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Premature ovarian insufficiency (POI) is a complex disorder that can result in varying degrees of infertility. Recently, mes-
enchymal stem cell (MSC) therapy and its derivatives, such as exosomes, have been introduced as novel strategies for the treatment
of POLI. This review discusses the features, limitations, and challenges of MSC and exosome therapy in the treatment of POI and
provides readers with new insights for comparing and selecting chemical agents, optimizing doses, and other factors involved in
study design and treatment strategies. MSC therapy has been shown to improve ovarian function in some animals with POI, but it
can also have side effects such as high cost, time-consuming processes, limited lifespan and cell sources, loss of original
characteristics during in vitro proliferation, dependence on specific culture environments, potential immune reactions, unknown
therapeutic mechanisms, etc. However, exosome therapy is a newer therapy that has not been studied as extensively as MSC
therapy, but that it has shown some promise in animal studies. The evidence for the effectiveness of MSC and exosome therapy is
still limited, and more research is needed to determine whether these therapies are effective and safe for women with POI. This

study presents a new perspective for researchers to advance their research in the fields of cell-based and cell-free therapies.

1. Introduction

Premature ovarian failure (POF) is a disorder in which women
under 40 years of age experience 4-6 months of amenorrhea
with high levels of FSH (follicle-stimulating hormone) and low
levels of estradiol [1]. The global overall prevalence of POF is
3.5% among women. Furthermore, subgroup analysis shows
a prevalence of 11.2% for iatrogenic etiology and 10.5% for
autoimmunity [2]. The more precise term for this disorder is
premature ovarian insufficiency (POI). At any stage of POI,
a woman’s fertility may be impacted by a drop in the number of
early primordial follicles, an increase in follicle destruction or
a decrease in the number of apoptotic follicles, and the inability
of follicles to respond to gonadotrophin stimulation [1].
Various strategies have been employed to remedy POL

Hormone replacement therapy has been the first-line strategy,
followed by more novel treatments such as stem cell and
exosome therapy [3].

Stem cell therapy involves transplanting stem cells from
sources like bone marrow, adipose tissue, or umbilical cord
blood to promote ovarian tissue regeneration and restore
function [4]. Reports suggest MSCs inhibit granulosa cell
apoptosis and upregulate anti-Miillerian hormone and FSH
receptor expression, offering hope for POF patients and
infertile women [5]. Moreover, growth differentiation
factor-9 (GDF-9) and stem cell factor (SCF) impact follicle
development beyond the primary stage, with GDF-9 pro-
moting primordial follicle formation and growth while FSH
influences granulosa cell development via SCF in an animal
model [6]. Exosome treatment, on the other hand, is
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anoncellular therapeutic strategy that takes advantage of the
biologically potent characteristics of exosomes, which are
nanosized extracellular vesicles released by cells. Proteins,
nucleic acids, growth factors, and other bioactive substances
that can affect the ovarian microenvironment and promote
tissue regeneration are contained within exosomes’ cargo
[7]. The paracrine effects of exosomes allow for intercellular
communication and targeted delivery of bioactive cargo,
thus promoting tissue repair [8].

2. POI

POI is a heterogeneous disorder caused by genetic factors,
autoimmune diseases, mitochondrial abnormalities, iatro-
genic factors (including chemotherapy, radiotherapy, and
surgical procedures), and environmental factors [3]. While
over 50 genes are known to be related to POI, many cases still
lack a clear genetic explanation [9]. Premature ovarian in-
sufficiency can be treated using a variety of techniques.
Although estrogen is thought to be physiologically replaced
by hormone replacement treatment (HRT), ovarian function
is not recovered. In vitro activation (IVA), mitochondrial
activation, stem cell and exosome therapy, biomaterials
techniques, and intraovarian platelet-rich plasma (PRP)
injection are promising developing treatments for POI
treatment. These innovative medicines are still in the ex-
perimental stage, despite their potential. A thorough as-
sessment of their efficacy and safety is essential before they
can be taken into consideration as viable clinical solutions
[3]. In addition, identifying a marker like anti-Miillerian
hormone (AMH) could aid in diagnosing and counseling
women at risk for POI and assessing their ovarian reserve.
AMH, produced by young ovarian follicles, is strongly
correlated with their number, making it a potential di-
agnostic tool. Furthermore, AMH levels can indicate the
degree of gonadal damage in cancer survivors [10].

3. Stem Cell Therapy

Mesenchymal stem cell therapy, which is used in stem cell
therapy, has lately attracted attention for restoring ovarian
function in POI. A multipotent and diverse population of
cells known as mesenchymal stem cells (MSCs) can develop
along the mesodermal lineage (as shown in Figure 1). He-
matopoietic markers (CD45, CD34, and CD14) and cos-
timulatory molecules (CD80, CD86, and CD40) are not
expressed by these cells. Human MSCs’ expression of
CD105, CD73, CD71, CD44, CD271, and CD90 is influenced
by the tissue source and culture environment. According to
evidence, MSCs release soluble substances such as trans-
forming growth factor-1, interleukin-10 (IL-10), IL-6, and
hepatocyte growth factor (HGF) on a regular basis. By
inhibiting antigen-specific T-cell proliferation and encour-
aging the development of regulatory T cells, MSCs have an
immunomodulatory effect. Successful allogeneic transplants
have been thoroughly studied due to MSCs’ low immuno-
genicity. When administered in vivo, MSCs have the capacity
to stimulate peripheral tolerance. Furthermore, MSCs are
intriguing agents for both local and systematic distribution
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since they may move from blood arteries to the target using
their own unique surface molecules. The clinical therapeutic
effectiveness of MSCs, however, mostly rests on their ca-
pacity to change the environment of wounded tissue
through the physiological activity of stromal cells in the
hematopoietic stem cell niche through the secretion of
anti-inflammatory and antiapoptotic chemicals. Despite
the widespread use of MSCs, there is debate concerning
the unidentified long-term negative effects on immune
function and tumorigenic potential [11]. The therapeutic
benefits of MSC-based therapy are largely attributed to
the effects of paracrine factors that promote angiogenesis.
However, in aged MSCs, the secretion of these proan-
giogenic factors, including vascular endothelial growth
factor (VEGF), placental growth factor (PGF), and HGF,
is reduced. Conversely, the secretion of antiangiogenic
factors such as thrombospondin-1 (TBS1) and plas-
minogen activator inhibitor-1 (PAI-1) is increased. As
a result, aging has a detrimental impact on angiogenesis
and directly undermines the therapeutic effectiveness of
MSCs [12].

Human umbilical cord mesenchymal stem cells (UC-
MSCs), which are obtained from the umbilical cord, possess
the aforementioned features of MSCs, as well as a younger
nature, lower tumorigenicity, and fewer ethical issues [13].
Umbilical cords are a great source for easily extracting
mesenchymal stem cells. UC-MSCs express human leuko-
cyte antigen major histocompatibility complex I (MHC1) at
a low level, as well as CD29, CD73, CD105, and CD90. They
do not express MHC II molecules, CD14, CD79, CD34,
CD45, or HLA-DR, which gives these cells negligible im-
munogenic features [14, 15]. UC-MSCs possess immuno-
modulatory effects by influencing the differentiation,
proliferation, and activation of T cell subsets while inhibiting
B cell proliferation, differentiation, and other immune cell
activities. They exhibit robust proliferative abilities and can
differentiate into various cell types under suitable condi-
tions, both in vivo and in vitro. In addition, UC-MSCs
contribute to tissue repair and regeneration by secreting
growth factors such as HGF, VEGEF, stromal cell-derived
factor-1 (SDF-1), keratinocyte growth factor (KGF), fibro-
blast growth factor (FGF), and insulin-like growth factor-1
(IGF-1), which help facilitate cell proliferation and tissue
healing. UC-MSCs also play a role in mitigating in-
flammation at the site of injury, and they actively migrate to
the injured site for repair. This migration is known as the
“return” of the MSCs’ “nest function” and has been dem-
onstrated prominently in animal experiments under various
microenvironmental conditions [16].

It has been demonstrated that UC-MSCs can improve
the phosphatidylinositol-3-kinase (PI3K)/Akt signaling in
POF-induced rodents via the nerve growth factor (NGF)/
TrKA pathway. The PI3K/Akt signaling pathway regulates
the follicular growth, survival, maturation, and differen-
tiation of primordial follicles, as well as the prevention of
apoptosis. Furthermore, the nerve growth factor receptor
(TrkA) mainly activates the PI3K/Akt and mitogen-
activated protein kinase (MAPK) signaling pathways,
which are essential for the proliferation and survival of cells
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FiGgure 1: The multipotency properties of MSCs. This image illustrates differentiation and self-renewal (curved arrow). Ability of MSCs in

the bone-marrow cavity in vivo.

[15]. In a study, the intravenous injection of two doses of
1%10° UC-MSCs was able to transfer to the interstitium of
the ovaries rather than to the follicles. This process pre-
vented the apoptosis and inflammation in the granulosa
cells in a POF-rodent model [13]. As shown in Table 1,
different doses of UC-MSCs have been given to test their
efficacy in restoring ovarian function in the POF model.
UC-MSCs appear to have a large therapeutic potential.
More consideration must be given to their therapeutic
effectiveness, as well as to any potential drawbacks and
negative side effects.

Female infertility brought on by degenerative factors is
one condition for which bone marrow-derived mesenchy-
mal stem cells (BMMSCs) have been touted as potential
cures in regenerative medicine [22, 37]. Studies have shown
that folliculogenesis may be affected by bone morphogenic
proteins (BMPs), such as BMP-15 and BMP-6. These
intraovarian subfamilies secreted from the oocyte have a key
role in the development of follicles [19]. Vascular endothelial
growth factor (VEGF), basic fibroblast growth factor
(bFGF), insulin-like growth factor 1 (IGF-1), hepatocyte
growth factor (HGF), and other cytokines and growth
factors are among those secreted by BMMSCs. Angiogenesis,
mitogenesis, and antiapoptotic events all depend on these
variables. Granulosa cells (GCs) can create a new capillary
network thanks to VEGF, an angiogenic cytokine factor.
Folliculogenesis results from bFGF’s stimulation of the
promotion of primordial follicles. IGF-1 has the power to
promote GC proliferation, inhibit apoptosis, and enhance
antrum follicle development. HGF significantly affects fol-
licle maturation and inhibits GC and follicle death in the
ovary [22]. In this regard, BMMSCs have been applied for
stem cell therapy in POF models.

During a woman’s menstrual cycle, human endometrial
mesenchymal stem cells (EnSCs) are a rich, noninvasive
source of multipotent stem cells that can be used for au-
tologous transplantation. In vitro, EnSCs develop quickly
and can differentiate into a variety of cells depending on the
particular cell environment. EnSCs express OCT4, CD?9,
CD29, CD105, SSEA-4, and CD73 but do not express CD34,
CD133, HLA class I, or CD45 markers. It was demonstrated
that the allogenic transplantation of ESCs is feasible for the
dose-dependent regulation of mononuclear cell pro-
liferation. Lai et al. applied EnSCs to investigate their
therapeutic effect on ovary preservation in POI models. It
was shown that EnSCs could recover the ovarian follicles
after chemotherapy in animals [23].

Another potential treatment option for female re-
productive issues caused by POI is MSCs generated from
human embryonic stem cells (hRESC-MSCs). In rats whose
ovaries had been damaged by chemotherapy, it was shown
that this kind of MSC may stop ovarian apoptosis and
encourage ovulation. HESC-MSCs have been made available
as an easy-to-expand cell type with a consistent population
[19, 23, 38]. Nevertheless, despite all the research and
benefits of hRESC-MSC:s, it is understandable to be concerned
about their drawbacks and moral dilemmas. According to
studies, hESC-MSCs have the capacity to develop germ-layer
malignancies. The defective transplantation of stem cells
derived from embryonic lines may lead to incomplete dif-
ferentiation. Furthermore, genetic anomalies have been
reported in hESC lines in long-term culture [38].

Fetal MSCs can be derived from the liver in early gestation
and have long lifespans with appropriate immunomodulatory
features. It was reported that FMSCs could restore ovarian
function in POI-induced mice, as well as promote human
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granulosa cell proliferation through the melatonin membrane
receptor 1 (MT1). The evidence suggests that the interaction of
melatonin with its receptors (MT1 and MT2) leads to a re-
duction in the level of reactive oxygen species and the pre-
vention of apoptosis, so that the MT1 and MT2 blockages
affect the follicular atresia and porcine GCs and consequently
the reproduction mediation. On the other hand, the anti-
oxidant properties of melatonin and the MT1 receptor on
cytoprotective activity have been reported in cisplatin-
induced ovary injury [28].

The therapeutic effect of adipose-derived stem cells
(ADSCs) on ovary failure due to cyclophosphamide (CTX)
has been investigated. The results showed the effectiveness of
these types of multipotent stem cells on ovulation and
folliculogenesis [29, 30]. According to Cil et al., ADSCs have
a specific impact on the phosphorylated-mTOR (p-mTOR)
and mammalian target of rapamycin (mTOR), which are
crucial for oocyte meiosis [30].

Furthermore, the chorionic plate-derived MSCs (CP-
MSCs), the multipotent self-renewal adult stem cell, have
been applied for the recovery of ovarian function through
stimulating ovulation and folliculogenesis in POI models.
These cells can be easily extracted from the chorionic plate of
the human placenta, which is considered medical waste [31].
However, the therapeutic effect of autologous MSCs in
women with POF disorder suggests a novel strategy that
could decline the symptoms of menopause as well as es-
trogen enhancement. Despite the promising therapy, this
study was limited to a few numbers of cases and requires
long-term monitoring [39].

In recent years, clinical trials have been conducted on
MSCs for various conditions, including autoimmune [40],
neurodegenerative, cardiovascular, and bone and cartilage
diseases. However, the number of approved MSC treatments
worldwide remains limited. Interestingly, Asian countries
have approved a higher number of MSC treatments com-
pared to other countries [41].

Opverall, when transplanted, MSCs possess the ability to
migrate towards injured ovaries, promoting the restoration of
secretory function, facilitating follicle formation, and pro-
moting tissue reconstruction in POI models. Similar to white
blood cells, MSCs express different receptors and cell adhesion
molecules that assist in their migration towards the targeted
organs, specifically injured ovaries. Crucially, specific che-
mokines bind to MSC receptors, guiding their movement
towards the desired tissues. This migratory characteristic
makes MSCs an excellent choice for regenerative therapies in
POI Once they migrate to the injured ovary, MSCs play
a significant role in regulating ovarian cell proliferation, ap-
optosis, immune response, and oxidative stress through their
paracrine effects. This highlights the critical importance of
MSC migration as a key mechanism for enhancing the ef-
fectiveness of therapeutic interventions.

Table 1 provides a comprehensive overview of the mo-
lecular mechanisms underlying the effectiveness of MSC
therapy for POIL. Multiple studies emphasize the positive ef-
fects of various MSC types on ovarian function. Notably,
MSCs have been found to reduce the secretion of in-
flammatory cytokines and FSH, which are often elevated in

POI. Conversely, MSCs promote an increase in estrogen
levels, anti-Miillerian hormone, and demonstrate improve-
ments in the PI3k/AKT pathway, enhancing angiogenesis
within the ovary. Moreover, MSCs extend their impact be-
yond hormone regulation. They play a critical role in inducing
and supporting follicular growth, preventing follicular atresia,
and inhibiting apoptosis. Together, these orchestrated bi-
ological effects hold immense potential for rejuvenating and
restoring ovarian function in individuals with POL

3.1. Stem Cell Therapy Limitations and Prospects. The ther-
apeutic use of MSCs has faced a number of difficulties while
receiving a lot of attention for the treatment of numerous
illnesses, including those affecting the female reproductive
system. The authors have identified some of these issues, as
shown in Table 1. Controlling the quality of MSCs is difficult.
While some groups’ extraction procedures are time-
consuming, intrusive, and expensive, others may lose their
original characteristics while proliferating in vitro. Other
challenges include a short lifespan and cell sources, unidentified
therapeutic methods, the tumorigenicity of stem cell therapy,
unclear dosing frequency, and particular growth conditions.
Especially in the case of a disease state, it is urgent to have an
appropriate and precise estimation for a sufficient number of
cells in the transplantation process, which may be affected by
apoptosis, inflammation, and any special condition of the POI
disorder. Over the years, various amounts of stem cells have
been administered for POI treatment, and the exact amount
has not been determined. However, it seems essential to define
the stage of POI first based on the chemotherapy agents and
their doses, taking into account any probable adverse effects in
the long term. Then, try to use standard concentrations,
protocols, and materials for administration. Furthermore,
evidence has shown that the physiochemical and mechanical
features of the surrounding microenvironment of primordial
germ line cells have a significant effect on their fate, growth,
maturation, and differentiation. In fact, a three-dimensional
structure and biomechanical properties are provided by the
natural extracellular matrix (ECM), which has a great role in
signaling phenomena, cell-to-cell communication, and con-
sequently tissue development [42, 43]. In this line, alginate-
ECM gels have been used to illustrate the role of ECM and its
components in regulating the development of follicles [43].
In addition, scaffold-based stem cell transport has been
developed to circumvent the main drawbacks of stem cell
therapy. The extremely low cell survival rate in cell treatment is
seen as a serious issue. The survival, adhesion, proliferation, and
differentiation of stem cells must therefore be enhanced by
providing a milieu that is similar to the cell niche. Collagen and
alginate are examples of natural-based scaffolds that have re-
cently been developed and demonstrated to have the ability to
awaken POI follicles that are in a dormant state [33, 35, 36, 44].

4. Exosome Therapy

Exosomes, which are the nanosized extracellular vesicles
produced within eukaryotic cell endosomes, have gained
significant attention in the fields of life sciences research and
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biotechnology [45]. They play a significant role in cell-to-cell
communication, signaling, and consequently physiological
cellular action and development [46]. Exosomes are gen-
erated through the fusion of exosome-containing endo-
somes with the plasma membrane, whereas the secretion of
microvesicles and apoptotic bodies occurs through direct
budding from the plasma membrane. The biogenesis of
exosomes starts with inward budding of the plasma mem-
brane, forming early endosomes, and progresses to the
maturation of multivesicular bodies (MVBs), wherein
intraluminal vesicles (ILVs) are formed by inward budding
of the endosomal membrane. These ILVs contain lipids,
proteins, and nucleic acids derived from their parent cells
[45]. The heterogeneous vesicles are categorized into exo-
somes, apoptotic bodies, and microvesicles based on their
size and biogenesis [46]. When processing and separating
exosomes, it is crucial to take into account variables in-
cluding the makeup of the initial sample, the chosen method
of separation, and how these variables affect the quality and
traits of the finished products. Ultracentrifugation, ultra-
filtration, precipitation, immunoaffinity capture, and size-
exclusion chromatography are the five methods that are
frequently employed for exosome processing. These tech-
niques all generate exosomes, however, to varied degrees of
purity and number. Combining isolation methods is a typ-
ical strategy to increase exosome yield and purity [45].
Exosomes are secreted in physiological and pathological
states and are present in follicular fluid (FF). It has been
reported that hormonal response, oocyte differentiation,
follicular growth, and the meiosis onset pathways have been
regulated by the involvement of FF exosomes [46]. Fur-
thermore, the evidence has demonstrated that exosomes
carry a variety of microRNAs (miRNAs), some of which,
such as miR-100, miR-132, miR-212, and miR-214, directly
regulate the meiosis and maturation of follicles [47].

MiRNAs are small noncoding regulatory RNAs that
function in posttranscriptional gene regulation with the ability
to regulate cellular processes broadly [48]. Recent studies have
shown that MSC-derived exosomes can promote tissue repair
and regeneration, making them an attractive candidate for the
treatment of POI (Table 2). Studies have shown that the
therapeutic effects of MSCs may be due to their paracrine
factors, which include exosomes. These bilayered structures
appear to have the capacity to overcome some limitations of
MSCs, such as vascular blockage due to the large size of cells or
finite lifespan and sources. However, it has been noted that
a newly introduced method may overcome the challenge of
low extracted numbers of exosomes. Cha et al. reported that
their 3D-bioprocessing method has the potential to produce
efficiently scalable EVs from human MSCs for clinical and/or
commercial applications [63].

In addition, research on FF EVs has shown that distinct
miRNA types depend on the size and type of follicles. The
types of miRNAs shift from those associated with cell
proliferation pathways to those associated with in-
flammatory response pathways when follicles develop and
differentiate into bigger antral ones [64]. Small extracellular
vesicles derived from embryonic stem cells have the po-
tential to promote the recovery of ovaries in POF mice

Veterinary Medicine International

models by improving folliculogenesis and the proliferation
of GCs through the PI3K/AKT signaling pathway [49].
MiRNA-21, one of the many miRNAs, has been shown to
play a significant role in ovarian folliculogenesis by con-
trolling and interacting with a variety of target genes.
Consequently, autoimmune POIs have low levels of miRNA-
21 expression. MiR-21 has demonstrated a positive link with
AMH, E2, uterine size, and ovarian volume in a POI mice
model and a negative correlation with FSH and LH [65].
Thabet et al. studied amniotic fluid mesenchymal stem cells
(AFMSCs) to determine the exosomal miRNA. They found
that AFMSCs-derived vesicles are a great source of miRNA-
21, which prevents apoptosis, induces follicle regeneration,
and recovers ovary function in infertile rats through the
phosphatase and tensin homolog (PTEN) and PI3K/PTEN
pathways [48]. Furthermore, AFMSCs-derived exosomes
contain miRNA-146a and significantly miRNA-10a, which
have antiapoptotic effects and inhibit ovarian follicles from
atresia in CPA-induced animal models [50]. Figure 2(a)
shows the schematic diagram of the proposed mechanism of
AFMSCs-derived miRNA-146a on damaged GCs. The
exosomal miRNA-369-3p from AFMSCs has similar be-
havior in POF models through a specific pathway (Figure 3)
[52]. Another study showed that human amniotic epithelial
cell-derived exosomes include a variety of miRNAs, such as
miRNA-1246. HAEC-exosomes have been administered to
investigate their effect on ovarian follicles against apoptosis
and have shown significant efficacy on folliculogenesis [66].
It has been reported that there is an interaction between
miRNA-17-5P and sirtuin-7 (SIRT7), which can be extracted
from HUCMSCs in the ovary. SIRT7 regulates the response
of cells to metabolic, oxidative, and genotoxic stresses. In
a POI model, the administration of miRNA-17-5P could
restore ovarian function, trigger GC proliferation, reduce
ROS accumulation, and inhibit SIRT7 expression [53].

HUCMSCs exosomal miRNA-100-5p has acted through
the NOX4/NLRP3 signaling pathway to prevent apoptotic
phenomena in a POF model [67]. HUCMSCs exosomal
miRNA-29a (Figure 2(b)) [54] and HUCMSCs-derived
exosomes [56, 68] have promoted ovarian function, im-
proved angiogenesis, developed folliculogenesis, and re-
stored the estrous cycle through the Wnt/f-catenin, Hippo,
and PI3K/AKT signaling pathways in POI-induced rodents,
respectively. In addition, exosomal miRNA-29a derived
from HUCMSCs promotes GC growth and angiogenesis in
cisplatin-induced rats [55].

HUCMSCs exosomal miRNA-126-3p prevents GC ap-
optosis through the PIK3R2/PI3K/AKT/mTOR axis in vitro
[55]. Exosomes derived from HADSCs have the potential to
target the SMAD/TGEf signaling pathway, leading to the
proliferation of oocytes and GCs, promoting hormonal
secretion and follicle differentiation [58]. The secretome of
human bone marrow MSCs has also been investigated for
POF treatment. The findings show that this secretome
contains exosomal miR-144-5p [59] and miR-644-5p [60],
which target PTEN and p53 to prevent GC apoptosis, re-
spectively. Furthermore, the human BMMSC secretome
significantly affects GCs, thus improving the secretion of GC
hormones and stimulating growth and proliferation [69].
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FIGURE 2: The suggested mechanisms of MSCs-derived exosomes in the recovery of ovarian function in POF model. (a) The mechanism of
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Figure 3: CD44"/CD105"HAFMSCs-exosomes carrying miR-369-3p have the capacity to specifically downregulate the expression of YAF2,
prevent the stability of PDCD5/p53, and decrease the apoptosis of GCs, leading to the restorative effect on POF.

Menstrual blood-derived stromal cells (MenSCs),
according to studies, can help with fertility restoration. In
this regard, a rat model was used to study the therapeutic
effects of exosomes produced from MenSCs. MenSCs-
exosomes could enhance ovarian function, restore the
ovary cortex, and encourage GC proliferation, according to
in vivo research [61].

However, there still exists a lack of clarity concerning the
complete substitution of MSCs by exosomes in the treatment
of POL. Establishing the reliable implementation of cell-free
therapy utilizing exosomes for POI patients necessitates
investigating potential disparities in outcomes and effec-
tiveness between MSC and MSC-derived exosome treat-
ments. In a conducted study, samples of tissue and serum
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TaBLE 3: Overall comparison description of the stem cell- versus exosome therapy in POL

Effects, limitations &

Type of treatment
Mesenchymal

challenges stem cell (MSC) MSCs-derived exosome Ref
Antiapoptotic and anti-inflammatory effects * * [28, 33, 52]
Recovery of the secretion of the disturbed hormones * * [14, 15, 33]
Recovery of folliculogenesis * * [14, 15, 66]
Follicle maturation * [19, 22]
Decreasing oxidative damage, increasing oxidative protection * * [28, 53]
Requiring to prolong the cell survival rate in vivo * [33]
Promoting the ovarian angiogenesis * * (12, 35, 55]
Requiring the adequate cell sourcing * [42, 43]
Safety concern * * [3, 15, 55]
Follow up the long-term effect of transplanted cells/cargo * * [55, 70]
Requiring to standard isolation and characterization methods * [45]
Requiring to standard the administration method * * [14, 71]
Unknown administration frequency * * [13, 71]
Undetermined fate * * (13, 14, 42, 43]
Undetermined pharmacokinetics in vivo * * [13]
Tumorigenic potential * ? [11, 13-15]
Requiring to understand the exact mechanism * * [17, 18, 44, 56, 61]
The effective dose requires further study for clinical trials * * [32, 38, 40]
Increasing the yield * (52]
Needing to increase the production efficiency * [52]

The asterisk (*) indicates confirmation for each statement, while the question mark (?) indicates that there is no definitive answer.

were acquired subsequent to MSC/exosome therapy to
evaluate molecular changes resulting from the treatment.
Furthermore, parallel breeding experiments were conducted
to compare the restoration of fertility. Both the MSC-treated
and exosome-treated groups exhibited reestablished estrous
cycles and serum hormone levels compared to untreated
mice with POI. Following treatment, the pregnancy rate in
the MSC-treated group ranged from 60 to 100%, while the
exosome-treated group demonstrated a pregnancy rate of 30
to 50%. Interestingly, regarding long-term effects, the MSC-
treated mice consistently maintained a pregnancy rate of 60
to 80% during a second breeding cycle, whereas the
exosome-treated group experienced a recurrence of in-
fertility during the second breeding round [70].

In summary, studies have demonstrated the obvious
benefits of exosome therapeutics in regenerative medicine
and for the treatment of premature ovarian insufficiency.
However, preclinical trials demonstrating the efficacy and
safety of exosome therapy for POI are lacking.

4.1. Exosome Therapy Limitations and Prospects. Although
cell-free techniques like exosome therapy are receiving more
attention, there are still significant obstacles to their usage in
POI treatment. Exosomes are excellent suppliers of a variety of
miRNAs and other compounds that might modify cellular
function, as was previously described. It will need additional
research to ascertain the precise mechanism of each miRNA as
well as any potential connections between exosomes and other
signaling pathways. Determining the precise processes, how
they work together, and most crucially, how they relate to the
molecules involved in inflammation, regulation, and immu-
nomodulation is also crucial. As discussed regarding the
challenges of stem cell therapy in POI treatment, there is

a significant gap in the design of models, applied materials and
drugs, and treatment strategies, as well as exosome therapy.
The other main challenges are the lack of standard protocols
for the isolation, purification, and characterization of MSC-
derived exosomes, which can lead to variability in the quality
and potency of exosomes used for therapy. Exosome-based
therapies’ safety must also be carefully considered because
there is a chance of immune rejection and unintended side
effects. In addition, there is no agreement on the adminis-
tration strategy. Exosomes that are administered conven-
tionally have been demonstrated to quickly leave the
bloodstream; 2 hours after injection, they were found in the
liver, spleen, lung, and gastrointestinal systems. For the op-
timum performance of local delivery of exosomes, Riau et al.
suggested sustained distribution of exosomes using bio-
degradable materials like hydrogel [71]. Finally, there is no
research that determines any probable long-term and sys-
tematic administration effects of miRNAs on reproductive
diseases. Thus, it is essential to consider the effect of these
vesicles on other organs due to their nanosize (Table 3).

5. Conclusion

In conclusion, mesenchymal stem cells and MSC-derived
exosomes hold great promise as potential therapeutic op-
tions for the treatment of premature ovarian insufficiency. In
combination with the wide variety of miRNAs and other
chemicals found in exosomes, MSCs have the unusual ca-
pacity to specialize into a variety of cell types, which makes
them excellent candidates for regaining ovarian function. To
effectively utilize their therapeutic potential, a number of
issues and restrictions must be resolved. The absence of
established techniques for the isolation, growth, safety, and
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characterization of MSCs and exosomes is one of the major
difficulties. The viability, efficacy, and reproducibility of the
treatments may be impacted by this variation in method-
ology. Controlling MSC quality is also important because
in vitro proliferation and extraction methods can change
their original characteristics. In order to guarantee enough
cell counts for transplantation, specified parameters and
administration concentrations must be established while
taking into account variables like the stage of POI and
potential long-term negative consequences. Furthermore,
the fate, development, and differentiation of primordial
germ line cells are significantly influenced by the physi-
ochemical and mechanical characteristics of the milieu
around them. Collagen and alginate are examples of natural-
based scaffolds that have shown potential for improving the
viability and stimulation of dormant follicles in POL
Scaffold-based delivery systems offer a milieu that resembles
the cell niche, enhancing stem cells’ adhesion, proliferation,
and differentiation. Exosome therapy has drawn interest as
a cell-free approach; however, there are still issues to be
solved. Exosomal miRNAs’ precise mechanisms of action
and interactions with other signaling pathways must be
clarified through further study, which is now underway. This
information will be useful in developing more potent
therapy strategies for POI. Taking everything into account, it
is clear that while MSCs and exosomes produced from MSCs
have a great deal of potential to treat POIL, further study is
required to overcome current obstacles and improve the
delivery, characterization, and administration protocols.
Taking on these issues will open the door for the creation of
efficient, standardized, and secure therapy approaches for
women with POL
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