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A new method about renewable energy cooperation among small base stations (SBSs) is proposed, which is for maximizing the
energy efficiency in ultradense network (UDN). In UDN each SBS is equipped with energy harvesting (EH) unit, and the energy
arrival times are modeled as a Poisson counting process. Firstly, SBSs of large traffic demands are selected as the clustering centers,
and then all SBSs are clustered using dynamic k-means algorithm. Secondly, SBSs coordinate their renewable energy within each
formed cluster. The process of energy cooperation among SBSs is considered as Markov decision process. 𝑄-learning algorithm
is utilized to optimize energy cooperation. In the algorithm there are four different actions and their corresponding reward
functions. 𝑄-learning explores the action as much as possible and predicts better action by calculating reward. In addition, 𝜀
greedy policy is used to ensure the algorithm convergence. Finally, simulation results show that the new method reduces data
dimension and improves calculation speed, which furthermore improves the utilization of renewable energy and promotes the
performance of UDN.Through online optimization, the proposedmethod can significantly improve the energy utilization rate and
data transmission rate.

1. Introduction

With the rapid development of mobile network, wireless data
traffic has increased exponentially. More andmore small base
stations (SBSs) are needed to satisfy the traffic demand, which
results in ultradense network (UDN). Meanwhile energy
harvesting (EH) has become a very promising technology
because of its flexible deployment and renewable energy [1].
The combination between SBS and EH canmake it possible to
harvest energy to extend the network running time.However,
there are some difficulties for EH technology [2, 3], that is, the
randomness and instability of renewable energy, the limited
energy storage of EH devices, and so on.

The energy cooperation in EH wireless networks has
recently been studied extensively. There are lots of researches
for maximizing network throughout, energy cooperation,
traffic management, and so on. Energy cooperation schemes
among different BSs are considered [4–6], and the energy
efficiency (EE) is improved by adopting the evolutionary
algorithms. The jointly optimal policy that maximizes sum-
throughput is proposed [7–9]; both energy cooperation and

trafficmanagement are considered.The capacity region coin-
cides with a traditional K-user GaussianMAC, and users can
perform energy cooperation [10]. The cooperation between
primary and secondary users at information and energy levels
is considered [11]. These studies mainly focus on energy
cooperation between the cells or users in cellular network or
the hybrid power supply system, which aims at improving the
EE and traffic management. With the increase of SBSs in the
future communication network, it is necessary to divide SBSs
into small groups for optimal energy cooperation.

UDN has a much higher deployment density than cur-
rent mobile network, which greatly improves the network
throughput. Many studies on spectrum sensing, spectrum
efficiency, and intercell interference have been published [12–
15]. EE and resource management are studied in UDN [16–
18], and a cluster-based EE resource allocation scheme is
proposed [19]. Taking advantage of the density feature of SBS,
enhancing the energy cooperation will promote the network
performance. With the increasing density of SBSs, it is more
efficient and practical to utilize cluster and online learning
method for greater network throughput.
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There are also researches about energy supply especially
EH technology. A system consisting of two cooperative
microgrids is considered [20], and the two microgrids
exchange renewable energy through the transmission line.
Two energy sources for supplying the energy required for sys-
tem operation are proposed, that is, an energy harvester and
a constant energy source driven by a nonrenewable resource
[21–23]. An energy harvesting circuit is equipped at the
energy harvesting receiver and introduces various nonlinear-
ities into the wireless power transfer [24]. A dense small cell
network consisting of a set of small cells and a set of users is
considered. In the network every user selects an SBS by itself,
and multiple users can be served by a single SBS [25]. For
simplicity, we only consider the renewable energy coopera-
tion among clustered SBSs in UDN.

Considering that clustering technique obtains optimal
energy cooperation and reinforcement learning gains greater
EE, we combine EH technology with clustered energy coop-
eration in UDN to solve EE problems. A renewable energy
cooperation management algorithm is proposed based on
clustered SBSs in UDN. Firstly, according to the geographical
location and traffic load, sampling technique is used to
determine the centers of data division, and then all SBSs
are clustered using dynamic k-means algorithm. Secondly,
within each formed cluster, SBSs coordinate their renewable
energy.Theprocess of energy cooperation among SBSs is con-
sidered as MDP.𝑄-learning algorithm is adopted to optimize
energy cooperation, inwhich 𝜀 greedy policy can ensure algo-
rithm convergence. There are four different actions and their
corresponding immediate reward functions for each SBS.
The reward function represents the energy value after taking
the corresponding action. 𝑄-learning explores the action
as much as possible, learns how to predict the relationship
between the action and the reward, and furthermore predicts
better actions by calculating rewards. At last, simulation
results show that the new method reduces data dimension
and improves calculation speed, which furthermore improves
the utilization of renewable energy and promotes the perfor-
mance of UDN. Through online optimization, the proposed
method can significantly improve the energy utilization rate
and data transmission rate.

This paper is organized as follows: Section 2 presents the
system model according to MDP. In Section 3, we optimize
the problem of energy cooperation among SBSs in UDN
using clustering technology and reinforcement learning.
Simulation results are given in Section 4. Section 5 concludes
the paper.

2. System Model

In practice, the EH model depends on its specific imple-
mentation. There are solar panel and wind turbine-generator
which can generate renewable energy, but the EH character-
istics are different in both cases. The energy arrival times in
the energy harvester can be modeled as a Poisson counting
process [21]. Sinusoidal curve can also be selected [22]. In
order to provide a general model for EH communication
systems, we model it as a stochastic process in order to
isolate the considered problem from specific implementation

assumptions. In this paper, the location of SBSs in UDN
is randomly deployed [26, 27], and each SBS is equipped
with EH unit and a limited capacity battery. Assume that
a limited time-slot (TS) system, the renewable energy, and
the required data are arrived at the beginning of each TS.
The channel state information is𝐻(𝑡), which is kept constant
in the same TS. The processing of energy/data packet can
be considered as one-order discrete Markov model [28]. In
each TS, the amount of data SBS processed is 𝐷𝑛, and the
minimum energy required for data transmission is𝐸𝑇𝑛 (𝑡).The
energy arrival times in the EH unit are modeled as a Poisson
counting process with𝜆𝐸.The harvested energy𝐸𝐻𝑛 (𝑡) in each
TS is 𝐸𝐻𝑛 (𝑡) = (𝜆𝐸𝑡/𝑡!) ∗ 𝑒−𝜆𝐸 , 𝑡 = 0, 1, 2, . . ..

In UDN, for a certain SBS 𝑛, the system parameters are
given in System Parameters in UDN section.

Energy charged to the battery is 𝑐𝑛(𝑡), 𝑐𝑛(𝑡) ≥ 0; and
energy discharged from the battery is 𝑑𝑛(𝑡), 𝑑𝑛(𝑡) ≥ 0. At any
time, SBS will charge/discharge energy to/from battery.There
is at most one of 𝑐𝑛(𝑡) and 𝑑𝑛(𝑡) that is strictly positive, that is,𝑐𝑛(𝑡) ∗ 𝑑𝑛(𝑡) = 0.

The SBS operation in TS 𝑡 satisfies the following con-
straints (𝛼 represents battery charging efficiency):

𝐸𝐻𝑛 (𝑡) ≥ 0
𝐸𝑇𝑛 (𝑡) ≥ 0
𝑐𝑛 (𝑡) ≥ 0
𝑑𝑛 (𝑡) ≥ 0

𝑐𝑛 (𝑡) ∗ 𝑑𝑛 (𝑡) = 0
0 ≤ 𝐵𝑛 (𝑡) ≤ 𝐵𝑛max

0 ≤ 𝐵𝑛 (𝑡) + 𝛼𝑐𝑛 (𝑡) − 𝑑𝑛 (𝑡) ≤ 𝐵𝑛max.

(C1)

We consider one hot region in UDN, which is shown in
Figure 1.The colored SBSs are the cluster centers, which form
groups with the uncolored SBSs in their circles. Other SBSs
join to the nearest group. The SBSs in one cluster achieve
energy cooperation. For simplicity, we only consider the
scenario of one user. For the request data rate of user, we
ignore the fluctuation of data services and suppose that there
is the full traffic data case. The user always has data to be
received, and SBSs are in full load operation.

To simplify the system model, we give one SBS energy
harvesting model in UDN, which is shown in Figure 2.

To find the required energy to reliably transmit a data
packet over the channel we consider Shannon’s capacity
formula for Gaussian channels.

𝐷𝑛(𝑡) can be approximately calculated by

𝐷𝑛 = 𝑊Δ𝑇𝑥log2 (1 + 𝐻𝑛𝑃
𝑊𝑁0) , (1)

where 𝑃 is the transmit power and 𝑁0 is the noise power
density.
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Figure 1: System model.
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Figure 2: SBS energy harvesting model in UDN.

𝐸𝑇𝑛 (𝑡) is an integer multiple of the energy unit [22] and
can be calculated by

𝐸𝑇𝑛 = 𝑓𝑒 (𝐷𝑛, 𝐻𝑛) = 𝐷𝑛log2𝑁0
𝐻𝑛 . (2)

In this paper, we define that EE in terms of bits/Hz/Joule
is

EE = ∑𝐾𝑘=1 log2 (1 + 𝑝𝑘 ∗ 𝑔𝑘)
𝑃𝑓 + 𝑃𝑐 + 𝜑∑𝐾𝑘=1 𝑝𝑘

, (3)

where ∑𝐾𝑘=1 𝑝𝑘 is the sum power consumption of 𝐾 SBSs in
one cluster, 𝑔𝑘 denotes the channel-gain-to-noise ratio, 𝑃𝑓
denotes the addition power dissipation due to SBS’s circuitry,
𝑃𝑐 is the static power dissipation, and 𝜑 is the power amplifier
efficiency.

A multiuser scenario can be derived similarly. At the
beginning of each TS, each SBS schedules its users, such that
a single user is allocated to each subcarrier. Let 𝜇𝑢,𝑚 = 1

denote that subcarrier 𝑚 is assigned to user 𝑢, and 𝜇𝑢,𝑚 = 0,
otherwise. Accordingly, EE can be expressed as

EE = ∑𝑈𝑢=1∑𝑀𝑚=1 (𝑢𝑢,𝑚/𝑀) log2 (1 + 𝑝𝑢,𝑚 ∗ 𝑔𝑢,𝑚)
𝑃𝑓 + 𝑃𝑐 + 𝜑∑𝑈𝑢=1∑𝑀𝑚=1 𝑝𝑢,𝑚

, (4)

where 𝑈 is the user number assigned for one SBS, 𝑀 is the
subcarrier number, and 𝑝𝑢,𝑚 denotes power allocation.

𝑔𝑢,𝑚 = ℎ2𝑚,𝑢
𝑁0 (𝑊/𝑀) , (5)

where ℎ𝑚,𝑢 is the channel gain,𝑁0 is the noise power spectral
density of additive white Gaussian noise, and 𝑊 is the
bandwidth.

3. Energy Cooperation Optimization
Algorithm Based on SBS Clustering and
Learning Strategy

This section optimizes the problem of energy cooperation
among SBSs in UDN using clustering technology and rein-
forcement learning.

3.1. Dynamic 𝑘-Means Clustering Method for SBSs in UDN.
In this paper, a cluster-based approach for maximizing EE
in UDN is proposed. According to the different realization
process, the common clustering methods are divided into
hierarchical clustering and partition clustering. There are
also clustering methods for large scale data sets. One of
the most classic clustering methods is k-means, which uses
cluster centers to represent the whole group. The cluster
centers need to be updated repeatedly in the process of
determining the final result [29, 30]. All data should be
redivided before updating cluster centers, which makes k-
means lose the ability to deal with very large scale data, and
the execution time of these algorithms grows with the data
number increases.

Since there are more SBSs than the traditional network
in UDN, it is very time-consuming to run the clustering
algorithm on the whole data set. To remedy this problem,
sampling strategy is selected, which can greatly save storage
space and reduce computation amount. Sampling technology
is used to select some samples from the original data.
According to the cluster result, the distribution of the original
data set is estimated. In this paper, the sampling technique is
used to determine the centers of data division. If the distance
between SBSs is too long, energy cooperation may cause
power loss and transmission delay. We cluster SBSs in UDN
according to distance and traffic.The sampled SBS is selected
according to SBS traffic from large one to small, and the
SBS traffic refers to the average data packets sent in the past
week or month. Each SBS is viewed as a data point in a two-
dimensional space, and the distances between sampling SBSs
are saved [31, 32].

Assume that there are 𝑚 SBSs in UDN. The distances
between all SBSs are saved in the matrix𝑀𝑚∗𝑚. The dynamic
𝑘-means algorithm is described as follows:
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(1) Select 𝑟 sampling SBSs (according to SBS traffic
from large to small) and save their distances in the
matrix 𝐷𝑟∗𝑟; each column represents the distances
between one SBS and other sampling SBSs, 𝐷𝑟∗𝑟 =𝑑(𝑥𝑖, 𝑥𝑗) (𝑖, 𝑗 = 1, 2, . . . , 𝑟), where 𝑑(𝑥𝑖, 𝑥𝑗) represents
the distances between sampling SBSs.

(2) Find the minimum distance between sampling SBSs,
min𝑑(𝑥𝑖, 𝑥𝑗) (𝑖 ̸= 𝑗).

(3) Calculate the average value of each column 𝑅𝑖 =
∑𝑟𝑗=1 𝑑(𝑥𝑖, 𝑥𝑗)/(𝑇 − 1) (𝑖 = 1, 2, . . . , 𝑟), where 𝑟 − 1
represents each column vector in the distance matrix
𝐷𝑟∗𝑟 which has a “0” element, which is the distance
between each point and its own.

(4) Calculate the average value of all 𝑅𝑖, 𝑅 = ∑𝑟𝑖=1 𝑅𝑖/𝑟.
(5) Calculate high density radius 𝑅 = 𝑅 + min𝑑(𝑥𝑖, 𝑥𝑗);

min𝑑(𝑥𝑖, 𝑥𝑗) is added to make 𝑅 big enough so as
to ensure that most high density points are correctly
labeled.

(6) Calculate cluster radius 𝑟 according to 𝑟 = 𝑅 +
min𝑑(𝑥𝑖, 𝑥𝑗) and select the two furthest points from
sampling SBSs as the initial cluster centers and mark
𝑘 = 2 to ensure that the centers come from different
clusters.

(7) Divide the data near the centers into two clusters
according to 𝑟, find the next farthest point according
to the centers, mark 𝑘 = 𝑘 + 1, and divide the data
again until all the data are clustered completely.

(8) Cluster the remaining SBSs into the nearest center
point.

(9) Calculate 𝑚 = 𝑟 + 𝑟, and ℎ = min𝑑(𝑥𝑖, 𝑥𝑗) +
min𝑑(𝑥𝑖, 𝑥𝑗). If the distance between the cluster
centers is smaller than 𝑚 and the distance between
the boundary points is smaller than ℎ, then combine
the two clusters and label 𝑘 = 𝑘 − 1.

(10) Give the final clustering results and the 𝑘 value.
How to determine 𝑘 value is a very difficult problem.

Once the 𝑘 value is not reasonable, it is likely to lead to
great errors in clustering. For this case, according to the
data distribution properties and their distances, after a series
of transformations, the final clustering number is obtained.
Obtaining 𝑘 value is a changing, dynamic process, and there
is no need to know initial experience value. The dynamical
division is closer to actual demand. It solves the problem
that the algorithm needs manual input and improves the
automatic clustering ability.

EE is considered to be one of the main benefits from
clustering architecture. When the network is dense, the
benefit of clustering is the improved stability of cooperative
relationships. Clusters are formed in order to maximize the
time availability of clusters, hence in this paper maximizing
the availability of energy cooperative. The clustering centers
are all SBSs of large traffics, which is benefit for energy
cooperation among SBSs of small traffics. It also ensures
the supply of renewable energy and improves the data
transmission rate of the network.

Table 1: Actions for SBS processing each data packet.

Actions Transmitted/dropped and achieve/no energy
cooperation

𝑎1 Transmit the data packet and achieve energy
cooperation

𝑎2 Transmit the data packet and have no energy
cooperation

𝑎3 Drop the data packet and achieve energy cooperation
𝑎4 Drop the data packet and have no energy cooperation

3.2. 𝑄-Learning Approach for Energy Cooperation. Due to
the instability of the renewable energy and the arbitrary
distribution of SBSs, it is necessary to improve EE through
energy cooperation. In this paper, we propose a renewable
energy cooperation scheme among different SBSs, in which
one SBS can collect/share energy from/to another SBS. The
energy cooperation efficiency will be improved when the
number of the cooperation SBSs is large.

Consider energy cooperation among SBSs in UDN as
the finite states and discrete time MDP. (𝑆, 𝐴, 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1),𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1)), where 𝑆 is the finite environment state space;
𝐴 is the finite system action space; 𝑃𝑎𝑡(𝑠𝑡, 𝑠𝑡+1) ∈ [0, 1]
and 𝑅𝑎𝑡(𝑠𝑡, 𝑠𝑡+1), respectively, represent the state transition
probability and the immediate reward of transferring the state
from 𝑠𝑡 to 𝑠𝑡+1 by taking action 𝑎𝑡. The probability and the
immediate reward depend only on the current state 𝑠𝑡 and
the selected action 𝑎𝑡 and are irrelevant to the past states and
actions.

In the proposed model, the system state of 𝑛th SBS in
TS 𝑡 is 𝑆𝑛 = (𝐸𝐻𝑛 (𝑡), 𝐸𝑇𝑛 (𝑡),𝐻𝑛(𝑡), 𝐵𝑛(𝑡)), and action set is
𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4}. At the beginning of each TS, SBS has four
actions for each data packet, which is shown in Table 1.

Assume that the optimal state value function and the
optimal action value function are 𝑉∗ and 𝑄∗, which satisfy
the Behrman optimal equation:

𝑉∗ (𝑠) = max
𝜋

𝑉𝜋 (𝑠)
= max
𝑎∈𝐴

∑
𝑠󸀠∈𝑆

𝑃𝑎 (𝑠, 𝑠󸀠) (𝑅𝑎 (𝑠, 𝑠󸀠) + 𝛾𝑉∗ (𝑠󸀠)) .

𝑄∗ (𝑠, 𝑎) = max
𝜋

𝑄𝜋 (𝑠, 𝑎)

= ∑
𝑠󸀠∈𝑆

𝑃𝑎 (𝑠, 𝑠󸀠) (𝑅𝑎 (𝑠, 𝑠󸀠) + 𝛾max
𝑎󸀠∈𝐴

𝑄∗ (𝑠󸀠, 𝑎󸀠))

(6)

As a result, the optimal policy can be obtained:

𝜋∗ (𝑠) = argmax
𝑎∈𝐴

∑
𝑠󸀠∈𝑆

𝑃𝑎 (𝑠, 𝑠󸀠) (𝑅𝑎 (𝑠, 𝑠󸀠) + 𝛾𝑉∗ (𝑠󸀠))

𝜋∗ (𝑠) = argmax
𝑎∈𝐴

𝑄∗ (𝑠, 𝑎) .
(7)

The goal of MDP is to find the system’s optimal policy
𝜋∗, which can be obtained by the optimal value function [33].
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Table 2: Four choices of 𝑎𝑡 and the corresponding 𝑟𝑡.
𝑎𝑡 Corresponding 𝑟𝑡
𝑎1

Transmit the data packet and achieve energy cooperation

𝑟𝑡 = 𝐸𝑇𝑛 (𝑡) + 𝛽(𝐸𝐻𝑛 (𝑡) − 𝐸𝑇𝑛 (𝑡) − 𝐵𝑛 (𝑡) − 𝐵𝑛 (𝑡 − 1)
𝛼 )

𝑎2 Transmit the data packet and have no energy cooperation
𝑟𝑡 = 𝐸𝑇𝑛 (𝑡)

𝑎3
Drop the data packet and achieve energy cooperation

𝑟𝑡 = 𝛽(𝐸𝐻𝑛 (𝑡) − 𝐵𝑛 (𝑡) − 𝐵𝑛 (𝑡 − 1)
𝛼 )

𝑎4 Drop the data packet and have no energy cooperation
𝑟𝑡 = 0

𝑄-learning algorithm is adopted, and its iterative formula is
as follows:

𝑄 (𝑠𝑡, 𝑎𝑡) ←󳨀 𝑄 (𝑠𝑡, 𝑎𝑡)
+ 𝛿 [𝑟𝑡 + 𝛾max

𝑎
𝑄 (𝑠𝑡+1, 𝑎) − 𝑄 (𝑠𝑡, 𝑎𝑡)] ,

(8)

where (𝑠𝑡, 𝑎𝑡) is a state-action pair in TS 𝑡, 𝛿 (0 < 𝛿 < 1) is the
learning factor, and 𝛾 (0 < 𝛾 < 1) is the discount factor.

𝑄 iterative learning uses the reward of state-action pair
as the evaluation function. First initialize 𝑄 value, then
determine the action 𝑎𝑡 in the state 𝑠𝑡 according to 𝜀 greedy
policy, get the knowledge and experience of training samples
(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑅𝑡), and thenmodify𝑄 value.When agent gets the
target state, the algorithm terminates one iteration loop. The
algorithm starts from the initial state again until the end of
learning.

𝑄-learning algorithm is applied in renewable energy
cooperation within one SBS cluster based on UDN, and its
process is as follows:

(1) Initialize: 𝑄(𝑠, 𝑎) ← any value, 𝛿 and 𝛾: given values.
(2) Repeat.

Given initial state 𝑆: (𝐸𝐻𝑛 (0), 𝐸𝑇𝑛 (0),𝐻𝑛(0), 𝐵𝑛(0)).
Repeat.
A Choose 𝑎𝑡 according to 𝜀 greedy policy, then

obtain 𝑅𝑡 and 𝑠𝑡+1.
B 𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛿[𝑟𝑡 +

𝛾max𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)].
C 𝑠𝑡 ← 𝑠𝑡+1.
Until 𝑠𝑡 is termination state.

Until all 𝑄(𝑠, 𝑎) are converged.
(3) Output the final policy: 𝜋(𝑠) = argmax𝑎∈A𝑄(𝑠, 𝑎).
InA, 𝑎𝑡 has four choices and the corresponding 𝑟𝑡 shown

in Table 2 (𝛼 represents storage efficiency of the battery, and
𝛽 represents resistance loss).

Actually, four actives can be combined together:

𝑟𝑡 = 𝐴 × 𝐸𝑇𝑛 (𝑡) + 𝐵
× 𝛽(𝐸𝐻𝑛 (𝑡) − 𝐸𝑇𝑛 (𝑡) − 𝐵𝑛 (𝑡) − 𝐵𝑛 (𝑡 − 1)

𝛼 ) . (9)

Table 3: Values of A and B according to different actives.

Action A B 𝑟𝑡
𝑎1 1 1 𝑟𝑡 = 𝐸𝑇𝑛 (𝑡) + 𝛽(𝐸𝐻𝑛 (𝑡) − 𝐸𝑇𝑛 (𝑡) − 𝐵𝑛 (𝑡) − 𝐵𝑛 (𝑡 − 1)

𝛼 )
𝑎2 1 0 𝑟𝑡 = 𝐸𝑇𝑛 (𝑡)

𝑎3 0 1 𝑟𝑡 = 𝛽(𝐸𝐻𝑛 (𝑡) − 𝐵𝑛 (𝑡) − 𝐵𝑛 (𝑡 − 1)
𝛼 )

𝑎4 0 0 𝑟𝑡 = 0

Their values are listed in Table 3.
The reward function is actually the sum of the energy

for sending data package and the energy for cooperation. In
each TS, it encourages sending data and carrying out energy
cooperation.

In 𝑄-learning algorithm, actions with the highest 𝑄
values at a particular state should be taken at each step. The
agent who rigidly follows this rule might underperform since
the same decision will be investigated over and over again.
In order to be exploited, the state-action pair needs to be
explored firstly [34]. In this paper, we utilize 𝜀 greedy policy
(0 < 𝜀 < 1), which is commonly used during the process of
state-action space exploration. It enforces sporadic jumps to
suboptimal states for the exploration purposes, but also to
detect changes of the environmental conditions. Whenever a
decision is to be made, the one will be picked at random with
the (1 − 𝜀) probability, which is given to the action with the
highest 𝑄 value.

𝑄-learning converges to the optimal 𝑄 function. While
𝑡 → ∞, 𝑄(𝑠, 𝑎) converges to 𝑄∗(𝑠, 𝑎) with probability 1
[35], and the convergence rate is related to many factors. The
convergence rate increaseswith the value of 𝛿 and the number
of learning iterations𝑁𝐿 and decreases with the number of 𝑎,
𝑠, and 𝛾 [36]. Action selection follows the 𝜀 greedy policy with
probability (1 − 𝜀) at each TS. The exploration probability is
𝜀, and the exploitation probability is (1 − 𝜀).

4. Numerical Simulations

According to the traffic amount of SBS from large to small,
their relative positions in UDN are marked as Table 4. All
SBSs satisfy the constraints (C1).

20 SBSs are, respectively, [𝑥𝑖, 𝑦𝑖], 𝑖 = 1, 2, . . . , 20,
which are denoted by 𝑖th data point. 20 SBSs are clustered
according to dynamic k-means clusteringmethodmentioned
in Section 3.1. The sampling rate is 50%; that is, the (1–10)
data points are selected. As shown in Figure 3, the cluster
radius is 𝑟 = 50.7556, the number of cluster is 𝑘 = 3, and
the cluster centers are [𝑥3, 𝑦3], [𝑥5, 𝑦5], and [𝑥6, 𝑦6], which are
denoted as ⊕. The three final clusters are {3⊕, 1, 4, 7, 8, 10, 17},
{5⊕, 2, 9, 12, 13, 14, 15, 16, 19}, and {6⊕, 11, 18, 20}.

Through dynamic k-means clustering, without knowing
the 𝑘 value before, SBSs that have large business amount can
be selected as the cluster centers. There are relatively larger
energy demands for cluster centers, which can effectively
improve the utilization rate of energy. In addition,𝑄-learning
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Table 4: The positions of SBS.

𝑥𝑖 58 42 52 33 43 22 58 76 53 64 21 38 79 68 46 57 80 5 60 5
𝑦𝑖 69 21 84 63 13 20 61 63 37 58 45 4 2 31 1 38 68 9 3 61
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Figure 3: The dynamic k-means clustering result for SBSs in UDN.

Table 5: System parameters.

Parameters Values
𝑊 2MHz
Δ TS 10ms
𝑁0 10−20.4 w/Hz
ℎ1 1.655 ∗ 10−13
ℎ2 3.311 ∗ 10−13
𝑃𝐻𝑛 0.9
𝐵max 5
𝛾 0.9

in this paper only considers the energy cooperation between
the same clusters, which can reduce the dimension disaster
problem caused by too many states.

In the numerical analysis, we take one class {6⊕, 11, 18, 20}
as an example. All parameters are based on an IEEE802.15.4e
[36] communication system.The systemparameters are listed
in Table 5. Each time-slot ΔTS is 10ms, in which 5ms is
used to send data [30] and 5ms to zero signal level. The
channel state at TS 𝑛 is 𝐻𝑛, 𝐻𝑛 ∈ {ℎ1, ℎ2}. The chan-
nel state transition probability function is characterized by
𝑃𝐻𝑛(ℎ1, ℎ1) = 𝑃𝐻𝑛(ℎ2, ℎ2) = 0.9. The transmit power is 𝑃. We
consider Shannon’s capacity formula for Gaussian channels.
The battery capacity is 5, that is, 𝐵𝑛 = {0, 1, 2, 3, 4, 5}. Each
basic energy unit is 2.5 𝜇𝑗 [37, 38]. The possible data packet
sizes are 300 bits or 600 bits.

As shown in Figure 4, 𝑄-learning approach for energy
cooperation in one class is convergent. The horizontal axis
is the iteration times (the time of one iteration is 10ms,
and it is the same as other figures), and the vertical axis
is the difference between the adjacent two sampling value
functions. The line uses 5-degree polynomial fitting, and the
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Figure 4: Algorithm convergence process.
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Figure 5: Package transmission rate for 𝛿 = {0.5, 0.6, 0.7}.

sampling interval is 100 𝜇𝑠 (it is the same as in Figures 4–10).
The change of the value function proves the algorithm’s
convergence. When the iteration number (𝑁𝐿) reaches about6 × 104, the function value is basically unchanged.

In Figure 5 it shows that the learning factor 𝛿 in 𝑄-
learning algorithm can influence the iteration times when the
packet transmission rate reaches stable. When 𝛿 = 0.5 and
𝑁𝐿 ≈ 3.0∗104, the black diamond line is basically unchanged;
when 𝛿 = 0.6 and𝑁𝐿 ≈ 2.5∗104, the triangle blue line reaches
stable; when 𝛿 = 0.7 and𝑁𝐿 ≈ 1.5∗104, the red star line keeps
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Figure 6: Package transmission rate for 𝜀 = {0.1, 0.2, 0.3}.
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Figure 7: Data transmission rate for 𝐵max = {5, 6, 7, 8, 9} and 𝑃𝐻𝑛 =0.9.

stable. We can conclude that 𝑄-learning algorithm can keep
stable with smaller iteration times as 𝛿 increases.

As shown in Figure 6, 𝜀 greedy policy can ensure the
convergence of 𝑄-learning algorithm. When 𝜀 uses different
values, it can influence the final package transmission rate.
When 𝜀 = 0.1, the package transmission rate reaches about
60% as 𝑁𝐿 increases; when 𝜀 = 0.2, it reaches about 55%;
when 𝜀 = 0.3, it reaches about 50%. We can conclude that
𝑄-learning algorithm is able to learn the optimal policy with
increasing accuracy as 𝜀 decreases.

In Figure 7 we show the effect of themax battery size 𝐵max
on the expected data transmission rate. We can conclude that
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Figure 8:Data transmission rate for𝑃𝐻𝑛 = {0.5, 0.6, 0.7, 0.8, 0.9} and
𝐵max = 5.

Energy cooperation
No energy cooperation
Offline-LP

Offline
Greedy

12

14

16

18

20

22

24

26

28

30

D
at

a t
ra

ns
m

iss
io

n 
ra

te
 (K

bi
t/s

)

×104
1 2 3 4 5 6 7 8 90

Iteration times

Figure 9: Data transmission rate with and without energy coopera-
tion.

the expected data transmission rate increases with 𝐵max for
the proposed algorithm. In our model, the system state of 𝑛th
SBS inTS 𝑡 is 𝑆𝑛 = (𝐸𝐻𝑛 (𝑡), 𝐸𝑇𝑛 (𝑡),𝐻𝑛(𝑡), 𝐵𝑛(𝑡)), inwhich all the
parameter values are finite and discrete. If𝐵max has a relatively
larger value, then 𝐵𝑛(𝑡) ∈ {0, 1, . . . , 𝐵max} has more choices,
which leads to increased computation and dimension disaster
in 𝑄 learning. In this paper we make 𝐵max = 5 to simplify
the algorithm, but we have executed exhaustive numerical
simulations with different parameter settings and observed
similar results.
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Figure 10: Average energy efficiency with and without energy
cooperation.

Figure 8 displays the data transmission rate for different
𝑃𝐻𝑛 values. We see that the expected data transmission rate
increases with 𝑃𝐻𝑛 . It means that the more stable the channel
state is, the higher the data transmission rate is. In class
{6⊕, 11, 18, 20}, when 𝑃𝐻𝑛 = 0.5, the data transmission rate
is about 28 kbit/s; when 𝑃𝐻𝑛 = 0.9, the data transmission rate
is about 40 kbit/s. As 𝑃𝐻𝑛 increases, EH process becomes less
random, and the proposed algorithm can better estimate its
future states and adapt to it.

In Figure 9 it shows the relationship between the data
transmission rate and iteration times. Energy cooperation can
improve the energy utilization; that is, the data transmission
rate can be higher through energy cooperation. The black
diamond line which represents the rate of energy cooper-
ation reaches about 28 kbit/s, and the green triangular line
which represents the rate of no energy cooperation is below
24 kbit/s. The transmission rate through energy cooperation
is about 15%higher thanno energy cooperation. It is the same
with other clusters in UDN. The proposed method in this
paper can significantly improve the data transmission rate.

The ratio of the network throughput to the power
consumption per unit area is defined as EE (the energy
efficiency). The energy efficiency metric is a performance
indicator that measures the benefit-cost ratio by comparing
the achievable rate to the energy costs. In Figure 10 we
illustrate, together with the performance of the other
approaches, the expected average energy efficiency by the
proposed approach against the number of learning iterations
times. It can be observed that the average EE of energy
cooperation is higher than that of no energy cooperation.The
black curve is more closer to the Offline-LP algorithm. The
proposed method can significantly improve energy utiliza-
tion rate.

5. Conclusion

This paper presents a renewable energy cooperation man-
agement algorithm based on cluster and learning strategy
in UDN. Firstly, according to the geographical location and
traffic load, SBSs are clustered using dynamic 𝑘-means algo-
rithm, in which sampling technology is utilized to improve
computation speed and clustering effect. Secondly, within
each formed cluster, SBSs coordinate their renewable energy.
The process of energy cooperation is considered as MDP. 𝑄-
learning algorithm is adopted to optimize energy coopera-
tion, which considers four immediate reward functions, and
the convergence of the algorithm is realized by 𝜀 greedy pol-
icy.Thirdly, simulation results show that the newmethod can
improve the utilization of renewable energy and promote the
data transmission rate. At last, conclusion and future research
directions are presented, which include energy cooperation
between clusters, combination of renewable energy, smart
grid, and so on.

System Parameters in UDN

TS: Time-slot
𝐻(𝑡): Channel station information
𝐸𝐻𝑛 (𝑡): Energy harvested𝐸𝑇𝑛 (𝑡): Energy for transmitting data
𝐷𝑛(𝑡): Data amount to be transmitted
𝐵𝑛max: The maximum capacity of the battery.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work in this paper is supported by “Beijing Natural
Science Foundation (Grant no. 4164101),” “National Natural
Science Foundation of China (Grants no. 61501185, no.
61377088),” “Hebei Province Natural Science Foundation
(Grant no. F2016502062),” and “the Fundamental Research
Funds for the Central Universities (2015MS125, 2016MS97).”

References

[1] S. Chen, F. Qin, B. Hu, X. Li, and Z. Chen, “User-centric
ultra-dense networks for 5G: Challenges, methodologies, and
directions,” IEEE Wireless Communications, vol. 23, no. 2, pp.
78–85, 2016.

[2] S. Tang and L. Tan, “Reward Rate Maximization and Optimal
Transmission Policy of EHDevice with Temporal Death in EH-
WSNs,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1157–1167, 2017.

[3] M. Virili, A. Georgiadis, F. Mira et al., “EH performance of an
hybrid energy harvester for autonomous nodes,” in Proceedings
of the IEEE Topical Conference on Wireless Sensors and Sensor
Networks, WiSNet 2016, pp. 71–74, usa, January 2016.

[4] R. Ramamonjison and V. K. Bhargava, “Energy allocation and
cooperation for energy-efficient wireless two-tier networks,”



Wireless Communications and Mobile Computing 9

IEEE Transactions on Wireless Communications, vol. 15, no. 9,
pp. 6434–6448, 2016.

[5] N. Reyhanian, B. Maham, V. Shah-Mansouri, W. Tushar, and C.
Yuen, “Game-Theoretic Approaches for Energy Cooperation in
Energy Harvesting Small Cell Networks,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 8, pp. 7178–7194, 2017.

[6] Q. Wang, H.-L. Liu, and Y.-M. Cheung, “A renewable energy
cooperation scheme for OFDM systems using evolutionary
many-objective optimization algorithm,” in Proceedings of the
12th International Conference on Computational Intelligence and
Security, CIS 2016, pp. 194–197, chn, December 2016.

[7] H.-S. Lee and J.-W. Lee, “Energy cooperation and traffic man-
agement in cellular networks with renewable energy,” in Pro-
ceedings of the 59th IEEE Global Communications Conference,
GLOBECOM 2016, usa, December 2016.

[8] A. Jahid, A. B. Shams, and M. F. Hossain, “Energy cooperation
amongBSwith hybrid power supply forDPSCoMPbased cellu-
lar networks,” in Proceedings of the 2nd International Conference
on Electrical, Computer and Telecommunication Engineering,
ICECTE 2016, bgd, December 2016.

[9] Y. Dong, Z. Chen, and P. Fan, “Capacity region of gaussian
multiple-access channels with energy harvesting and energy
cooperation,” IEEE Access, vol. 5, pp. 1570–1578, 2017.

[10] W. Ni and X. Dong, “Energy harvesting wireless commu-
nications with energy cooperation between transmitter and
receiver,” IEEE Transactions on Communications, vol. 63, no. 4,
pp. 1457–1469, 2015.

[11] J. J. Pradha, S. S. Kalamkar, and A. Banerjee, “On information
and energy cooperation in energy harvesting cognitive radio,”
inProceedings of the 26th IEEEAnnual International Symposium
on Personal, Indoor, andMobile Radio Communications, PIMRC
2015, pp. 943–948, chn, September 2015.

[12] Z. Xiaorong and Z. Weiran, “Interference coordination-based
cell clustering and power allocation algorithm in dense small
cell networks,” Journal of Electronics & Information Technology,
vol. 38, no. 5, pp. 1173–1178, 2016.

[13] Z. Fang, Y. Li, H.-T. Li, and Y. Li, “Spatial coordination
beamforming for ultra-dense wireless networks,” Dianzi Keji
Daxue Xuebao/Journal of the University of Electronic Science and
Technology of China, vol. 45, no. 2, pp. 185–190, 2016.

[14] B. Lu, L. Tingting, and Y. Chenyang, “Interference coordination
method and performance analysis in Ultra-dense Network
(UDN),” Journal of Signal Processing, vol. 31, no. 10, pp. 1263–
1271, 2015.

[15] C. Guo, C. Feng-en, C. Lei, and G. Yuehong, “Study on
the interference coordination technology based on the traffic
characteristics in ultra dense network,” Telecom Engineering
Technics and Standardization, vol. 3, pp. 75–78, 2016.

[16] L. Liu, V. Garcia, L. Tian, Z. Pan, and J. Shi, “Joint clustering and
inter-cell resource allocation for CoMP in ultra dense cellular
networks,” in Proceedings of the IEEE International Conference
on Communications, ICC 2015, pp. 2560–2564, gbr, June 2015.

[17] R. Wei, Y. Wang, and Y. Zhang, “A two-stage cluster-based
resource management scheme in ultra-dense networks,” in
Proceedings of the 2014 IEEE/CIC International Conference on
Communications in China, ICCC 2014, pp. 738–742, chn, Octo-
ber 2014.

[18] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense net-
works: a survey,” IEEECommunications Surveys&Tutorials, vol.
18, no. 4, pp. 2522–2545, 2016.

[19] L. Liang, W. Wang, Y. Jia, and S. Fu, “A cluster-based energy-
efficient resource management scheme for ultra-dense net-
works,” IEEE Access, vol. 4, pp. 6823–6832, 2016.

[20] K. Rahbar, C. C. Chai, and R. Zhang, “Real-time energy
management for cooperativemicrogrids with renewable energy
integration,” in Proceedings of the IEEE International Conference
on Smart Grid Communications (SmartGridComm ’14), pp. 25–
30, IEEE, November 2014.

[21] D.W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource
allocation in OFDMA systems with hybrid energy harvesting
base station,” IEEE Transactions on Wireless Communications,
vol. 12, no. 7, pp. 3412–3427, 2013.

[22] Y.-K. Chia, S. Sun, and R. Zhang, “Energy cooperation in
cellular networks with renewable powered base stations,” IEEE
Transactions on Wireless Communications, vol. 13, no. 12, pp.
6996–7010, 2014.

[23] Z. Ren, S. Chen, B. Hu, and W. Ma, “Energy-efficient resource
allocation in downlink OFDM wireless systems with pro-
portional rate constraints,” IEEE Transactions on Vehicular
Technology, vol. 63, no. 5, pp. 2139–2152, 2014.

[24] E. Boshkovska, A. Koelpin, D. W. K. Ng, N. Zlatanov, and R.
Schober, “Robust beamforming for SWIPT systems with non-
linear energy harvesting model,” in Proceedings of the 17th IEEE
International Workshop on Signal Processing Advances in Wire-
less Communications, SPAWC 2016, gbr, July 2016.

[25] S. Maghsudi and E. Hossain, “Distributed user association in
energy harvesting small cell networks: a probabilistic bandit
model,” IEEE Transactions onWireless Communications, vol. 16,
no. 3, pp. 1549–1563, 2017.

[26] S. Zhao, T. Zhang, and X. Zhu, “A handover algorithm based
on prediction of adjustable threshold hysteresis margin in ultra
dense network,” Dianzi Yu Xinxi Xuebao/Journal of Electronics
and Information Technology, vol. 38, no. 3, pp. 649–654, 2016.

[27] W. Junxuan, T. Shiyan, and S. Changyin, “Resource allocation
based on user clustering in ultra-dense small cell networks,”
Journal of XI’AN University of Posts and Telecommunications,
vol. 21, no. 1, pp. 16–20, 2016.

[28] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic
approach to energy harvesting communication system opti-
mization,” IEEE Transactions on Wireless Communications, vol.
12, no. 4, pp. 1872–1882, 2013.

[29] F. Jinmei, “Research on large scale data clustering analysis
methods,” Harbin: Harbin Engineering University, pp. 56–73,
2015.

[30] T. A. Hearn and L. Reichel, “Fast computation of convolution
operations via low-rank approximation,” Applied Numerical
Mathematics, vol. 75, pp. 136–153, 2014.

[31] T. Sen-ping and W. Wen-liang, “Algorithm of automatic gained
parameter value k based on dynamic k-means,” Computer
Engineering and Design, vol. 32, no. 1, pp. 274–276, 2011.

[32] B. Zhen-shan, X. Bo, and Z. Wen-bo, “Improved LEACH
algorithm based on k-means in clustering,” Computer Science,
vol. 40, no. 10, pp. 215–218, 2013.

[33] S. Ruoying and Z. Gang, “Reinforcement learning and coordi-
nation in multiagent systems,” Tsinghua University Press, pp. 1–
19, 2014.

[34] J. N. Tsitsiklis, “Asynchronous Stochastic Approximation and
Q-Learning,”Machine Learning, vol. 16, no. 3, pp. 185–202, 1994.

[35] C. Watkins, “Learning from delayed rewards,” Royal Holloway,
University of London, pp. 220–228, 1989.



10 Wireless Communications and Mobile Computing

[36] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,”
Machine Learning Research, no. 5, pp. 1–25, 2003.

[37] IEEE 802.15.4e Draft Standard: Wireless Medium Access Con-
trol(MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs), IEEE Std.,
Mar. 2010.

[38] S. Chalasani and J. M. Conrad, “A survey of energy harvesting
sources for embedded systems,” in Proceedings of the IEEE
Southeastcon, pp. 442–447, Huntsville, Ala, USA, April 2008.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


