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Knowledge of deployed transmitters’ (Tx) locations in a wireless network improves many aspects of network management.
Operators and building administrators are interested in locating unknown Txs for optimizing new Tx placement, detecting and
removing unauthorized Txs, selecting the nearest Tx to offload traffic onto it, and constructing radio maps for indoor and outdoor
navigation. This survey provides a comprehensive review of existing algorithms that estimate the location of a wireless Tx given a
set of observations with the received signal strength indication. Algorithms that require the observations to be location-tagged are
suitable for outdoor mapping or small-scale indoor mapping, while algorithms that allow most observations to be unlocated trade
off some accuracy to enable large-scale crowdsourcing.This article presents empirical evaluation of the algorithms using numerical
simulations and real-world Bluetooth Low Energy data.

1. Introduction

Locating the wireless transmitters (Tx) in the network pro-
vides mobile network operators with important and relevant
information for a wide range of purposes, including find-
ing rogue and nonfunctional access points (AP), planning
and operating the communication networks, and estimating
the radio frequency propagation properties of an area. Tx
location determination is also used when constructing radio
maps for localization services.

Every operator aims at providing good coverage so
that subscribers in most locations can access the network.
Competition between operators in providing the subscribers
with continuous and uninterrupted data usage prompt them
to find unknown Txs that mainly belong to their competitors.
Based on the knowledge of the deployed Tx locations, oper-
ators decide optimal places for installing new infrastructure
within the area or steering the beam directions. An unknown
Tx can be a WLAN (wireless local area network) AP with
unlicensed spectrum or a femtocell AP whose spectrum is
licensed to the operator. These Txs may be managed by
individuals or groups or the operator itself.

The operators offload users from their 3G or 4G cells
to adjacent small cells or indoor femtocells when the traffic
becomes heavy [1]. Knowing Txs’ locations and coverage
areas helps the operators to identify which cells are nearby.

Locating unknown Txs helps the administrators secure
the network when security loopholes are detected or when
there are intruders that breach the area managed by the
administrators [2]. Also when administrators update their
network infrastructure within an authorized area, a map of
existing Tx locations helps to determine optimal locations for
new Txs.

Moreover, knowledge of Tx locations assists navigation
in environments where GNSS (Global Navigation Satellite
System) navigation is not feasible such as indoors. Indoor
navigation requires detailed knowledge of the network topol-
ogy of the building, and unmanaged Txs can also be used
provided that their locations are estimated. In many indoor
localization studies [3–5], it is assumed that Tx locations are
known a priori. This assumption is usually only valid for Txs
that belong to the owner of the infrastructure.

This survey provides the reader with a comprehensive
review on methods for locating wireless Txs using a set of
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Figure 1: An outdoor cellular base station (a) and an indoor BLE Tx
(b) with RSS measurement sets. Red color indicates a strong RSS.

measurements of the received signal strength (RSS). Most of
the presented methods can be applied to different types of
wireless networks, such as WLAN, Bluetooth Low Energy
(BLE), and cellular networks. Figure 1 shows examples of
an outdoor cellular base station and an indoor BLE Tx and
RSS measurement sets collected in the respective areas. RSS
information is available in reception reports of most wireless
networks’ receivers (Rx) without any special hardware or
software modifications [6].

This article categorizes themethods based on two criteria:
measurement type and reference location requirement. The
measurement type can be the actual RSS from a Tx or just
the connectivity, that is, whether the Tx can be sensed or not.
Some of the reviewedmethods rely on locatedmeasurements;
that is, they assume that every observation includes accurate
information about the location of the measurement. Some
methods assume that most of the observations are unlocated,
lacking the location information. The former are more accu-
rate but are costly to implement, while the latter are especially
suitable for crowdsourcing. We evaluate methods that use
located measurements through numerical simulations and
real-world BLE data.

The structure of this article is as follows: firstly, the
methods are presented in detail, connectivity-only methods
first in Section 2, then RSS based methods that use mea-
surements with known locations in Section 3, and finally
RSS based methods that do not require all measurements to
be located in Section 4. Secondly, experimental results are
presented in Section 5, along with a table that summarizes the
basic practical properties of each method. Finally, Section 6
presents the conclusions.

2. Connectivity Based Methods with
Located Observations

Connectivity based Tx localization algorithms assume that
the closer one is to the Tx, the higher is the probability
of observing the Tx when listening with a Rx device. The
observations consist of tuples (p𝑖, ID𝑖), where p𝑖 is the
reference position of the 𝑖thmeasurement and ID𝑖 is the set of
Tx identifiers observed at the 𝑖th measurement. Connectivity
actually means that the RSS exceeds the receiver’s sensitivity
threshold [7]. Thus, connectivity based methods in fact rely
on a very coarsely quantized RSS.

The simplest connectivity basedTx localization algorithm
is the (unweighted) centroid algorithm that was proposed for
the localization of awireless sensor network’s nodes byBulusu
et al. [8]. The centroid algorithm has also been proposed and
tested at least in [9–13].The estimate of the location of the 𝑗th
Tx is the mean of the measurement locations

m̂𝑗 = 1
# {𝑖; 𝑗 ∈ ID𝑖} 𝑁∑𝑖=1 ⟦𝑗 ∈ ID𝑖⟧ ⋅ p𝑖, (1)

where #𝐴 is the number of elements in set 𝐴, 𝑎 ∈ 𝐴 means
that 𝑎 is an element of the set 𝐴, 𝑁 is the total number of
measurements, and ⟦ ⋅ ⟧ is the indicator function

⟦𝑥⟧ = {{{0, statement 𝑥 is false1, statement 𝑥 is true. (2)

The centroid location is the solution of the optimization
problem

argmin
m

𝑁∑
𝑖=1

⟦𝑗 ∈ ID𝑖⟧ ⋅ p𝑖 −m2 , (3)

because (3) can be expressed as the weighted least squares
problem

argmin
m
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√𝑤1𝐼 0√𝑤2𝐼

d

0 √𝑤𝑁𝐼
]]]]]]](
[[[[[[[
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p2...
p𝑁

]]]]]]] −
[[[[[[[
𝐼𝐼...𝐼
]]]]]]]m)


2

, (4)

where 𝑤𝑖 = ⟦𝑗 ∈ ID𝑖⟧ and 𝐼 is the identity matrix, and
(1) follows from (4) by the weighted linear least squares
formula. Typically only the measurements where the 𝑗th Tx
has been observed are used in the estimation of m𝑗; that is,
the information of not observing the 𝑗th Tx in ameasurement
is omitted. In this sense, the centroid also has a probabilistic
interpretation as the maximum likelihood solution to the
measurement model

P (𝑗 ∈ ID𝑖 | p𝑖,m𝑗) ∝ 𝑒−(1/2)(p𝑖−m𝑗)T𝑆−1(p𝑖−m𝑗), (5)
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Figure 2: Robust centroid (] = 4) can outperform the conventional
centroid algorithm when there are outlier measurements.

where the positive-definite matrix 𝑆 is a constant that does
not affect the solution and P denotes probability. Koski et al.
[12] also estimate the coverage area parametermatrix 𝑆 for the
purpose of online mobile Rx positioning.

The algorithm of Piché [14] can be considered a robus-
tified version of the centroid algorithm. This work considers
the assumption that there are outlier measurements with, for
example, erroneous reference position in the observation set
by relying on the Student’s 𝑡-distribution that gives a higher
probability for occasionally receiving the signal far from the
Tx:

P (𝑗 ∈ ID𝑖 | p𝑖,m𝑗)∝ (1 + 1
]
(p𝑖 −m𝑗)T 𝑆−1 (p𝑖 −m𝑗))−(]+2)/2 , (6)

where 𝑆 is a constant that does not affect the solution and ] ∈
R+ is a model parameter degrees of freedom, and the closer ]
is to zero, the more robust the algorithm is. Based on the Stu-
dent’s 𝑡 model [14], use an EM (expectation–maximization)
algorithm to solve the maximum a posteriori values of the
centroid and the coverage area matrix. Figure 2 shows a
localization scenario where four out of the 50 measurements
are outliers. In this scenario the robust centroid’s Tx location
estimates are significantly closer to the true location than
the conventional centroid algorithm’s. Notice that both [12,
14] mainly concentrate on online positioning and do not
explicitly assume that the Tx is actually located at m̂𝑗; the
estimate rather models the center point of Tx’s coverage area.

The connectivity based methods are based on two
assumptions: Tx’s antenna is omnidirectional and measure-
ments are collected uniformly in the whole reception area
[8, 10, 19]. As Bulusu et al. [8] point out, the performance of
the centroid algorithm is highly dependent on the data. Some
studies report [10, 19] that the Tx position estimate will be
biased towards areas with the highest measurement densities.
A possible solution to this problem is to model the thorough-
ness of the data collection in each location, which would also
introduce information on where the Tx is not hearable; this
information has been used for mobile Rx localization [7].
Another approach is gridding, clustering the observations
in a regular grid so that each grid point represents all the
measurements in its vicinity, which can partly mitigate the

problem of uneven measurement distribution. Algorithms
for detecting insufficient data collection and automatically
proposing new measurement locations have been proposed
[25].

The centroid method is straightforward to understand
and implement.The basic centroid algorithm is computation-
ally light and the robustified version is still computationally
feasible for most purposes even though it is a constant factor
heavier than the basic centroid. Furthermore, the centroid
algorithms have a small number of tunable configuration
parameters, which might be advantageous if there is little
prior information on the Tx locations and signal propagation
models, and there is no risk of overconfident RSS models.

One important property of a method is whether the Tx
position estimate can be updated when new observations
appear without needing to access all the old observations. For
all the presented connectivity based methods, updateability
can be achieved with a very low cost; only the point estimate
and the number of samples used need to be stored in the
database.

3. RSS Based Methods with
Located Observations

This section reviews methods that estimate the Tx location
using observations that consist of tuples (p𝑖, ID𝑖, r𝑖), where p𝑖
is the reference location, ID𝑖 is the list of Tx identifiers, and r𝑖
is the vector of corresponding RSSs.

TheRSS is negatively correlatedwith the distance between
the Tx and Rx. Attenuation of the signal strength (path loss,
PL) is due to both free space propagation loss governed by
the Friis equation and losses generated by various obstruc-
tions in the environment [26, Ch. 4]. Accurate modeling of
these obstructions is in most practical cases infeasible, so
simplifying probabilistic models are commonly used. The
conventional probabilistic model in both outdoor and indoor
environments is the log-normal shadowingmodel [26, Ch. 4]𝑟 (𝑑) = 𝑟(0) − 10𝑛 log10 ( 𝑑𝑑(0)) + 𝑥𝜎, (7)

where 𝑟(𝑑) is the RSS in dBm (dB referenced to milliwatt) at
distance 𝑑 from the Tx, 𝑑(0) is a reference distance, typically
1m, 𝑟(0) fl 𝑟(𝑑(0)) is the RSS at the reference distance,𝑛 is the PL exponent parameter, and 𝑥𝜎 ∼ 𝑁(0, 𝜎2) is a
normally distributed shadowing term with variance 𝜎2. The
environment dependent PL parameters 𝑛 and 𝜎2 are usually
estimated for a certain environment or for a certain Tx based
on data, while the transmission power dependent parameter𝑟(0) can be assumed to be known based on the Tx properties
[26, Ch. 4]. A typical assumption is that the shadowing term𝑥𝜎 is a statistically independent random variable for each
measurement, while another possible approach is to assume
spatially correlated shadowing; see, for example, theGaussian
process based algorithm [27]. For localization purposes, it is
usually adequate to use distances in 2-dimensional Cartesian
coordinates; in the localization of cellular base station tower,
for example, Tx’s altitude affects the distance in the proximity



4 Wireless Communications and Mobile Computing

of the Tx, but as most data typically comes from farther
distances, this effect can be neglected [16].

The signal shadowing consists of the so called small-scale
and large-scale shadowing components, and typically the PL
models model average of the both statistically, as accurate
analysis of the multipath propagation patterns that cause
the small-scale fading is not feasible in large systems. See
further discussion in [28, Ch. 7.2]. Currently most wireless
communication networks transmit continuous waveforms,
and optimization for impulse signals is out of the scope of
this article. It should be noted that in case of most WLANs,
for example, the mapping from the reported RSS indicator
to the actual RSS in dBm is unknown. This problem can be
circumvented, for example, by using RSS ratios [29] or RSS
histogram [30]. The Rx can have one or multiple antennas,
and in the latter case the Rx device can either report all the
measurements separately or combine them into a single RSS
measurement.

3.1. Closed Form Solutions. A commonly proposed closed
form solution for Tx’s position using RSS measurements is
the weighted centroid algorithm that was proposed for the
localization of the wireless sensor nodes by Blumenthal et
al. [31]. It has been proposed for WLAN Tx localization, for
example, by [9, 11]. In the weighted centroid approach, the
estimate of the 𝑗th Tx’s location is

m̂𝑗 = 1∑𝑁𝑖=1 𝑤(𝑟𝑖𝑗) 𝑁∑𝑖=1𝑤(𝑟𝑖𝑗) ⋅ p𝑖, (8)

where 𝑤 is a weighting function that depends on the RSS
and 𝑟𝑖𝑗 is the RSS of the signal transmitted by the 𝑗th Tx and
received at the location p𝑖. Usually the weights are chosen so
that the stronger the RSS, the greater the weight.The standard
weighting methods are the distance based weighting [31]𝑤(𝑟𝑖𝑗) = ⟦𝑗 ∈ ID𝑖⟧ ⋅ 10𝜆𝑟𝑖𝑗 (9)

and the RSS based weighting [11]𝑤(𝑟𝑖𝑗) = ⟦𝑗 ∈ ID𝑖⟧ ⋅ (𝑟𝑖𝑗 − 𝑟min)𝜆 . (10)

In both the weighting methods, 𝜆 ∈ R+ is a free parameter
and 𝑟min is the signal detection threshold, that is, the lowest
possible RSS. These weighting methods are compared for
wireless node localization in [11] where it is found that the
two methods have equal average performance. The weighted
centroid location is the solution of the optimization problem

argmin
m𝑗

𝑁∑
𝑖=1

𝑤(𝑟𝑖𝑗) p𝑖 −m𝑗2 , (11)

because (11) can be expressed as the weighted least squares
problem (4) by setting 𝑤𝑖 = 𝑤(𝑟𝑖𝑗), and (8) follows from
(4) by the linear least squares formula. A corresponding
probabilistic interpretation is that the weighting function
value in the measurements where the 𝑗th Tx is observed
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Figure 3: When the Tx is not located in the middle of its coverage
area, RSS based algorithms such as the distance-weighted centroid
can outperform the unweighted centroid.

follows the exponential distribution whose scale parameter
is inversely proportional to the squared Tx–Rx distance. By
the change of variables formula for PDFs (probability density
functions) this gives𝑝 (𝑟𝑖𝑗 | 𝑗 ∈ ID𝑖, p𝑖,m𝑗)= p𝑖 −m𝑗2𝑠2 d𝑤

d𝑟𝑖𝑗 𝑒−(‖p𝑖−m𝑗‖2/𝑠2)𝑤(𝑟𝑖𝑗), (12)

where 𝑠 ∈ R+ is a constant that does not affect the
solution. To obtain the objective function of (11) for the
maximum likelihood solution, the Rx–Tx distance ‖p𝑖 −m𝑗‖
is only to appear in the exponent, so it is removed from
the normalization constant by modeling the probability of
the RSS exceeding the signal detection threshold 𝑟min to be
inversely proportional to the squared Rx–Tx distance

P (𝑗 ∈ ID𝑖 | p𝑖,m𝑗) ∝ p𝑖 −m𝑗−2 (13)

for distances exceeding a limit.
The comments regarding the unweighted centroid are

applicable to the weighted version as well, althoughmodeling
of the RSS somewhat reduces the sensitivity to uneven data
density. Figure 3 shows a simulated example where Tx’s actual
location is not in themiddle of its coverage area. In such a case
theweighted centroid algorithmoutperforms the unweighted
centroid due to the RSS measurement information.

Another RSS based closed form solution is proposed
by Koo and Cha [15]. Earlier similar formulas have been
proposed for wireless sensor networks in [32]. The same
formulas are used in [33] for distance measurement based
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wireless transmitter positioning without the estimation of
the signal propagation parameter. Instead of the log-normal
shadowing model (7) [15], use a different PL model𝑝 (𝑟𝑖𝑗 | p𝑖,m𝑗, 𝑎𝑗, 𝑏𝑗)= 𝑁(𝑟𝑖𝑗; 𝑎𝑗 − 𝑏𝑗 p𝑖 −m𝑗2 , 𝑏2𝑗 𝜎2) , (14)

where 𝑁(x;𝜇, Σ) is the PDF of the (possibly multivariate)
normal distribution with mean 𝜇 and covariance matrix Σ
evaluated at x, and 𝑎𝑗 and 𝑏𝑗 are the parameters of this non-
logarithmic PL model that are not directly related to the PL
parameters 𝑟(0) and 𝑛 in (7). (The notation is simplified from
[15].)Thus, the distribution of two conditionally independent
RSSs’ difference is𝑝 (𝑟𝑘𝑗 − 𝑟𝑖𝑗 | p𝑘, p𝑖,m𝑗, 𝑎𝑗, 𝑏𝑗)= 𝑁(𝑟𝑘𝑗 − 𝑟𝑖𝑗; 𝑏𝑗 (p𝑖 −m𝑗2 − p𝑘 −m𝑗2) , 2𝑏2𝑗 𝜎2)
= 1𝑏𝑗𝑁(𝑦𝑘𝑖; 𝐻𝑗𝑘𝑖 [[[

m𝑗1𝑏𝑗 ]]] , 2𝜎2),
(15)

where 𝑦𝑘𝑖 = p𝑖2 − p𝑘2 ,𝐻𝑗𝑘𝑖 = [2 (p𝑖 − p𝑘)T 𝑟𝑘𝑗 − 𝑟𝑖𝑗] . (16)

Given the flat prior for the Tx positionm𝑗 and the improper
prior 𝑝(1/𝑏𝑗) ∝ |1/𝑏𝑗|−1, the posterior of (m𝑗, 1/𝑏𝑗) is thus
given by the standard linear least squares (LLS) formulas

𝑝(m𝑗, 1𝑏𝑗 | 𝑟1:𝑁, p1:𝑁)
= 𝑁([[[

m𝑗1𝑏𝑗 ]]] ; (𝐻T
𝑗 𝐻𝑗)−1𝐻T

𝑗 𝑦𝑗, 2𝜎2 (𝐻T
𝑗 𝐻𝑗)−1), (17)

where

𝐻𝑗 = [[[[[[[[
𝐻𝑗1,2𝐻𝑗3,4...𝐻𝑗(𝑁−1)𝑁
]]]]]]]]
,

𝑦𝑗 = [[[[[[[
𝑦1,2𝑦3,4...𝑦(𝑁−1)𝑁
]]]]]]] .

(18)

In this formula, each RSS measurement is used only once
to avoid correlations between RSS differences. A strength of
this LLS method is the existence of closed form formulas; the
method thus has rather low and predictable computational
cost, and convergence is not an issue. Addition of prior
information on the Tx location is also straightforward.
However, if the actual RSS follows the log-normal shadowing
model (7), the approximation (14) can be crude.

3.2. Iterative Methods. Maximizing the likelihood of the Tx
position and possibly some model parameters 𝜃 using the
model (7) leads to the nonlinear least squares (LS) problem

(m̂𝑗, �̂�) = argmin
(m,𝜃)

𝑁∑
𝑖=1

(ℎ𝑖 (m, 𝜃))2 , (19)

whereℎ𝑖 (m, 𝜃) = 𝑟𝑖𝑗 − 𝑟(0) (𝜃) + 10𝑛 (𝜃) log10 p𝑖 −m (20)

is the model function of one measurement.
This optimization problem can be solved using various

nonlinear LS methods that are typically iterative algorithms
[34]. The general form of the nonlinear LS problem is

argminx ‖f (x)‖2 , (21)

where f is a knownnonlinear function and ‖⋅‖ is the Euclidean
norm. Many solution methods are based on differentiation,
either on the first order derivative (gradient, Jacobian) such
as the steepest descent and Gauss–Newton (GN) methods or
on the second-order derivative (Hessian matrix) such as the
Newtonmethod [34]. To the authors’ knowledge, the second-
order information has not been used in problem (19) because
of the difficulty of analytical differentiation. Given an initial
point x̂0, a GN iteration is

x̂𝑘+1 = x̂𝑘 − (𝐹T𝑘 𝐹𝑘)−1 𝐹T𝑘 f (x̂𝑘) , (22)

where 𝐹𝑘 is the Jacobian matrix of the function f evaluated in
x̂𝑘.

The GN method has been applied to problem (19) in
[16, 17], for example. In this case the model function f is the
function h whose 𝑖th element is[h (m, 𝑟(0), 𝑛)]𝑖 = 𝑟𝑖𝑗 − 𝑟(0) + 10𝑛 log10 p𝑖 −m , (23)

and the 𝑖th row of its Jacobian matrix𝐻 is[𝐻 (m, 𝑟(0), 𝑛)]𝑖,:= [− 10
ln10𝑛(p𝑖 −m)Tp𝑖 −m2 −1 10 log10 p𝑖 −m] . (24)
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Figure 4: Centroid algorithms can suffer from biased sampling
more than PL model based nonlinear methods such as the GN.The
colored dots are measurement locations in a 2-dimensional map. A
simulated example.

If the parameters 𝑟(0) and 𝑛 are known for a certain environ-
ment, the corresponding columns can be left out from the
matrix (24).TheGN algorithm can sometimes diverge. A less
divergence-prone GN version is the Levenberg–Marquardt
(LM) algorithm used for Tx localization in [18]. Alternatively,
the divergence can be addressed by using an additional
line search algorithm that ensures decrease of the objective
function value as in [16].

As pointed out in [35], if the posterior covariance matrix
is approximated by the covariance matrix of the linearized
model. the estimate can be updated when newmeasurements
are obtained. Including a Gaussian prior distribution𝑁(𝜇, Σ)
for x keeps the problem as a nonlinear LS problem

argminx [(x − 𝜇)T Σ−1 (x − 𝜇) + h (x)T 𝑅−1h (x)] , (25)

for which a GN iteration is [35]

x̂𝑘+1 = x̂𝑘 − (Σ−1 + 𝐻T
𝑘 𝑅−1𝐻𝑘)−1× (Σ−1 (x̂𝑘 − 𝜇) + 𝐻T

𝑘 𝑅−1h (x̂𝑘)) , (26)

where 𝑅 = 𝜎2 ⋅ 𝐼 is the measurement noise covariance matrix,
and 𝜎2 is the shadowing variance in (7).This iteration enables
approximative updating of the estimate without storing the
old observations by using the covariancematrix update (Σ−1+𝐻T
𝑘 𝑅−1𝐻𝑘)−1. Notice that if there is enough knowledge of the

PL parameters the Tx location estimate can be outside the
observation area as illustrated by Figure 4.

The GN converges to a local minimum, so the choice of
the initial point x̂0 is important. Proposed choices of x̂0 in Tx
localization are the location of the strongest observation [16],
the centroid of all observations [17], or the result of a grid-
type algorithm, which is discussed in Section 3.3. A drawback
of GN and LM is that if there are several separate areas of
strong measurements, the computed Tx location estimate
depends strongly on the initial point so that different strong
areas are not compared.

Due to the assumption of normally distributed shadow-
ing, the GN algorithm can be sensitive to outlier measure-
ments, where the RSS differs significantly from the value
predicted by the PL model. Outlier removal procedures for
tackling this issue have been proposed at least in [36].

3.3. Monte Carlo and Grid Methods. This section discusses
methods that are based on explicit evaluation of the Tx
locations PDF at several points of the location space. In
grid methods prespecified evaluation points are used, while
Monte Carlo (MC) algorithms are based on pseudorandom
evaluation points.

Importance sampling is a basic form of MC sampling.
Kim et al. [10] use a method where the MC samples of the
location of one Tx m(𝑘)𝑗 are generated from a prespecified
prior distribution and then given weights 𝑤(𝑘)𝑗 based on the
training measurements and known PL parameters. Kim et al.
do not explain their weightingmethod, but the formula based
on the model (7) is𝑤(𝑘)𝑗 = 𝑒−(1/2𝜎2) ∑𝑁𝑖=1(𝑟𝑖𝑗−𝑟(0)+10𝑛 log10‖p𝑖−m(𝑘)𝑗 ‖)2 . (27)

The MC estimate of the posterior mean is then the weighted
average of the samples

m̂𝑗 = 1∑𝑁𝑝𝑘=1 𝑤(𝑘)𝑗 𝑁𝑝∑𝑘=1𝑤(𝑘)𝑗 m(𝑘)𝑗 , (28)

where 𝑁𝑝 is the number of MC samples. This method can
also be called a particle filter with the static state model
as in [10], since the weights can be updated recursively. A
drawback is that importance sampling suffers from sample
impoverishment in static state estimation [37, Ch. 3.4]: all
weight will over time concentrate to a few samples and
there will be little variability because of lack of dynamics.
This problem can to some extent be overcome by using
resampling techniques such as resample-move algorithm or
Markov Chain Monte Carlo techniques [37, Ch. 3.4].

For some models a solution to sample impoverishment
is Rao-Blackwellization [37, Ch. 3.4] that is proposed for
simultaneous mobile Rx and static Tx localization by Bruno
and Robertson [21]. They do online Tx localization using a
Rao-Blackwellized particle filter (RBPF) so that the training
measurements’ locations are obtained by inertial positioning.
Thus, the distribution of the Rx locations is obtained by MC
sampling. The distribution of each Tx location is approxi-
mated by a Gaussian mixture for each MC sample and each
value of the PL parameter 𝑟(0). The PL exponent 𝑛 is assumed
to be known. This gives a recursive algorithm for joint
estimation of the Rx andTx locations.This solution is suitable
for cases where the locations of the training measurements
are imprecise but form a time-series that can be filtered.

Han et al. [19] propose a grid method, where a plane𝑟 = 𝑓(p) is fitted to the 3-dimensional position–RSS space(p, 𝑟:,𝑗) for each grid point. The direction of gradient of 𝑓 is
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then considered as an estimate of Tx’s direction, and the Tx
location estimate is defined as the point that minimizes the
mean square error of the directions of the grid points. Han
et al. use a dense grid method for the minimization, but they
also suggest that more efficient optimization tools could be
used.

Some authors exploit the fact that the PL parameters
appear linearly in the measurement model given the Tx
location. Thus, the PL parameters can be fitted analytically
to each point of a set of candidate Tx locations. Shrestha et
al. [20] make a linear least square fit of the PL parameters
for every measurement assuming that the Tx is located in
the considered measurement location. The Tx estimate is
chosen to be the measurement location that minimizes the
mean square error of the PL parameter fit. Dependence of the
measurement density can be reduced by using a regular grid
as the set of candidate points. This will make the algorithm
more flexible but also increase the computational complexity.
Achtzehn et al. [38] propose a genetic algorithm, but its
details are left unexplained. If the PL parameters 𝑟(0), 𝑛, and𝜎2
are assumed known, the Tx location’s likelihood can simply
be evaluated at each grid point [39]. A grid can also assist the
GN or LM algorithm so that each grid point gives an initial
point to the iterative algorithm [18].

Grid algorithms can achieve arbitrarymodeling accuracy,
but the computational complexity will increase rapidly along
with the state dimension and grid density. Furthermore,
optimal values of critical parameters such as grid density
and grid size may vary in different subregions in large-scale
systems.

4. Tx Localization with
Unlocated Observations

All methods presented this far rely on a set of measurements
with reference locations assumed known accurately or as
a probability distribution. However, this assumption is not
always realistic especially in indoor environments, where
accurate GNSS services are unavailable and manual entry
of reference locations is too laborious especially for data
collected by crowdsourcing. This section reviews algorithms
where Txs’ locations relative to other Txs is estimated using
unlocated observations and the undirected graph created by
connecting Txs that appear in a common observation. The
basic assumption is that the more frequently two Txs are
observed in the same measurement location, the closer to
each other they are probably located. It is also possible to
use the RSS: if two Txs’ signals are strong in a location,
the Txs are probably close to each other. The locations in
global coordinates, that is, the correct scaling and rotation of
the radiomap, are obtained by adding some measurements
with reference locations: it is assumed that when a Tx is
observed (with a high RSS) in a located measurement, the Tx
is probably close to thismeasurement’s location.Theprinciple
is illustrated in Figure 5.

Koo and Cha [22] propose multidimensional scaling
(MDS). The RSSs in a measurement with more than one Tx
determine the dissimilarity between the observed Txs, and

Building
Unlocated meas.
Located meas.

Tx
Connected

Figure 5: Unlocated measurements connect several Txs and thus
give information on how close each Tx is to other Txs. Located
measurements give information on the observed Txs’ locations in
global coordinates. Combining both measurement types gives an
optimal estimate of the Tx location coordinates.

the MDS finds the 2-dimensional Tx locations whose mutual
distances best agree with the dissimilarity matrix. In [22] the
dissimilarity of the mobile Rx and the Tx is defined to be a
certain decreasing function of the RSS, and the dissimilarity
of two Txs is the smallest sum of the Rx–Tx dissimilarities
observed in the same training measurement.The dissimilari-
ties of Txs that are not connected by a commonmeasurement
are determined through the other dissimilarities by using a
graph construction. Since the dissimilarities are not simple
functions of distance and contain noise, the Tx localization
is a nonmetric MDS problem, for which iterative algorithms
exist [40]. If some reference locations are available, the
relative MDS location estimates are transformed to global
coordinates by an optimal scaling, rotation, and translation
given by Procrustes analysis [22]. A drawback of this algo-
rithm is that if two Txs are located close to each other but
the closest training measurement location is far from both,
the Koo–Cha dissimilarity will overestimate the distance
between the Txs, because the dissimilarity corresponds to
the distance via the closest training measurement location.
Furthermore, the most natural choice for the mapping from
the RSS to dissimilarity would be the exponential relation
derived from the log-normal shadowing model (7), which is
different from the choice of [22].

Raitoharju et al. [23] propose several algorithms that use
unlocated data. Based on their tests, they recommend a closed
form solution called access point least squares (APLS). The
APLS is based on the model

m𝑖 −m𝑗 ∼ 𝑁(0, 𝜎21 ⋅ 𝐼) ,
m𝑘 ∼ 𝑁(pk, 𝜎22 ⋅ 𝐼) , (29)

where the Txs 𝑖 and 𝑗 are observed in the samemeasurement,
the Tx 𝑘’s located measurements’ mean location is p𝑘, and 𝜎1
and 𝜎2 are constants whose values do not affect the solution if
no prior distribution is used for the Tx locations. This results
in a linear Gaussian measurement model whose solution is
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the standard linear least squares formula. Raitoharju et al.
[23] also propose that the accuracy can be improved with the
cost of increased running time by applying a Gauss–Newton
method (22), where the log-normal shadowing model with
fixed PL parameter values is used so that both Tx locations
and mobile Rx locations are unknown. The GN algorithm
is more accurate than the APLS due to modeling of RSS,
but multimodality of the posterior distribution can cause
convergence to nonglobal extrema [24].

Chintalapudi et al. [24] present a method that relies on
a genetic algorithm for finding initial points for iterative
optimization methods. In the first phase, all initial points are
generated randomly; genetic algorithms are thusMonteCarlo
algorithms. The initial points are then treated in a manner
that depends on the objective function value (fitness) of the
local maxima given by the iterative optimization method for
each initial point. The initial points with high fitness are
retained, while the initial points with low fitness are replaced
by generating new values, added random noise, or mixed
by random convex combinations. This cycle is iterated until
the solution stops improving. Chintalapudi et al. estimate
the mobile user location p𝑖, the Tx location m𝑗, and the
PL parameters 𝑟(0) and 𝑛 jointly for each 𝑖th measurement
and 𝑗th Tx. Chintalapudi et al. use a fitness function that
is based on the mean absolute error, but the standard least
squares approach of (19) can also be used for more standard
modeling and a wider range of optimization methods. The
genetic algorithm is capable of finding the global maximum
with amuch higher probability than a single gradient descent
algorithm. The disadvantage is the increased computational
burden. Chintalapudi et al. discuss criteria to select a subset
of Txs and training data so that computational requirements
are somewhat reduced without losing accuracy significantly.

5. Tests

5.1. Simulations. We implemented 11 Rx localizationmethods
with Matlab. We simulated 100 Txs with 250 measure-
ments for each. We generated the measurement points from
bivariate normal distributions whose covariance matrices
were generated separately for each Tx from the Wishart
distribution with three degrees of freedom𝑊((20m)2 ⋅ 𝐼, 3).
Each measurement point was then assigned a RSS value
generated from the distribution𝑟𝑖 ∼ 𝑁(−70 − 10 ⋅ 2 log10 p𝑖 −m , 62) ; (30)

that is, the used PL parameters are 𝑟(0) = −70, 𝑛 = 2,
and 𝜎 = 6, which are approximately in line with the values𝑟(0) = −70.39, 𝑛 = 1.32, and 𝜎 = 5.85 given in [41]. Each
Tx localization method that uses measurements with known
reference locations is then applied to each measurement set.

The parameter values used in the tests were the following:
In the robust centroid algorithm the number of EM iterations
was five, and the number of degrees of freedom ] = 4.
In the weighted centroid, we set 𝑟min = −120 dBm. We
optimized the parameter 𝜆 with a Monte Carlo simulation
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Figure 6: Optimization of the weighted centroid’s parameter 𝜆
for distance based (black) and RSS based (grey) weighted centroid
algorithms. The values chosen for the further tests were 0.07 for
distance based and 5 for RSS based algorithm.

using 10.000 replications, and the median Tx positioning
error as a function of 𝜆 is shown in Figure 6. Based on
this, we set the parameter value to 0.07 for distance based
and 5 for RSS based weighted centroid. The GN iteration
was terminated when change in the Tx location between
two successive iterations was less than 1mm or after 1000
iterations. The importance sampling used 5000 Monte Carlo
samples. In the RSS gradientmethod the gradients were fitted
for each point of the regular grid with 1-meter spacing so that
the grid squares that did not have any measurements were
removed. The window size of the gradient fitting was chosen
according to the advice given in [19]: the window size was
increased until at least 30% of the grid points had at least
three measurements to fit the gradient. The grid-point-wise
PL parameter fitting method was based on a regular grid
using 0.75-meter spacing and the square around the strongest
RSS measurement with side length 60 m.

The Tx localization error distributions are illustrated in
Figure 7. In these boxplots, the asterisks show the maximum
andminimum error of themethod, and the box levels are 5%,
25%, 50%, 75%, and 95% error quantiles. In the left subplot,
the measurement locations are generated from the bivariate
normal distributions. In the right subplot, the measurements
whose east coordinates are greater than those of the Tx are
removed; this test is done to study the robustness of the
methods to training data distributions that are not symmetric
with respect to the Tx location. Some of the algorithms can
be given prior information on the PL parameters. Note that
this kind of prior information is not always available in real-
world scenarios. The red boxes in Figure 7 show the error
distributions when the PL parameters are given the prior𝑟(0) ∼ 𝑁(−70, 102) , (31a)𝑛 ∼ 𝑁(2, 0.52) . (31b)

With the importance sampling method, estimation without
prior means using a prior with a large variance.
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Figure 7: Tx localization error distributions with simulated data. On the left, the measurements come from a point-symmetric bivariate
normal distribution, while on the right, the measurements east of the Tx are removed. The red boxes correspond to methods that use prior
information of the PL parameters.

Figure 7 shows that when the measurement data distri-
bution is point-symmetric, Gauss–Newton (GN) and grid-
point-wise fit (grid-fit) are the most accurate methods.
The importance sampling method is very close in accuracy
and it has flexibility, for example, for extensions to non-
Gaussian models, but it requires a good prior distribution to
produce an efficient importance distribution.The accuracy of
the measurement point-wise fit (meas-fit) is limited by the
measurement point density and whether the measured area
covers the true Tx location. The gradient method performs
well with point-symmetric measurement sets, but suffers
dramatically from removing the measurements of an area.
The reason for this can be that the method is based solely on
the measurement geometry; it does not use the logarithmic
shape of the propagation model. That is, in the west–east
direction therewillmainly be arrows pointing to east, and this
can deteriorate the accuracy inwest–east direction.The linear
least square (LLS) method of [15] suffers from approximating
the logarithmic PLmodelwith a linear one; themethod seems
to fit the linear PL model overweighting weak RSSs that are
the majority, and therefore the RSS peak location estimation
is biased.

The centroid algorithms that do not use RSSs perform
well in accuracy with point-symmetric data distributions.
The error is typically slightly higher than that of the GN,
but the overall performances can be regarded as competitive
considering the simplicity and computational ease of the
centroid methods. The centroid methods are robust against
deviations from the logarithmic PL model, but especially the
nonweighted centroids are sensitive to asymmetric data sets.
However, the weighted centroid still has accuracy slightly
lower but comparable with that of the GN. Robust centroid is
less accurate than the distance-weighted centroid, but slightly
more accurate than the nonweighted centroid due to non-
Gaussian coverage area.
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Figure 8: Bimodal RSS distribution.

In some cases the distribution of RSS is not a function of
the distance only, but there can, for example, be several RSS
peaks, that is, areas governed by strong RSS measurements.
These can be due to uneven terrain topology, reflective build-
ing materials, or unmapped strong RSS areas, for example.
Figure 8 shows the Tx localization error distributions when
20% of the training measurements are generated from a
normal distribution𝑁(𝜇∗, 52 ⋅ 𝐼), where 𝜇∗ is a random point
close to the true Tx location. For each measurement point
we then generated the RSS 𝑟1 from the model (30) and the
RSS 𝑟2 from the same model using 𝜇∗ as the Tx location. We
then set the actual RSS measurement to 0.7 ⋅ 𝑟1 + 0.3 ⋅ 𝑟2.
Figure 8 shows that the methods that perform best in the
unimodal RSS distribution’s case, that is, weighted centroid
and GN, have some large Tx localization errors with bimodal
RSS distribution. Weighted centroid and GN tend to choose
one RSS peak, the weighted centroid based on the strongest
measurements, and theGN solution based on the initial guess
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Table 1: Tx localization RMSEs with real BLE data.

Algorithm RMSE w/o prior (m) RMSE with prior (m)
Centroid 9.8
Robust centroid 8.9
Weighted centroid (dist.) 4.5
Weighted centroid (RSS) 5.4
Linear least squares 25.1
Gauss–Newton 3.4 2.9
Importance sampling 9.8 3.4
RSS gradient 14.2
Point-wise fit (regular grid) 4.8 3.2
Point-wise fit (meas. pos.) 2.8 2.7
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Figure 9: Measurement and Tx locations in the test data set.

given to the algorithm. Centroid, importance sampling, and
point-wise fitting methods give more weight to the whole
RSS distribution and do not converge into nonglobal local
extrema. Thus, the weighted centroid and GN have median
accuracy close to the other methods, but they may require
some heuristics to cope with cases with multiple RSS peaks.

5.2. Real Bluetooth Low Energy Data. We installed 82 Blue-
tooth Low Energy (BLE) Txs in a building in the campus
of Tampere University of Technology. The ground truths of
the the Tx locations were measured relative to some map
objects using ameasurement tape. Furthermore, we collected
measurements of the received BLE signal strengths using an
Android-run Samsung tablet device.The true location related
to each RSS measurement was obtained manually by clicking
an indoor map figure at each turn and interpolating between
the turns. Floor estimation was assumed perfect, so only
training data collected in the true floor of each Tx was used.
The locations of the Txs and the training measurements are
shown in Figure 9.

Figure 10 shows the Tx localization error distributions for
the real data test. The results mostly resemble those of the
simulation results with non-point-symmetric measurement
point distribution in Section 5.1.The root-mean-square errors
(RMSE) of the methods are given in Table 1.
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Figure 10: Tx localization error distributions with real BLE data.

6. Concluding Remarks

This paper reviews and tests mathematical models andmeth-
ods for wireless transmitter localization based on received
signal strength information. Empirical comparisons results
using simulated and real-world data are provided. The key
features of each presentedmethod are summarized in Table 2.
Note that the column accuracy refers to how accurately the
method can be adapted to the assumed signal model, such
as the path loss model; the real-world localization error can
depend on the details of the scenario. Updateability means
that an algorithm for recursive updating without storing the
entire training database has been proposed.

The methods can be categorized based on what infor-
mation they use: RSS or only connectivity, with or without
known reference position. The methods that require refer-
ence positions are suitable for so called wardriving, that is,
outdoor network surveying where GNSS provides reference
positions, or for small-scale indoor mapping. The unlocated
methods trade off some accuracy to enable large-scale crowd-
sourcing even in GNSS-less environments. Computational
efficiency and ease of updating the estimate without storing
large training databases are crucial in large-scale applications.
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Table 2: Summary of the presented algorithms.

Algorithm
name Measurement Reference

location req.
Algorithm

type Accuracy Computat.
complexity

Implement.
complexity

Update-
ability

References &
Remarks

Centroid ID Accurate closed form Low Low Low Yes [8, 12]
Robust
centroid ID Accurate Iterative Low Low Medium Approx. [14], robust to error

meas.
Weighted
centroid ID, RSS Accurate Closed form Low Low Low Yes [11]

Linear least
squares ID, RSS Accurate Closed form Low Low Low Yes [15]

GN/LM ID, RSS Accurate Iterative Medium Medium Medium Approx. [16–18], local
minima

Importance
sampling ID, RSS Accurate Monte Carlo High Medium Low Yes [10], sample

impoverishment
RSS gradient ID, RSS Accurate Grid, iterative Medium High High No [19]
grid-point-
wise
fit

ID, RSS Accurate
Grid, closed
form or
iterative

High High Medium No [20] (meas. pos.)
[18] (regular grid)

RBPF ID, RSS Time-series,
distribution Monte Carlo High High High Yes [21]

MDS ID, RSS No Iterative Medium Medium High No [22], various
methods

APLS ID No Closed form Low Low Low Yes [23]
GN ID, RSS No Iterative Medium Medium Medium Approx. [23]
Genetic
algorithm ID, RSS No MC, iterative High High High No [24]

An example of such a system is ubiquitous indoor position-
ing, which requires efficient initialization, improving, and
updating of large-scale radio maps that contain not only 2-
dimensional locations but also floor information.
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