-
derived tumors and inhibited their metastasis to lung and
liver [47, 48]. Tis could suggest that omega-3 fatty acids
could attenuate AHR activation and lead to other benefcial
health efects. Since 3ml per kg body weight of CO sig-
nifcantly normalized the activity and relative mRNA ex-
pression of CYP1A2 in the HFD-fed group to their normal
levels (Figures 1(a) and 2(a)), the mechanism of liver pro-
tection could be suggested from the inhibition of the HFD-
induced protein expression of CYP1A2 mediated by the
omega-3 fatty acids found in CO.

Surprisingly, this study found signifcant decreases in the
mRNA expressions of GSTA1 in the HCO1 and HCO3
groups compared to the H group. GSTs are multifunctional
enzymes that not only catalyze the conjugation of electro-
philic substrates to GSH but also conduct a range of other
functions, including attenuating lipid peroxidation [15].
GSTA (alpha class GST) group, particularly GSTA1 and
GSTA2, can catalyze GSH-dependent reduction of lipid
hydroperoxides generated during oxidative stress [49, 50].
Te GSTA also plays an essential cytoprotective role in
detoxifying reactive electrophiles and products of lipid
peroxidation [51, 52]. Moreover, a previous study reported
that GSTA1 overexpression occurred to attenuate hydrogen
peroxide-induced oxidative stress and protect the cells from
responding to the associated cytotoxicity by attenuating lipid
peroxidation [53]. Accordingly, it could be suggested that
the increased GSTA1 mRNA expression in the H group
might be attributed to higher lipid peroxidation occurred by
the HFD consumption. However, CO reduced the efects of
HFD, which led to the reduction of lipid peroxidation re-
lated to GSTA1 expression.

In contrast, the mRNA expressions of GSTM1 in this
study had no signifcant diference among the groups. Te
GSTM (mu class GST) functions in detoxifying electrophilic
compounds, including carcinogens, therapeutic drugs, en-
vironmental toxins, and products of oxidative stress, by
conjugating with GSH [54]. High GSTM expression is
important in preventing chemical mutagens and carcino-
gens [54]. Nevertheless, it was found in relatively low
amounts in the liver and the other organs [55, 56]. Con-
sequently, it could be suggested that HFD and COmight not
be contributed to the formation of carcinogens and other
xenobiotics, which activate the expression of GSTM1.

Furthermore, in contrast to the result, HFD-fed rats were
found to have decreased specifc activities of hepatic anti-
oxidant enzymes, including CAT, glutathione peroxidase
(GPx), glutathione reductase (GR), and GST, and decreased
GSH levels that were reversed into increased activities by
Capparis spinosa fruit extract treatment in a dose-dependent
manner [57]. Also, it was indicated that HFD induced ac-
cumulation of ROS and the downregulation of the enzyme-
related gene expressions that control the neutralization of
such oxidative stress [58, 59]. However, in this study, the H
group’s relative mRNA expression of GSTA1 was signif-
cantly higher than the HCO1 and HCO3 groups. Terefore,

this could indicate why the GST activity in the H group was
slightly higher than that in the others. However, there were
no signifcant diferences in the GST activities among the
groups.

5. Conclusions

Te enzymatic and molecular efects observed in the liver
tissue, together with the fatty acid composition of CO, may
contribute to the hepatoprotective efects presented in the
HFD-fed animals treated with the oil. Te results provided
evidence that the use of CO could mainly help in the liver
detoxifcation mechanism through decreases in CYP1A2
activities and mRNA expression even when consumed with
an obesogenic diet. Further investigation on the correlation
between CO and the inhibition of HFD-induced AHR-
dependent pathway should be performed to ensure the
liver protective efects induced by CO.
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