Hindawi

Wireless Communications and Mobile Computing
Volume 2018, Article ID 1250359, 21 pages
https://doi.org/10.1155/2018/1250359

Research Article

WILEY

Hindawi

AndroClass: An Effective Method to
Classify Android Applications by Applying Deep Neural
Networks to Comprehensive Features

Masoud Reyhani Hamedani (,' Dongjin Shin ®,” Myeonggeon Lee ©,
Seong-Je Cho ®,' and Changha Hwang ®*

1

"Department of Software Science, Department of Computer Science and Engineering,

Dankook University, Yongin, Republic of Korea

Department of Applied Statistics, Department of Data Science, Dankook University, Yongin, Republic of Korea

Correspondence should be addressed to Seong-Je Cho; sjcho@dankook.ac.kr

Received 17 May 2018; Revised 12 July 2018; Accepted 25 July 2018; Published 10 September 2018

Academic Editor: Gerardo Canfora

Copyright © 2018 Masoud Reyhani Hamedani et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Android application (app) stores contain a huge number of apps, which are manually classified based on the apps™ descriptions
into various categories. However, the predefined categories or apps descriptions are usually not very accurate to reflect the real
functionalities of apps, thereby leading to misclassify the apps, which may cause serious security issues and unreliability problem in
the app store. Therefore, the automatic app classification is an important demand to construct a secure, reliable, integrated, and easy to
navigate app store. In this paper, we propose an effective method called AndroClass to automatically classify apps based on their real
functionalities by using rich and comprehensive features representing the actual functionalities of the apps. AndroClass performs
three steps of feature extraction, feature refinement, and classification. In the feature extraction step, we extract 14 various features
for each app by utilizing a unified tool suite. In the feature refinement step, we apply Random Forest algorithm to refine the features.
In the classification step, we combine refined features into a single one and AndroClass is equipped with K-Nearest Neighbor, Naive
Bayes, Support Vector Machine, and Deep Neural Network to classify apps. On the contrary to the existing methods, all the utilized
features in AndroClass are stable and clearly represent the actual functionalities of the app, AndroClass does not pose any issues to
the user privacy, and our method can be applied to classify unreleased or newly released apps. The results of extensive experiments
with two real-world datasets and a dataset constructed by human experts demonstrate the effectiveness of AndroClass where the
classification accuracy of AndroClass with the latter dataset is 83.5%.

1. Introduction

Nowadays, smartphones are playing an important role in
our lives by providing rich functionalities that allow users to
perform different activities such as playing games, browsing
the Internet, using navigation services, doing online shop-
ping, and checking the bank balance [1-4]. A smartphone
is equipped with an operating system such as Android,
BlackBerry, iOS, and Windows Mobile, while among these
operating systems, Android is the fastest growing one [3, 5-
8]. Due to the popularity of Android smartphones, Android
applications (in short, apps) are also rapidly growing in the

number and variety distributed via app stores such as the offi-
cial Google Play Store (http://play.google.com/apps), Ama-
zon App Store (https://www.amazon.com), and APKPure
(https://apkpure.com) [4, 9-11].

In order to develop Android apps, Java programming
language is usually used while other languages like C/C++
are also supported. Java code is compiled and converted into
one or more Dalvik executable bytecode files (if the total
number of methods referenced in an app exceeds 65536, the
app is converted to multiple DEX files [12]), which is run on
the Dalvik Virtual Machine (DVM) or the Android runtime
(ART) implemented for limited resource environments such

http://orcid.org/0000-0003-1529-5473
http://orcid.org/0000-0001-7182-4646
http://orcid.org/0000-0003-4555-6558
http://orcid.org/0000-0001-9917-0429
http://orcid.org/0000-0003-1262-5051
http://play.google.com/apps
https://www.amazon.com
https://apkpure.com
https://doi.org/10.1155/2018/1250359

as smartphones. The structure of a typical app is as follows.
AndroidManifest.xml is an XML file holds meta information
about the app (hereafter, manifest information) such as the
required security permissions. The classes.dex file contains
the Dalvik executable bytecode of the app. The resources.arsc
file contains precompiled application resources in a binary
format. The res folder contains different resources required
by the app to run. The META-INF folder contains the app’s
digital signature and the developer certificate. The [ib folder
contains the compiled code specific to a software layer of
a processor. The assets folder contains app’s assets such as
license information and FAQ. All the aforementioned files
and folders are packaged into a single Android Package
(APK), which is an archive file type easily extractable by any
archiving software [1, 6, 13].

In the literature, significant attentions have been paid to
the topic of malware detection such as the studies in [1, 6, 7,
9, 14-25]. However, very fewer efforts have been devoted to
the classification of apps. Google Play Store contains nearly a
million apps providing different functionalities; to facilitate
browsing and searching of the apps, they are classified into
various categories such as tools, music, social media, and
browsers [26-29]. This categorization is helpful for both users
and developers in different aspects. The users can browse
the appropriate category to find the relevant apps to their
needs [27, 30]. In the case of developers, they can decide
what functionalities they should provide in their own app and
determine what common problems or bugs they should be
aware of by considering the other apps belonging to the same
category [31, 32].

In the app store, the appropriate category for an app is
manually selected by the developers or store managers based
on the app’s description [27, 28, 31]. This is not only a time-
consuming task [26, 31] but it may also lead to misclassify the
apps since the predefined categories or descriptions in the
store are usually not very accurate to reflect the real function-
alities of apps [26, 29]. As a result, the manual classification
may cause different problems in the app stores as follows.
First, the serious security issues may affect the app store
since the classification process can easily be manipulated by
malware developers to evade the malware detection through
assigning the malware to an unrelated category [26, 27]. Sec-
ond, users have difficulties to find their required apps and also
may be persuaded to install the apps or pay for the ones that
do not provide users’ expected functionalities [27]. Therefore,
the automatic app classification is an important demand to
construct an integmted, easy to navigate, reliable, and secure
app store where the appropriate category is automatically
assigned to an app based on its real functionalities before the
app is officially released in the store.

We note that a category defines the functionalities of its
belonging apps in an abstract way [3, 26, 27]; therefore, we
need to take advantage of those features that reflect the actual
functionalities of the apps in classification. As explained
before, APK files contain rich sources of information such as
the AndroidManifest.xml file that holds meta information
about the app (e.g., permissions, hardware, and software com-
ponents) and the DEX file that contains the app’s bytecode
(holding API calls, etc.). For app classification, the features

Wireless Communications and Mobile Computing

can be extracted from this very helpful and unique informa-
tion; as an example, an app cannot send SMS, read contacts, or
access camera without requesting special permissions and
invoking appropriate APIs. In other words, permissions and
API calls can clearly capture the app’s behaviors and function-
alities [1, 22, 24, 33].

In this paper, we propose an effective method called
AndroClass to automatically classify Android apps based on
their real functionalities by taking advantage of rich and
comprehensive features representing the actual functionalities
of the apps. AndroClass performs three orthogonal steps of
feature extraction, feature refinement, and classification. In
the feature extraction step, we extract 14 various features for
each app containing API packages, API classes, API methods,
and API-method full signatures from the DEX file; permis-
sions, hardware or software components, activities, services,
broadcast receivers, content providers, actions, and categories
from the Manifest.xml file along with strings and their name
attribute from the strings.xml file. However, for simplicity
without losing generality, we summarize all these features
into the three types as API calls, manifest information, and
strings. Consequently, an app is represented as three separate
binary vectors, A-vector, M-vector, and S-vector, containing
the aforementioned feature types, respectively. For each of
the API calls and manifest information, we consider multiple
candidates and select the one that shows the best effectiveness
in classification as the final representative of the target feature
type. Our AndroClass does not utilize any third-party tools
to extract the features; instead, we developed a unified tool
suite to mine APK files and the Android platform, thereby
obtaining useful information and extracting features from
them.

In the feature refinement step, we apply embedded mod-
els [34] by utilizing Random Forest algorithm [35] to refine
the feature values in A-vectors, M-vectors, and S-vectors
separately and select the feature values that are useful for
classification. In the classification step, we combine features
that are already refined into a single feature; consequently, an
app is represented as a single binary feature vector, F-vector.
Then, we apply four well-known classification algorithms
as K-Nearest Neighbor (KNN), Naive Bayes (NB), Support
Vector Machine (SVM), and Deep Neural Network (DNN)
to classify apps into their appropriate categories; to the best of
our knowledge, AndroClass is the first method which applies
DNN to app classification.

On the contrary to the existing methods proposed in
[4, 26-29, 36], our employed datasets have a large number of
fine-grained categories, all the utilized features in AndroClass
are stable and clearly represent the actual functionalities
of the app, AndroClass does not need to access the users
smartphones for feature extraction and thereby does not pose
any issues to the user privacy, our method can be applied to
classity unreleased or newly released apps as well, and Andro-
Class does not utilize existing third-party tools for feature
extraction. In Sections 2 and 3.5, we discuss these issues in
detail. In addition to app classification, AndroClass can be
applied to malware detection and malware classification (i.e.,
detecting the malware family) as well (we note that the
malware detection and malware classification topics are out

Wireless Communications and Mobile Computing

of the scope of our paper. As a part of our future work, we plan
to extensively study and evaluate the effectiveness of applying
AndroClass to the aforementioned topics). We demonstrate
the effectiveness of our AndroClass by conducting exten-
sive experiments with two real-world datasets, Google and
APKPure (i.e., constructed based on Google Play Store and
APKPure, respectively) and a dataset constructed by human
experts and also employing evaluation measures of accuracy,
precision, recall, and F-score [37]. We note that, in this paper,
we focus on classification effectiveness than efficiency for
the following reasons. First, app stores are seriously suffering
from misclassification [3]; therefore, in this paper, we propose
an automatic classification method with a reasonable effec-
tiveness. Second, it is possible to improve the classification
efficiency through different software and hardware solutions
such as employing distributed computing techniques or using
special machines. Third, constructing the app classification
model is not a real-time task, and the app store manager does
not have to reconstruct the model whenever a new app is
released in the store; the model can be updated periodically
while the previous model is still in use.

The contributions of this paper are summarized as fol-
lows:

(i) We propose AndroClass to automatically classify An-
droid apps based on their real functionalities.

(ii) We take advantage of and evaluate 14 rich and com-
prehensive features in classification that represent the
actual behaviors and functionalities of the apps.

(iii) We conduct extensive experiments with three different
datasets of apps each of which contains fine-grained
categories.

(iv) To the best of our knowledge, AndroClass is the first
method applies DNN to app classification and employs
a datasets constructed by human experts to carefully
evaluate the effectiveness of classification.

(v) We develop a unified tool suite that covers our entire
requirements in feature extraction without utilizing
the existing third-party tools.

2. Related Work

Reference [4] proposes a method to classify apps where
strings, permissions, rating, number of rating, and the size
of apps are used as features for training different classification
algorithms. The size of the employed dataset is very small (i.e.,
only 820 app and 7 categories) (in our manual dataset, we
have smaller number of apps (i.e., 364) but bigger number of
categories, which means we have tried to carefully evaluate
AndroClass with a fine-grained categorized dataset). Also,
some of the features such as ratings, number of ratings, and
the sizes of the apps are not suitable for app classification since
they do not represent the app’s functionalities. The ratings and
number of ratings reflect the user satisfaction (i.e., the quality
of the provided functionalities by the app) and the number of
users who have rated the app, respectively; they do not rep-
resent the app’s functionalities. This method extracts permis-
sions from both AndroidManifest.xml files and the app stores

then combine them as a unique feature to be used in clas-
sification. However, the permissions obtained from the app
store are not enough precise to represent the actual requested
permissions by an app [19]. This method may have problem
for classitying unreleased or newly released apps since there is
not any rating or number of rating information about these
types of apps in the app stores. LACTA [28] extracts strings
by decompiling DEX files as the feature where an app is
represented as a document of terms. Then, by applying Latent
Dirichlet Allocation (LDA), two matrices as term-topic and
topic-software are constructed; the similar topics based on
the cosine similarity value are combined. Finally, according
to the topic-software matrix, app are divided into the different
categories. The size of the employed dataset is very small (i.e.,
only 49 app and 8 categories). This method simply considers
an app as a bag of words such as a web page or a text docu-
ment, thereby easily neglecting those features that represent
the app’s functionalities such as the requested permissions
and API calls. Furthermore, the TF weighting scheme is
utilized, which cannot accurately show the importance of a
term in an app in comparison to TF-IDF weighting scheme
[38]. In [36], the permissions requested by the apps are
utilized as the feature and the apps are categorized by applying
neural networks (NN). However, the proposed method is
actually applied to malware detection where NN provides a
probability value as the possibility of classifying the app into
a category. If this probability value is larger than a threshold,
the app is benign; otherwise it is malware. The employed
dataset is very small (i.e., 50 apps and 34 categories). In addi-
tion, real malware data are not utilized; instead, the permis-
sions in some apps are randomly changed without changing
their categories to generate the malicious apps. This method
also neglects useful features such as the API calls and strings
in app classification.

Reference [29] utilizes web search engines and user
smartphones to extract required features for classification.
The app name is submitted to a web search engine and the
content of the first page showing the results is obtained. Also,
the historical context data and the app usage records such
as time stamp, time range, profile, battery level, and location
are obtained from the device logs. However, analyzing
device logs on smartphones is expensive, time-consuming,
and not always feasible and may pose issues to the user
privacy as well. In addition, this method cannot be used for
classifying unreleased or newly released apps since there is
not any information about these types of apps in web search
engines or users’ smartphones. The method also considers
the app classification as the problem of classifying simple text
documents where many useful features such as API calls,
permissions, and strings (minded from the apps) are neglect-
ed. Also, the utilized features are not stable since different
search engines may provide us different textual information
about an app. Reference [27] proposes a method for app clas-
sification where different features such as permissions, hard-
ware components, and API calls are extracted to characterize
the behaviors of apps; the best features for classification
are selected by applying support vector machine (SVM).
Actually, an app is identified as game or nongame one;
then, it is classified into the predicted category by utilizing

4
Feature Extraction
———————— -
1 | \
4] Androidmanifest.xml |
! I
[
\-é‘_@fﬂ AndroidManifest.xm] fm— : strings.xml
binary)

4 fr’ i (binary

PR resources.arsc 1 Il methods.txt .

L classes.dex |y -
== ————-=

List 1

’—-b

Java Reflection

€

android.jar

Wireless Communications and Mobile Computing

Feature Refinement

Random Forrest

Refined Features
Classifier

Selecting top feature A-vector
values in various Best feature
cut-off points values _ |
>

S-vector

<&

Training
Data

Test Data

-
Oo

\%gory Prediction ClﬂSSiﬁer/

Classification

FIGURE 1: An overview of AndroClass.

different classification algorithms. Finally, the ensemble of
multiple classifiers with majority voting is used for the final
classification. In this method, SVM is applied to refine the
features based on only two classes as malicious and benign
apps. However, this kind of feature refinement may not be
suitable for classifying apps based on their functionalities
since the features are actually refined for a different purpose
(i.e., malware detection) not for app classification; also, the
features are refined based on only two classes (i.e., malicious
and benign apps) not based on multiple classes. In addition,
the ensemble of multiple classifiers is time-consuming since
we have to execute multiple classification algorithms and
then perform voting on their predictions. Although the
dataset size is large (i.e., 107,327), the number of categories
is very small (i.e., 24) and categorization is not fine-grained
that may bias the classification effectiveness as explained
in Section 4.2.3. ClassifyDroid [26] uses only the method
names of API calls as the feature and utilizes semisupervised
multinomial Naive Bayes (SMNB) for classification.
Although the method names of APIs (i.e., in the case of
“android.content.AsyncQueryHandler.removeMessages(int
what)” API, the method name is “removeMessages”) could
represent the behavior of an app, they have some difficulties
to clarify the actual functionalities of the app. For example,
as explained in Section 4.2.2, the aforementioned API and
“android.content. AsyncQueryHandler.removeMessages(int
what, Object obj)” perform different tasks; however, they
have an identical method name. Furthermore, although the
dataset size is large, the number of categories is small (i.e., 10
categories) and app classification is considered as classifying
simple text documents where other useful features such as
permissions and strings are neglected.

3. Proposed Method

This section presents our proposed method, AndroClass, in
detail. Section 3.1 starts with an overview of the method.
Section 3.2 explains the feature extraction mechanism.

Section 3.3 describes the refinement process of features.
Section 3.4 explains the classification of apps. Section 3.5
discusses the specifications of AndroClass and the existing
methods.

3.1 Overview. As shown in Figure 1, AndroClass performs
three steps of feature extraction, feature refinement, and clas-
sification. First, the apps are unzipped by an archiving utility
[39]. In the feature extraction step, three separate informative
files as AndroidManifest.xml, strings.xml, and methods.txt are
obtained directly from an unzipped APK file (i.e., the app).
In addition, Android API List is obtained directly from the
Android platform (i.e., the “android.jar” file provided by the
Android SDK) as well. All this information is mined for
extracting the API calls, manifest information, and strings as
the feature types of an app. Consequently, the app is repre-
sented by the three separate vectors as A-vector, M-vector, and
S-vector containing the above feature types, respectively.

In the feature refinement step, we refine each of our fea-
ture types separately as follows. A weight is assigned to each
feature value indicating its importance by applying the Ran-
dom Forest algorithm [35]. The effectiveness of the feature
type in classification is evaluated with its top feature values
in various cut-oft points by utilizing different classification
algorithms. Finally, the cut-off point showing the best effec-
tiveness (i.e., in terms of accuracy, precision, recall, and F-
score) is selected to refine the feature type. In the classification
step, the refined features in the previous step are combined
into a single feature; each app is represented by a single feature
vector, F-vector. Then, various classification algorithms as
KNN [40], NB [41], SVM [42], and DNN [43] are applied to
obtain classification models. The appropriate category of an
app can be predicted by these models.

3.2. Feature Extraction Step. For feature extraction, we do not
use the existing third-party tools such as dedexer, baks-
mali disassembler, and dex2jar used in [4], [23], and [28],

Wireless Communications and Mobile Computing

respectively. Instead, we developed a unified tool suite for
obtaining information from the APK files (i.e., Android-
Manifest.xml, classes.dex, and resources.arsc files) and the
Android platform and also mining this information in order
to extract different features. The reason is that the third-party
tools are not flexible enough to cover our entire requirements
(i.e., obtaining the informative files, extracting features, and
constructing the feature vectors) for feature extraction.

3.2.1. API Calls. The Android platform provides a collection
of APIs, which are utilized by apps to interact with
the underlying Android system and the smartphones
[1, 9, 24]; for example, an app can send SMS by calling
“android.telephony.SmsManager.send TextMessage(L,L,L,L,L)
(for simplicity, we use Dalvik symbols to represent variables
where the letter L indicates a class; for example, the first
L in this parameter list represents java.lang.String)”. More
specifically, API calls can clearly capture the app’s behaviors
and functionalities [1, 22, 24, 33]. We consider four possible
candidates as API-package, API-class, API-method, and API-
full-method for API calls feature type where we utilize the API
packages (e.g., “android.telephony” in the above example),
the API classes (e.g., “android.telephony. SMSManager”),
the API methods (e.g., “android.telephony.SmsManager
.sendTextMessage”), and the API-full-method signatures
(e.g., “android.telephony.SmsManager.send TextMessage(L,
L,L,L,L)”), respectively. In Section 4, by conducting extensive
experiments, we evaluate which candidate is more beneficial
to app classification and select it as the representative of the
API calls feature type. In order to extract the four possible
candidates of the API calls feature type, we utilize the infor-
mation obtained from both the APK file and the Android
platform.

First, we obtain the required information from the APK
file as follows. The DEX file contains different sections such
as a header, method_ids, string_ids, type_ids, proto_ids, and
data. The method_ids section contains identifiers for all the
methods (i.e., APIs and user-defined methods) referred to
the app and does not contain any duplicate entries. The
string_ids section contains identifiers for all the strings (e.g.,
classes, methods, parameters, variables, error messages, and
dialogues) used by the app, which is sorted by string contents
and does not contain any duplicate entries. The type_ids
section contains identifiers for all the types (i.e., classes,
arrays, or primitive types) in the app and does not contain any
duplicate entries. The proto_ids section contains identifiers
for all the prototypes (i.e., parameter list and return type for
all methods) and does not contain any duplicate entries. The
data section contains all the supported data for the other
sections. In the header section, the offset and the size of
each of the aforementioned sections are indicated; therefore,
accessing to each section is easily possible [44, 45].

To construct the methods.txt file (a list of all the available
methods) of an app, we refer to the app’s method_ids section
via its starting address in header and read all entries in
the section until reaching its end. We note that the ending
address of the section is easily calculated by adding its starting
address to the size of the section, which is indicated in
header as well. Each entry in the method_ids section is a data

structure that contains various kinds of information about
a method including class_idx, name_idx, and proto_idx as
indices to offsets in the type_ids section, string_ids section,
and proto_ids section, respectively. We extract the method’s
owner class through class_idx since its pointed offset in the
type_section also contains an index to another offset in the
string_ids section. Also, we extract the name of the method
itself and its parameter list through name_idx and proto_idx,
respectively. We concatenate the owner class to the method
name and the related parameter list to make the full-method
signature and store it in the methods.txt file. Second, we
construct Android API List by applying the Java reflection to
the “android.jar” file and obtain the descriptions (i.e., the class
path, method name, and prototype) of Android APIs.

Now, after obtaining all the required information, we
can extract the feature for an app. First, we filter out every
apps methods.txt file and neglect any entries that is not an
API by using Android API List. Then, all the constructed
methods.txt files (i.e., each app has its own methods.txt file)
are combined together as a method set containing all the
observed methods in the dataset. We note that A-vector of an
app representing any of the four possible candidates as API-
package, API-class, API-method, and API-full-method can
be easily constructed by comparing the app’s methods.txt file
with the method set and applying some string manipulation
techniques on entries in app’s methods.txt file and the method
set. For the API calls feature type (i.e., any of the four possible
candidates), app a is represented as a binary vector, A-vector,
where each dimension corresponds to a feature value and the
content of a dimension indicates the presence (i.e., value as 1)
or absence (i.e., value as 0) of its corresponding feature value
in the app. More specifically, A-vector of app a is represented
as A-vector(a)=< v, vy, ...,v,_; > with dimensionality [; [is
the number of feature values extracted from all the apps in the
dataset before dividing them into training and test instances;
v; = 1(0 < i < I-1)if a contains the feature value v;,

i =

otherwise v; = 0 [38].

3.2.2. Manifest Information. The AndroidManifest.xml file
holds manifest information about the app and provides data
that supports both the installation and execution of the app as
follows [1, 9, 16].

Requested Permissions. All the permissions that the app re-
quires to perform critical tasks should be declared; for ex-
ample, in order to send an SMS or access the smartphone’s
information such as IMEI, the app requires to request
“SEND_SMS” or “READ_PHONE_STATE” permission, re-
spectively.

Hardware and Software Components. The hardware (e.g.,
camera) and software (e.g., VoIP) components that the app
requires to access should be declared. The component could
be either an essential one that the app cannot function
without it or an optional one that the app prefers to have it
but can function without it as well.

App Components. There are four different types of compo-
nents in an app as activity, service, broadcast receiver, and
content provider. The activity component implements the Ul

(user interface) of the apps, which can also have a return
value. The service component implements a task without
UI that is running as a background service. The broadcast
receiver component enables the app to receive events broad-
cast by the Android system or other apps even when other
components of the app are not running. The content provider
component supplies an access interface to the data required
by the app.

Intent Filters. An intent facilitates communication between
the app’s components and also between different apps such
as starting an activity, starting a service, and delivering a
broadcast. The intent filter, which contains different data such
as the action and category, specifies the types of intents that
an activity, service, and broadcast receiver can respond to it;
for example, a service component is only invoked when it
receives the system intent with a specific action.

The aforementioned information in the AnfroidMani-
fest.xml file can also capture the app’s behaviors and func-
tionalities [1, 9, 22] as API calls do; thus, we extract the
manifest information to understand what operations an app
executes. Since the AnfroidManifest.xml file is in the binary
format, we decompile apps by using Apktool (https://ibot-
peaches.github.io/Apktool/) to access the file in the non-
binary format [36]. Then, all the extracted manifest infor-
mation (i.e., each app has its own manifest information) is
combined together as a manifest information set containing
all the observed manifest information in the dataset. We
consider two possible candidates for the manifest information
feature type as manifest-permission and manifest-complete.
In the case of manifest-permission, we utilize only the
permissions requested by the app. In the case of manifest-
complete, we utilize all the available information as permis-
sions, hardware and software components, activities, services,
broadcast receivers, content providers, actions, and cate-
gories. In Section 4, by conducting extensive experiments, we
evaluate which candidate is more beneficial to classification
and select it as the representative of the manifest information
feature type. For the manifest information feature type, an
app is represented as a binary vector, M-vector, where each
dimension corresponds to a feature value and the content
of a dimension indicates the presence or absence of its
corresponding feature value in the app, as in A-vector, which
is described in Section 3.2.1. M-vector of an app representing
any of the two possible candidates can be easily constructed
by comparing the app’s manifest information with the mani-
fest information set. Note that the dimensionality of each M-
vector is identical to the number of feature values extracted
from all the apps in the dataset before dividing them into
training and test instances.

3.2.3. Strings. The strings contained in an app normally rep-
resent its semantic information and describe the app’s main
functionalities [4, 46] as well as the API calls and manifest
information. Therefore, the strings could be regarded as
another useful feature for app classification. The strings.xml
file is a single reference for various strings with optional
text styling and formatting appeared in an app where each
string has a name attribute as its unique identifier; Figure 2

Wireless Communications and Mobile Computing

represents a part of this file for the “Weather Forecast” app.
We extract both the string and its name attribute since, as we
can see in Figure 3, the name attribute also can represent some
semantic information about the app. The strings.xml file is
located in "/res/values/" folder, which is in the binary format;
to access this file, we decompile apps by using Apktool.
Then, we remove nonalphabetical characters, split the strings,
remove stop words including the Java reserved keywords
as well, and perform stemming on the remaining strings.
Finally, all the extracted strings (i.e., each app has its own
strings) are combined together as a strings set containing all
the observed strings in the dataset. For the strings feature
type, an app is represented as a binary vector, S-vector, which
is similar to A-vector and M-vector; S-vector of an app can
be easily constructed by comparing the entries in app’s strings
and the strings set. Note that the dimensionality of S-vector
is identical to the number of feature values extracted from
all the apps in the dataset before dividing them into training
and test instances. To the best of our knowledge, among all
the existing studies in both app classification and malware
detection topics, AndroClass is the first method that takes
advantage of the information in the strings.xml file.

3.3. Feature Refinement Step. In real-world applications such
as app classification, there are lots of feature values, which
are irrelevant for classification. Therefore, we have to perform
the feature refinement to reduce the dimensionality and select
those feature values that are mostly relevant for classification,
thereby leading to a better effectiveness and avoiding the
overfitting problem [27, 34]. To clarify the issue, consider
the two following samples from our Google dataset. The
“android.os.Message.sendToTarget()” API that is used by an
app to send a message to a specific handler has been called
in more than 90% of apps and the “INTERNET” permission
that allows an app to open the network sockets and access
to Internet has been requested in more than 95% of apps.
Therefore, it is not effective in considering all the extracted
API calls and manifest information in app classification. In
the case of strings, we face the same issue as well.

In the feature refinement step, we employ embedded
models [34] by utilizing Random Forest (RF) [35]. RF is
an ensemble classifier suitable for multiclass classification
containing multiple decision trees where each decision tree
is independently trained with a randomly selected data. RF
internally uses information gain [34] to assign a weight to
each feature value as its importance in classification. We apply
RF to refine each of API calls, manifest information, and
strings feature types, separately. As an example, in order to
refine the API calls feature type, the apps are considered by
their appropriate A-vectors (i.e., only the API calls feature
is regarded) where A-vectors can represent any of the four
candidates API-package, API-class, API-method, or API-
full-method. We apply RF to assign the weight to each
of the existing feature values and select top feature values
in various cut-off points (e.g., 2%, 4%, 6%, 8%, and 10%).
Since AndroClass is equipped with different classification
algorithms as KNN, NB, SVM, and DNN, we perform feature
refinement with each of these classification algorithms; the

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

Wireless Communications and Mobile Computing

<string name="add">Add</string>

<string name="cancel">Cancel</string>

<string name="sunrise">Sunrise:</string>

<string name="sunset">Sunset:</string>

<string name="weather clear">Clear</string>

<string name="weather_ sunny">Sunny</string>

<string name="weather PartlyCloudy">Partly cloudy</string>

<string name="weather_ Cloudy">Cloudy</string>
<string name="weather_Overcast">Overcast</string>

<string name="weather Mist">Mist</string>

<string name="weather Patchyrain">Patchy rain</string>
<string name="weather Lightsnow">Light snow</string>

<string name="weather_ sleet">Sleet</string>

<string name="weather_ freezingrain">Freezing rain</string>

<string name="weather thundershower">Thunder shower</string>

<string name="weather Blizzard">Blizzard</string>

<string name="weather_ shower">Shower</string>

<string name="weather Moderaterain'">Moderate rain</string>
<string name="weahter_ Heavyrain'>Heavy rain</string>

_n

<string name="weather Moderatesnow">Moderate snow</string>

<string name="weather_ Heavysnow'>Heavy snow</string>

<string name="weather_snowshowers">Snow showers</string>

<string name="weather thunderysnow"”>Thundery snow</string>
<string name="public_ time">Public:</string>

<string name="public_time_ unknow">Unsynchronized</string>

FIGURE 2: A part of a strings.xml file.

effectiveness of applying the API calls feature type to classifi-
cation is evaluated in considered cut-off points by utilizing
the classification algorithm, and the one showing the best
effectiveness is selected to refine the feature. More specifically,
we select four best cut-off points with each of KNN, NB,
SVM, and DNN where API-package, API-class, API-method,
and API-full-method have their own cut-off point. The same
process is applied to refine the manifest information and
string feature types.

3.4. Classification Step. In the classification step, first, the
features refined in the previous step are combined into a
single feature. Consequently, an app is represented as a single
binary feature vector, F-vector, which will be utilized in app
classification. Finally, we apply four well-known classification
algorithms to classify the apps.

K-Nearest Neighbor (KNN) [40]. KNN is a nonparametric
algorithm suitable for both classification and regression.
KNN does not make any assumptions on the underlying
data distribution, and there is not any explicit training phase.
The training data is utilized during the testing phase where
the distances between training instances and a test instance
are measured; by using majority voting among the k-nearest
training instances, the class of the test instance is predicted.

Naive Bayes (NB) [41]. NB is a probabilistic classification
algorithm based on Bayes theorem. To estimate probabilities
of the appearance of various classes under the condition of

the appearance of a test instance by Bayes theorem, joint
probabilities of feature values under condition of a class
have to be calculated. NB simplifies this calculation with an
assumption that feature values are independent under the
condition of each class.

Support Vector Machine (SVM) [42]. SVM is an algorithm
suitable for both classification and regression. Although SVM
is originally designed for binary classification, it is also
applicable to multiclass classification via multistage SVM
where a maximum-margin optimization problem is solved by
finding multiple hyperplanes that provide an ideal separation
between training instances belonging to different classes.
The margin is defined by the farthest distance between the
instances of a class and all the instances belonging to other
classes computed based on the distances between the closest
instances from opposite sides, which are called supporting
vectors. In testing phase, the instances are mapped into the
same space to predict the appropriate category of an instance.

Deep Neural Networks (DNNs) [43]. DNNs are learning
methods with multiple levels of representation, obtained by
composing simple but nonlinear modules where all or most
of them are subject to learning, and each transforms the
representation at one level (starting with the raw input) into
a representation at a higher, slightly more abstract level.
With the composition of enough such transformations, very
complex functions can be learned. DNNs discover intricate
structure in large and high-dimensional features by using the

8
0.10 - - - - - 0.10 -
KNN NB
0.08 - 0.08
0.06 0.06
0.04 0.04

2% 4% 6% 8%

10% 2% 4% 6% 8%
0.12 0.12
SVM

0.10 0.10
0.08 0.08
0.06 0.06
0.04 0.04
0.02 __L_*_*_i_‘_ 0.02
0.00

=]
E Z
. Z .

0.00
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
accuracy I precision W recall I F-Score
(a) API-package
0.22 0.24
KNN NB
0.18 . 0.20
0.14 0.16
0.10 0.12
0.06 0.08
0.02 0.04
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
0.31 0.36 -
SVM DNN
0.25 0.29
0.19 0.22
0.13 0.15
0.07 0.08
0.01 0.01
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
accuracy I precision B recall I F-Score

(c) API-method

Wireless Communications and Mobile Computing

0.21 0.22

KNN)))) NB
017 : : 0.18
0.13 0.14
0.09 :) 0.10
0.05 . 0.06
0.01 0.02

2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
0.23 : 0.32 :

SVM DNN
0.19 0.26
0.15 0.20

2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
accuracy I precision M recall I F-Score
(b) API-class
0.22 - - - - - 0.24 -
KNN NB
0.18 0.20
0.14 0.16
0.10 . - 0.12
0.06 . 0.08
0.02 0.04
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
0.32 - 0.37
SVM DNN
0.26 0.30
0.20 0.23
0.14 . - 0.16
0.08 . 0.09
0.02 0.02
2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
accuracy I precision M recall I F-Score

(d) API-full-method

FIGURE 3: Result of feature refinement for API calls feature type with Google dataset.

backpropagation algorithm to indicate how a machine should
change its internal parameters that are used to compute
the representation in each layer from the representation in
the previous layer. DNNs have dramatically improved the
state-of-the-art methods in speech recognition, visual object
recognition, object detection, drug discovery, and genomics.
To the best of our knowledge, AndroClass is the first method
which applies DNN to app classification. Although DNN has
already been utilized for malware detection and classification
such as the proposed methods in [47, 48], these studies
applied DNN to only malware detection (i.e., classifying
apps into two categories as malicious or benign) not for
multiclass classifications (i.e., classifying apps based on their
functionalities into the multiple categories).

3.5. Discussion. AndroClass is an effective method to auto-
matically classify Android apps based on their real func-
tionalities, which performs three orthogonal steps of feature
extraction, feature refinement, and classification. AndroClass
has the following advantages over the existing methods
explained in Section 2. First, AndroClass utilizes more useful

features (i.e., 14 features) in app classification than the existing
methods do; the number of utilized features by the proposed
methods in [4], [28], [36], [29], [27], and [26] are 5, 1,1, 6, 11,
and 1, respectively. Second, there are three main approaches
for feature refinement as filter models, wrapper models, and
embedded models. The embedded models embed feature
selection with classifier construction and have the advantages
of both wrapper models and filter models [34]. The existing
methods proposed in [26, 28, 36] do not perform any feature
refinement process, which is an essential technique to neglect
irrelevant feature values and also avoid overfitting problem
[27,34]. The existing methods proposed in [4, 29] utilize filter
models for feature refinement by applying information gain
and maximum entropy models, respectively. Among existing
methods, the proposed method in [27] is the only one utilizes
embedded models for feature refinement by applying SVM
based on only two classes as malicious and benign apps;
however, in this method, the feature refinement may not be
suitable for classifying apps based on their functionalities as
explained in Section 2. AndroClass also utilizes embedded
models for feature refinement by applying RF; however, on

Wireless Communications and Mobile Computing 9
TABLE 1: A summary on specifications of AndroClass and existing methods.

Snaz. LACTA Ghorb. Zhu. Wang. ClassifyDroid AndroClass
Number of features 5 1 1 6 11 1 14
Number of employed datasets 1 1 1 1 1 1 3
Utilizing stable features v v v X v v Y
Features representing actual fn. of apps b 4 v v b 4 v v v
Posing issues to user privacy b 4 X X v X X X
Classifying un/newly released apps X Y Y X Y Y v

the contrary to the proposed method in [27], in AndroClass,
the features are refined for classifying apps into multiple
classes based on their functionalities.

Third, the strings extracted by decompiling DEX files,
which are utilized by proposed methods in [4, 28], may not
be a suitable feature for app classification since this feature
has difficulties to overcome the language barriers problem
among apps. If two apps provide very similar functionalities
but target users who speak in different languages, they contain
strings in the target language. For example, both “ftfb” and
“asos” are online shopping apps in Google Play Store; how-
ever, not only their titles but also the strings in these apps are
written in Korean and English languages, respectively. On the
contrary, in the strings.xml file that is utilized by AndroClass
for extracting the strings feature, name attributes are always
written in English even if the strings themselves are written
in the other language (i.e., when the app targets non-English
speaking users). More specifically, AndroClass can overcome
the language barrier problem. Forth, in the proposed method
in [29], the utilized features are not stable. In the proposed
methods in [4, 29], the utilized features cannot clearly
represent the actual functionalities of apps. Although utilized
features by the proposed methods in [26-28, 36] represent
the actual functionalities of apps, AndroClass considers more
useful features (i.e., 14 features) in app classification than they
do. Fifth, all the existing methods utilize only one dataset for
evaluating the effectiveness of their classification methods;
however, we conducted extensive experiments with three
datasets (i.e., two real-world datasets and one manual dataset)
to evaluate the effectiveness of AndroClass.

In Table 1, we summarize the specifications of the exiting
methods in comparison with AndroClass by considering the
provided explanations in this section and Section 2. In this
table, Snaz., Ghorb., Zhu., and Wang. are used for referring to
the proposed methods in [4], [36], [29], and [27], respectively,
since these methods do not have any indicated titles.

4. Experimental Evaluation

In this section, we carefully evaluate the effectiveness of
AndroClass in app classification by employing two real-world
datasets of Android apps and a dataset constructed by human
experts. Section 4.1 describes our experimental setup. Sec-
tion 4.2 presents the results and analyses of our experiments.

4.1. Experimental Setup. We employ three different datasets
for our evaluations; Google and APKPure are two real-world

datasets constructed from the data obtained by crawling
Google Play Store and APKPure, respectively. We have imple-
mented a crawler to extract the apps, their category names,
and their titles from the aforementioned online app stores.
Furthermore, since it is difficult to evaluate the effectiveness
of an app classification method without performing user
studies, we constructed a manual dataset by selecting a few
number of apps from the above real-world datasets and care-
fully dividing them in various categories based on their func-
tionalities where each app assigned only to a single category.
We did not consider the apps’ features (i.e., API calls, manifest
information, and strings features) for categorizing them.
Instead, we installed apps on smartphones and investigated
their provided functionalities; then, we assigned apps to the
categories based on their functionalities.

In the case of our real-world datasets, we cannot perform
user studies since it is quite expensive and time-consuming
with large datasets. Instead, in order to conduct accurate
evaluations, we consider a fine-grained categorization in the
Google and APKPure datasets. For example, in the Google
dataset, there is an original category named “Tools”, which
contains various subcategories such as “Alarm”, “Flashlight”,
“Calculator”, “Input”, and “Wi-Fi”; instead of considering a
single category as “Tools”, we consider multiple separate
categories as “Tools_Alarm”, “Tools_Flashlight”, “Tools_
Calculator”, “Tools_Input”, and “Tools_Wi-Fi”, respectively,
each of which contains its own apps. We note that our em-
ployed real-world datasets contain apps that belong to more
than one category (i.e., duplicate apps). Table 2 shows the
statistics of our datasets where notation “#” denotes the num-
ber of instances. The #app column denotes the summation of
the number of apps in all categories of the dataset.

Two possible techniques to avoid the overfitting problem
in classification are feature refinement and cross validation
[34]; in addition to feature refinement, we apply the 10-fold
cross validation in our experiments as well. Also, we consider
90% of the apps in a dataset as the training instances and
10% of them as the test instances. In order to evaluate the
effectiveness, we utilize accuracy, precision, recall, and F-
score [37] as our evaluation measures, which are widely used
to evaluate the classification methods. Before explaining these
measures, we need to define some required terminologies
as follows; positive (P) instances belong to the main class of
interest, negative (N) instances belong to other classes, True
Positive (TP) refers to the correctly labeled positive instances,
True Negative (TN) refers to the correctly labeled negative
instances, False Positive (FP) refers to negative instances that
are mislabeled as positive, and False Negative (FN) refers to

10 Wireless Communications and Mobile Computing
TABLE 2: Statistics of our datasets.
#app #duplicate apps #categories
Google 8902 505 64
APKPure 11068 371 40
Manual 364 0 12

positive instances that are mislabeled as negative. Now, we can
calculate accuracy by the following formulas:
TP+TN 1)
accuracy = ————
YT TPeN

where P + N is identical to the size of the dataset.

In order to calculate precision, recall, and F-score, we
compute these values per each category as follows:

recision = L (2)
P ~ TP +FP
recall = E 3)
P
2 x precision x recall
F-score = (4)

precision + recall

Finally, we take the average values of precision, recall, and
F-score over all categories as the final measures.

We employ scikit-learn [49], which is a free software
machine learning library written in Python to utilize RE
KNN, NB, and SVM in our experiments. In the case of
DNN, we employ TensorFlow [50], which is an open source
software library for numerical computation using data-flow
graphs. We apply the following settings to the classification
algorithms based on the effectiveness evaluation through
several experiments. In the case of RE the number of trees in
the forest is set as 500 for the manual dataset and 1,000 for the
Google and APKPure datasets; the number of bootstrapped
feature values is set as P> where P is the number of feature
values; and information gains are used to choose the best
split. In the case of KNN, we set the number of neighbors
for majority voting as 10 with the manual dataset and 30 with
the Google and APKPure datasets (in the case that half of the
nearest neighbors to an instance are positive and half of them
are negative, we randomly select a category among the ones
with highest probability). We use NB for multinomial target
variables. In the case of SVM, we utilize the linear kernel
where the penalty parameter is set as 0.3.

We employ two structures for the network in DNN as
follows. In the first structure, there are an input layer, first
hidden layer, second hidden layer, third hidden layer, and
output layer where the number of nodes in these layers is set
as P, P/2, P/4, P/8, and C, respectively; C is the number of
categories. In the second structure, we have four hidden layers
where the number of nodes in input and output layers are
identical with the first structure, while the number of nodes in
the hidden layer one to the hidden layer four is P/4, P/8, P/I6,
and P/16, respectively. With the manual dataset, we utilize the
first structure since the number of values for each available
feature is less than 20,000 as shown in Table 3. With Google

and APKPure datasets, we utilize the first structure when the
number of values for the feature is less than 20,000 (e.g., API-
package and API-class); otherwise, we use the second struc-
ture. In order to train the hidden layers in both structures,
we use stacked autoencoder algorithm [47]. As the activation
function between the input layer and the first hidden layer
and also between hidden layers, we use hyperbolic tangent
function (tanh) [51] and between the last hidden layer and
the output layer, we use normalized exponential function
(softmax) [51]. The information gain is used as the cost
function where we train the models until the cost is less than
0.005 and 0.01 with the first and second structure, respec-
tively. The learning rate is set as 0.001 and 0.0005; also the size
of minibatch way is set as 10 and 30 with the first and second
structure, respectively.

4.2. Results and Analyses. In this section, we perform the
feature refinement, select the best candidate for API calls and
manifest information feature types as described in Sec-
tion 3.2, and analyze the effectiveness of AndroClass in app
classification.

4.2.1. Feature Refinement. Table 3 represents our features and
the original number of their values (i.e., before performing
feature refinement) in each dataset (we consider those feature
values that are used by at least one app in the dataset.). In
the feature refinement step, for every dataset, we apply RF to
refine each of the four possible candidates of the API calls
feature type (i.e., API-package that represents API-package
feature, API-class that represents API-class feature, API-
method that represents API-method feature, and API-full-
method that represents API-full-method signature feature in
Table 3), each of the two possible candidates of the mani-
fest information feature type (i.e., manifest-permission that
represents permission feature and manifest-complete that
represents permission, hardware and software component,
activity, service, broadcast receiver, content provider, action,
and category features in Table 3), and also the strings feature
type (i.e., representing string and name attribute features in
Table 3) with KNN, NB, SVM, and DNN, separately.

In order to refine the API calls feature type with the
Google dataset, the apps are considered by their appropriate
A-vectors, which can represent any of the four candidates
API-package, API-class, API-method, or API-full-method.
We apply RF to assign a weight to each of the feature values,
which indicates the importance of the feature in classification.
The feature values are sorted in the descent order based on
their weights and the top feature values in various cut-oft
points regarded from 2% to 10% in steps of 2% are selected.
Then, we apply each of KNN, NB, SVM, and DNN to classify

Wireless Communications and Mobile Computing 1
TABLE 3: A summary of original observed features in each dataset.

Feature Google APKPure Manual
1 API package 167 170 90
2 API class 2,705 3,019 1,408
3 API method 31,264 34,606 15,175
4 API full method signature 35,522 39,310 16,772
5 permission 988 1,011 271
6 hardware and software components 111 124 41
7 activity 15,953 15,131 1,442
8 service 3,092 3,129 425
9 broadcast receiver 2,494 2,588 348
10 content provider 988 1,125 101
11 action 3,358 3,758 682
12 category 241 248 33
13 string 81,008 91,031 12,010
14 name attribute 77,760 80,704 11,810

the apps based on their refined A-vectors in considered cut-
off points. For each classification algorithm, the cut-off point
that shows the best effectiveness is selected to refine the
feature. Figure 3 illustrates the result of feature refinement
for all the four possible candidates of the API calls feature
type with the Google dataset. As an example, KNN shows its
best effectiveness in terms of accuracy, precision, recall, and
E-score when the cut-off point is set as 10% (since the best cut-
off point is 10%, we considered two more cut-oft points as 12%
and 14%. However, the effectiveness of KNN in these two cut-
off points are less than that in cut-off point 10%) in Figure 3(a)
and 8% in Figure 3(b). Therefore, with the Google dataset, to
refine API-package and API-class for KNN, the cut-off point
is set as 10% and 8%, respectively.

The API calls feature type is refined with the APKPure
and manual datasets in the same way as with the Google
dataset; however, since the number of feature values in the
manual dataset are less than those in Google and APKPure
datasets as shown in Table 3, we set the cut-off points with
the manual dataset from 5% to 25% in steps of 5%. Table 4
summarizes the best cut-off points for the API calls feature
type with all the three datasets.

In order to refine the manifest feature type with the
Google dataset, the apps are considered by their appropriate
M-vectors, which can represent any of the two candidates
manifest-permission or manifest-complete. We apply RF to
assign a weight to each of the feature values, sort them in
the descent order based on their weights, and select the top
feature values in various cut-off points. Then, we apply each
of KNN, NB, SVM, and DNN to classify the apps based
on their refined M-vectors in considered cut-off points. For
each classification algorithm, the cut-off point that shows the
best effectiveness is selected to refine the feature. Figure 4
illustrates the result of feature refinement for the two possible
candidates of the manifest feature type with the Google
dataset.

The manifest feature type is refined with the APKPure and
manual datasets in the same way as with the Google dataset;
we note that the cut-off points with the manual dataset are

considered from 5% to 25%. Table 5 summarizes the best cut-
off points for the manifest information feature type with all
the three datasets.

In order to refine the strings feature type with each
dataset, the apps are considered by their appropriate S-vec-
tors. We apply RF to assign a weight to each of the feature
values and select the top feature values in various cut-off
points. Then, we apply each of KNN, NB, SVM, and DNN to
classify the apps based on their refined S-vectors in consid-
ered cut-off points. Figure 5 illustrates the result of feature
refinement for the strings feature type with our three dataset
and Table 6 summarizes the best cut-off points.

4.2.2. Best Candidate Selection. Now, after refining the fea-
tures, we select the best candidate for each of the API calls
and manifest information feature types with every dataset
for each classification algorithm. In order to select the best
candidate for the API calls feature type between API-package,
API-class, API-method, and API-full-method, we compare
their effectiveness in app classification by applying each
classification algorithm to our datasets. In this comparison,
for each candidate, we employ its best detected cut-off point;
for example, in the case of DNN with the Google dataset, we
set the cut-off points as 8%, 6%, 4%, and 6% from Table 4 for
API-package, API-class, API-method, and API-full-method,
respectively. Figure 6 shows the result of this comparison with
the three datasets; in this figure, for simplicity, each of the
aforementioned candidates is represented as package, class,
method, and full-method, respectively.

As observed in Figure 6, API-full-method shows better
effectiveness than API-package, API-class, and API-method
in terms of accuracy, precision, recall, and F-score regardless
of the classification algorithm with all datasets. The reason
is that API-full-method provides more accurate information
about the apps functionalities than the other three candidates.
As an example, consider the two following API-full-method
signatures created by method overloading technique as
“android.content. AsyncQueryHandler.removeMessages(int

12

0.16

0.13

0.10

0.07

0.04

KNN

Wireless Communications and Mobile Computing

0.21

0.17

0.13

0.09

0.05

0.01

0.24

0.18

0.12

0.06

0.00

0.39
0.33
0.27
0.21
0.15
0.09
0.03

2% 4%

SVM

2% 4%
accuracy

KNN

2% 4%

SVM

2%

4%

accuracy

0.20 0.20 . 0.27
NB KNN NB
0.16 0.16 0.22
0.12 0.12 0.17
0.08 0.08 0.12
0.04 0.04 0.07
6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
0.26 . 0.31 . 0.35 .
DNN SVM DNN
0.21 0.25 0.28
0.16 0.19 0.21
0.11 0.13 0.14
0.06 0.07 0.07
0.01
6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
I precision B recall I F-Score accuracy I precision B recall I F-Score

(a) Manifest-permission (b) Manifest-complete

FIGURE 4: Result of feature refinement for manifest information feature type with Google dataset.

0.36 0.22 - 0.32
NB KNN NB
0.28 0.18 0.26
0.14 0.20
0.20
0.10 0.14
0.12 0.06 0.08
0.04
6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
0.43 0.32 . 0.38 .
DNN SVM DNN
0.35 0.26 0.32 :
0.26
0.27 0.20
0.20
0.19 0.14
0.14
0.11 0.08 0.08
0.02
6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%
[precision B recall Il F-Score accuracy [precision B recall Il F-Score
(a) Google (b) APKPure
0.56 . 0.66
N NB
0.50 - 0.60
0.44 0.54
0.38 0.48
0.32 0.42
0.26 0.36
0.20 0.30
5% 10% 15% 20% 25% 5% 10% 15% 20% 25%
0.66 0.76 .
S DNN
0.60 - - - 0.67
0.54
0.58
0.48
0.49
0.42
0.36 0.40
0.30
5% 10% 15% 20% 25% 5% 10% 15% 20% 25%
accuracy [precision B recall Il F-Score

(c) Manual

FIGURE 5: Result of feature refinement for strings feature type with all datasets.

Wireless Communications and Mobile Computing 13
TABLE 4: Best cut-off points (%) for the API calls feature type.
Google APKPure Manual
KNN NB SVM DNN KNN NB SVM DNN KNN NB SVM DNN
API-package 10 8 8 8 8 8 8 8 20 20 20 15
API-class 8 6 8 6 8 6 6 6 15 20 15 15
API-method 6 4 4 4 4 6 4 4 15 10 10 15
API-full-method 4 4 4 6 4 4 4 4 10 10 15 10
TABLE 5: Best cut-off point s(%) for the manifest information feature type.
Google APKPure Manual
KNN NB SVM DNN KNN NB SVM DNN KNN NB SVM DNN
manifest-permission 8 8 8 8 8 8 8 6 20 15 20 20
manifest-complete 4 6 4 4 4 4 4 4 10 15 10 10
TABLE 6: Best cut-off points (%) for the strings feature type.
Google APKPure Manual
KNN NB SVM DNN KNN NB SVM DNN KNN NB SVM DNN
4 8 8 6 4 8 6 8 10 10 15 10

what)” and “android.content. AsyncQueryHandler.removeMes-
sages(int what, Object obj)”; the first API removes any pend-
ing posts of messages with code “what” that are in the message
queue, while the second API removes any pending posts of
messages with code “what” and whose object is identical with
“obj” that are in the message queue. Regarding API-pack-
age, API-class, and API-method candidates, these API calls
are considered identical where both represented as “an-
droid.content”, “android.content. AsyncQueryHandler”, and
“android.content. AsyncQueryHandler.removeMessages”, re-
spectively; API-full-method is the only candidate that does
not consider these two separate API calls identical. Therefore,
we select API-full-method as the representative of the API
calls feature type, which means hereafter that an app’s
A-vector represents an app in terms of API-full-method in
the best cut-off point. By considering the aforementioned
example, it is obvious that why API-package shows the worse
effectiveness, and why the effectiveness of API-class is less
than that of API-method regardless of the classification algo-
rithm with all datasets.

In order to select the best candidate for the manifest
feature type between manifest-permission and manifest-
complete, we compare their effectiveness in app classification
by applying each classification algorithm to our datasets. In
this comparison, for each candidate, we employ its best
detected cut-oft point; for example, in the case of NB with
the Google dataset, we set the cut-oft points as 8% and
6% from Table 5 for manifest-permission and manifest-
complete, respectively. Figure 7 shows the result of this
comparison with the three datasets. As observed in the
figure, manifest-complete significantly outperforms manifest-
permission in terms of accuracy, precision, recall, and F-score
regardless of the classification algorithm with all datasets. The
reason is that manifest-complete takes advantage of all the
available manifest information as permissions, hardware and

software components, activities, services, broadcast receivers,

content providers, actions, and categories; however, manifest-

permission takes advantage of only permissions requested by
the apps. More specifically, manifest-complete provides more
accurate information regarding the apps functionalities than
manifest-permission. Therefore, we select manifest-complete

as the representative of the manifest information feature type;

hereafter, an apps M-vector represents an app in terms of
manifest-complete in the best cut-off point.

We did not define any candidates for strings feature type;
therefore, hereafter, an app’s S-vector represents an app in
terms of strings and name attributes features in the best cut-
off point. For example, in the case of SVM with the Google
dataset, we set the cut-off points as 8% from Table 6.

4.2.3. Classification Evaluation. Now, we evaluate the effec-
tiveness of AndroClass in app classification. Furthermore, we
suggest a setting of AndroClass, which may leads us to obtain
high effectiveness in app classification with other datasets as
well.

First, for each of KNN, NB, SVM, and DNN with our
datasets, we combine A-vector, M-vector, and S-vector of
every app into a single feature vector, F-vector. We note
that, based on our experimental results explained in Sections
4.2.1 and 4.2.2, each of the A-vector, M-vector, and S-vector
contains the appropriate features on their best cut-off points.
More specifically, in Section 4.2.1, we detected the best cut-
off points for feature refinement; also, in Section 4.2.2, we
selected API-full-method and manifest-complete as the final
representative for the API calls and manifest information
feature types regardless of the classification algorithm with
our three datasets. For example, in the case of DNN with
the Google dataset, for every app, we combine A-vector
containing API-full-method on cut-off point 6% (i.e., from
Table 4), M-vector containing manifest-complete on cut-oft

14 Wireless Communications and Mobile Computing
0.22 . 0.24 - 0.20 - 0.21 .
019 KNN NB KNN NB
: ' 0.20 : 0.16 0.17
0.16
0.16
0.13 0.12 0.13
0.12
0.10 0.08 0.09
0.07 0.08
0.04 0.04 0.04 0.05
0.01 0.00
package class method full- package class method full- package class method full- package class method full-
method method method method
0.32 - 0.37 . 0.26 . 0.33 -
0.28 SVM DNN SVM DNN
: : 0.31 - 0.22 -
0.24 0.25
0.20 0.25 0.18
0.16 0.19 0.14 0.17
0.12 0.13 0.10
0.08 0.09
0.04 0.07 0.06
0.00 0.01 0.02
package class method full- package class method full- package class method full- package class method full-
method method method method
accuracy I precision M recall I F-Score accuracy I precision M recall W F-Score
(a) Google (b) APKPure
0.44 . 0.49
KNN NB
0.36 0.41
0.33
0.28
0.25
0.20
0.17
0.12 0.09
0.04 0.01
package class method full- package class method full-
method method
0.60 . 0.60 .
SVM DNN
0.50 . 0.50 -
0.40 0.40
0.30 0.30
0.20 0.20
0.10 0.10
0.00 0.00
package class method full- package class method full-
method method
accuracy I precision M recall I F-Score
(c) Manual

FIGURE 6: Accuracy comparison of different candidates for API calls feature type with all datasets.

point 4% (i.e., from Table 5), and S-vector on cut-off point
6% (i.e., from Table 6) into a single F-vector.

After constructing the appropriate F-vectors of all apps
for each classification algorithm and dataset, we apply Andro-
Class to classify the apps. Figure 8 illustrates the effectiveness
of AndroClass in app classification with our three datasets. As
we already mentioned in Section 4.1, the Google and
APKPure datasets contain apps belonging to more than one
category; however, this figure shows the results when Andro-
Class predicts only a single category for each app.

As observed in Figure 8, AndroClass shows the worse
effectiveness when it is equipped with KNN, while it shows
the best effectiveness when it is equipped with DNN in terms
of accuracy, precision, recall, and F-score with all datasets.
The reason is that KNN does not perform any learning pro-
cess and predicts the category for a test instance only based
on its distances from training instances. On the contrary,
DNN performs an effective learning process by utilizing non-
linear learning functions in multiple layers, thereby learning
complex underlying relations in data. Table 7 represents the

percentage of improvements in classification effectiveness
when AndroClass is equipped with DNN over other classi-
fication algorithms.

As an example, in the case of the Google dataset, Andro-
Class equipped with DNN shows 77%, 70%, 114%, and 93%
improvements in classification in terms of accuracy, pre-
cision, recall, and F-score over AndroClass equipped with
KNN, respectively.

As observed in Figure 8, although the APKPure dataset
has a large number of apps and small number of categories
than the Google dataset (i.e., the APKPure dataset is not well
fine-grained categorized as the Google dataset), AndroClass
shows lower classification accuracy with the APKPure dataset
than that with the Google dataset regardless of the classifi-
cation algorithms, which indicates that the misclassification
problem in the APKPure dataset is much worse than that in
the Google dataset.

As an interesting result, AndroClass shows a higher
effectiveness with the manual dataset than that with the
Google and APKPure datasets in terms of accuracy, precision,

Wireless Communications and Mobile Computing

0.20

0.27

15

0.18 0.24

KNN)))) NB KNN ' ' 1 ' NB
0.16 . . 0.22 0.15 : : 0.20
0.12 0.17 0.12 0.16
0.09 0.12
0.08 0.12
0.06 0.08
0.04 0.07 0.03 0.04
0.00 0.00
permissi complet permissi compl per pl permission complete
0.31 . 0.35 0.31 -
SVM DNN DNN
0.26 . 0.30 0.25
0.21 0.25
0.20 0.19
0.16
0.15 0.13
011 0.10
0.06 0.05 0.07
0.01 0.00
manifest- manifest- manifest- manifest- ife ife manifest- manifest-
permissi pl permissi pl permission complete permission complete
accuracy [precision M recall Il F-Score accuracy [precision Bl recall Il F-Score
(a) Google (b) APKPure
0.41 - 0.52
KNN NB
0.33 0.42
0.25 0.32
0.17 0.22
0.09 0.12
0.01
manifest- manifest- manifest- manifest-
permission complete permission complete
0.56 . 0.60 .
SVM DNN
0.45 0.49
0.34 0.38
0.23 0.27
0.12 0.16
if¢ ife manifest- manifest-
permission complete permission complete
accuracy [precision M recall Il F-Score
(c) Manual
FIGURE 7: Accuracy comparison of different candidates for manifest information feature type with all datasets.
TABLE 7: Improvement in classification effectiveness (%) by AndroClass when equipped with DNN.
Google APKPure Manual
KNN NB SVM KNN NB SVM KNN NB SVM
accuracy 77 26 18 88 27 23 50 18 9
precision 70 45 25 47 16 25 39 17 10
recall 114 50 26 90 45 28 51 13 12
F-score 93 48 26 69 32 27 45 15 11

recall, and F-score regardless of the classification algorithms
as observed in Figure 8. Table 8 represents the percentage
of improvements in classification effectiveness obtained by
AndroClass with the manual dataset over real-world datasets.
For example, when AndroClass is equipped with NB, the val-
ues of accuracy, precision, recall, and F- score with the Google
dataset are 0.414, 0.247, 0.216, and 0.231 while these values
with the manual dataset are 0.706, 0.748, 0.688, and 0.717,
respectively. The improvements in classification effectiveness

obtained with the manual dataset over the Google dataset in
terms of accuracy, precision, recall, and F-score are 70.5%,
203.1%, 218.5%, and 211.8%, respectively. These results show
that AndroClass takes advantage of rich and comprehensive
features representing the actual behaviors and functionalities
of the apps, thereby leading AndroClass to classify apps
significantly closed to the one performed by human experts
(i.e., the authors) since the authors classified different apps
(i.e., selected from the Google and APKPure datasets) into the

16

0.57 -

0.49 -
0.41

0.33 -
0.25 -
0.17 -
0.09 -

0.01

KNN NB SVM DNN

accuracy W precision Hrecall B F-score

(a) Google

Wireless Communications and Mobile Computing

0.48 -
0.40 -
0.32 -
0.24 -
0.16 -
0.08 -
0.00 T T T T
KNN NB SVM DNN

accuracy W precision HMrecall B F-score

(b) APKPure

0.88 -

0.80 -

0.72 -

0.64 -

0.56 -

0.48 -

0.40

KNN NB

SVM DNN

accuracy W precision Hrecall B F-score

(c) Manual

F1GURE 8: Classification effectiveness of AndroClass with all datasets.

manual dataset based on their functionalities. Furthermore, it
shows that the misclassification problem is serious in our real-
world datasets and consequently in online app stores (Google
Play Store and APKPure) which are used to construct our
real-world datasets.

With the manual dataset, AndroClass shows accuracy,
precision, recall, and F-score as 83.5%, 87.4%, 77.6%, and
82.3%, respectively, when equipped with DNN. Table 9
represents the accuracy of AndroClass equipped with each
classification algorithm for all categories of the manual
dataset where #APP column contains the number of apps
in the category. We note that when a very large number
of apps are assigned to a very small number of categories,
the classification accuracy will be biased as observed with
the employed dataset in [27]. In this case, the classification
accuracy for the few categories containing the large number
of apps are very high, while the classification accuracy for
the other categories containing the small number of apps are
very much lower than that for the former categories. However,
since the classification accuracy with the former categories
is high, the total classification accuracy will be biased to
a high value. On the contrary, with our manual dataset,
the difference between classification accuracy for various
categories obtained by AndroClass is not high regardless of
the classification algorithm as shown in Table 9. For example,

in the case of AndroClass equipped with DNN, the best
accuracy (i.e, 91.5%) is observed for the Tools category,
7 categories have accuracy values more than 70%, and 4
categories have accuracy values more than 60%; the standard
deviation of accuracy values for different categories is 11.06.

Also, Table 10 represents the confusion matrices of the
classification results with the manual dataset where Andro-
Class is equipped with KNN, NB, SVM, and DNN. In this
table, the category names (i.e., defined in Table 9) are written
short to save the space.

As already explained, Figure 8 illustrates the classification
effectiveness when only a single category is predicted by
AndroClass for each app. However, in the case of the
Google and APKPure datasets, we did not perform any user
studies and these datasets contain duplicate apps as shown
in Table 2; as an example, the “Skype” app is assigned to
three separate categories as “Communication_SNS”, “Com-
munication_Message”, and “Communication_VideoChat” in
the Google dataset. Therefore, instead of predicting a single
category for each app, we assign top N (i.e., N=1,2,3) (note
that we can set N to a larger value than three; however, in
app classification, assigning a single app to a large number of
categories is not meaningful and may bias the classification
effectiveness) categories with the highest probability to each
apps; Table 11 shows the accuracy of AndroClass equipped

Wireless Communications and Mobile Computing 17
TaBLE 8: Improvement in classification effectiveness (%) with manual dataset over real-world datasets.
APKPure

accuracy precision recall F-score accuracy precision recall F-score
KNN 88.1 196.4 240.4 220.6 125.6 119.5 148.3 135.1
NB 70.5 203.1 218.5 211.8 93.9 108.6 154.8 132.8
SVM 73.3 175.8 170.8 173.9 104.2 136.3 125.8 131.1
DNN 59.6 143.0 139.7 141.3 80.3 108.3 971 102.2

TaBLE 9: Classification accuracy (%) of AndroClass for all categories with manual dataset.
accuracy

category #APP KNN NB SVM DNN
1 Weather 15 53.3 60.0 53.3 66.6
2 Food & Drink 21 66.7 71.4 76.1 85.7
3 Web Browser 7 42.8 571 71.4 71.4
4 Office & Business 31 48.3 67.7 70.9 677
5 Keyboard 10 40.0 60.0 60.0 60.0
6 Music & Video 51 49.0 80.3 88.2 90.1
7 Tools 83 61.4 71.0 81.9 915
8 Photo & Art 42 571 64.2 76.1 78.5
9 Theme & Wallpaper 37 59.4 675 75.6 89.1
10 Finance 15 46.6 73.3 66.7 80.0
11 Virtual Reality 8 375 62.5 62.5 62.5
12 SNS & Communication 44 54.5 70.4 77.2 88.6
total accuracy 55.5 70.6 76.8 83.5

with different classification algorithms when top N categories
are considered. When we consider top N categories, Andro-
Class shows the worse effectiveness when it is equipped with
KNN, while it shows the best effectiveness when it is equipped
with DNN in terms of accuracy, precision, recall, and F-score
with both datasets regardless of the value of N. By increasing
the value of N, the classification accuracy of AndroClass is
improved as well regardless of the classification algorithm;
AndroClass shows the significant classification accuracy as
71.2% and 67.6% with the real-world datasets Google and
APKPure, respectively, when equipped with DNN and the top
three categories are regarded.

Although we conducted extensive experiments for fea-
ture refinement, best candidate selection, and analyzing the
classification effectiveness of AndroClass, we can suggest the
following setting that may lead us to obtain high effectiveness
in classification when applying AndroClass to any other
datasets. As the classification algorithm, we suggest DNN
since AndroClass shows its best effectiveness in classification
with our three datasets when it is equipped with DNN as
observed in Figure 8. As the features, we suggest utilizing the
combination of API-full-method (i.e., API-full-method sig-
natures), manifest-complete (i.e., permissions, hardware and
software components, activities, services, broadcast receivers,
content providers, actions, and categories), and strings (i.e.,
strings, and name attributes) on their best cut-oft points;
note that API-full-method and manifest-complete show the
best accuracy among possible candidates for API calls and
manifest information feature types as shown in Section 4.2.2
regardless of the classification algorithms with all datasets.

The values of the cut-off points are highly dependent on the
size of the dataset; however, they can be easily detected by
applying DNN on the aforementioned features as explained
in Section 3.3.

5. Conclusion

In this paper, we proposed an effective method, AndroClass,
to automatically classify Android apps based on their real
functionalities, which performs three orthogonal steps of
feature extraction, feature refinement, and classification.
In the feature extraction step, 14 rich and comprehensive
features representing the actual functionalities of the apps
are extracted and summarized into the three types as
API calls (i.e., API packages, API classes, API methods,
and API-full-method signatures), manifest information (i.e.,
permissions, hardware and software components, activities,
services, broadcast receivers, content providers, actions, and
categories), and strings (strings and name attributes). We
developed a unified tool suite to mine APK files and the
Android platform in order to obtain the required information
for extracting the features. An app is represented as three
binary vectors, A-vector, M-vector, and S-vector, containing
the aforementioned feature types, respectively. For the API
calls feature type, we considered four possible candidates as
API-package, API-class, API-method, and API-full-method
where the API-full-method was selected as the best can-
didate. For the manifest information feature type, we con-
sidered two possible candidates as manifest-permission and

trices of classification results with manual dataset.

Confusion mal

TABLE 10

18

KNN

Food Browser Office Keyboard Music Tools Photo Theme Finance VR SNS

Weather

S = = O —~ O A ~

S oo oo NN O

—_ O = - O O O

S o OO0 -0 O O

—_ = = N~ < 0

— = O 0 a

N o O —~ O [}

S O OO O oo

n

S R N Y

(== I = =i = = R]

14

<

12

WO O N O o~

Keyboard
Music

Browser
Tools

Weather
Food
Office
Photo

—

(=]

22

—

—

(=]

Theme

o

(=]

o

[\l

(=]

(=]

Finance

VR

24

10

SNS

NB

Food Browser Office Keyboard Music Tools Photo Theme Finance VR SNS

Weather

—_ o = = N N

S OO O ~—~ O

SO =N O ~ = O

S o oo oo —~ O

O~ O O -

—_ 0 O O O O —

©C - O =N T %A

S oo -0 o oo

e}

(=]

S < o

S O o oo oo

S H O =~ Aaan

AN~ -0 O -0

Keyboard
Music

Browser
Tools

Weather
Food
Office
Photo

o

—

Theme

11

Finance
VR

31

[T}

(=]

(=

(=]

(=]

SNS

SVM

Food Browser Office Keyboard Music Tools Photo Theme Finance VR SNS

Weather

Weather
Food

3}

(=]

(=]

(=]

(=]

(=]

16

Wireless Communications

—_ N O O - O

S -~ O N O O

(=R A=)

—_. o © O N~

O~ o~ — N

O h A en

(=R -

(=1

S O o~

n o o o o o

===

== ===

Keyboard
Music

Browser
Tools

Office

Photo

(=]

N

Theme

<
3]

[T}

10

(=]

(=]

(=]

(=]

(=]

Finance

VR
SNS

DNN

Food Browser Office Keyboard Music Tools Photo Theme Finance VR SNS

Weather

and Mobile Computing

S = = NO O ¥ — O o0

[=I=l el - == =]

S OO o o o oo

—_ 0 O O O o —~ O

—_ - O - - O

N~ o~ NN

(=R e = i R

(=1

(=1

o N oA

(== - - - -l

SN O O~ A

Socoocococoococo

Keyboard
Music

Browser
Tools

Weather
Food
Office
Photo

—

Theme

D
32}

n

12

)

(=]

(=]

(=]

(=]

(=]

Finance

VR
SNS

Wireless Communications and Mobile Computing 19
TaBLE 11: Accuracy (%) of AndroClass by considering top N categories.
Google APKPure
KNN NB SVM DNN KNN NB SVM DNN
Top 1 category 29.5 41.4 44.3 52.3 24.6 36.4 37.6 46.3
Top 2 categories 41.0 54.7 53.7 63.5 36.1 50.8 49.0 61.0
Top 3 categories 49.4 62.5 59.0 71.2 45.2 59.2 57.8 67.6

manifest-complete where manifest-complete was selected as
the best candidate. In the feature refinement step, we applied
RF to refine each of API calls, manifest information, and
strings feature types, separately. In the classification step, we
combine refined features into a single one and an app is
represented as a single binary feature vector, F-vector. Then,
we applied AndroClass (i.e., equipped with KNN, NB, SVM,
and DNN) to classify apps into their appropriate categories.
To the best of our knowledge, AndroClass is the first method
applies DNN to app classification and mines the string.xml
file to extract features for classification.

In order to carefully evaluate the effectiveness of Andro-
Class, we employed two real-world datasets of apps, Google
and APKPure, with a large number of fine-grained cate-
gories and also we constructed a manual dataset where apps
are categorized by the human experts (i.e., authors) in 12
categories based on their real functionalities. Our extensive
experimental results demonstrated that (1) AndroClass pro-
vides its best effectiveness regardless of the dataset when it
is equipped with DNN; (2) AndroClass shows a significant
accuracy as 83.5% with the manual dataset, which means the
classification performed by AndroClass is meaningful and
very close to human intuition since the manual dataset is
constructed by human experts; (3) although the Google and
APKPure datasets contain very large number of fine-grained
categories and suffer from misclassification, AndroClass
shows accuracy as 71.2% and 67.6% with these datasets when
top 3 categories is assigned to apps.

AndroClass only extracts the required features from
the information obtained by mining the APK files and the
Android platform; therefore, it has different advantages over
the existing methods for app classification as (1) AndroClass
does not pose any issues to the user privacy since it does not
access any parts of users’ smartphones for feature extraction;
(2) all the utilized features in AndroClass are stable and
clearly represent the actual functionalities of the app; (3) it
can be applied to classify unreleased or newly released apps.

We figured out interesting directions for our future work
as follows. Since AndroClass utilizes the features representing
the actual functionalities and underlying behaviors of apps,
we can apply it to malware detection [15, 21] and malware
classification (i.e., detecting the malware family) [52, 53] as
well. However, we need to make some minor changes in
AndroClass to make it adapted to the aforementioned topics.
For example, we should differentiate between the security
sensitive features (i.e., API calls and permissions) and the
nonsecurity sensitive ones (i.e., strings and name attributes)
when training the classification algorithms and constructing
the models. Furthermore, we plane to analyze the efficiency of
AndroClass when it is equipped with different classification

algorithms. As an example, one possible solution to improve
the classification efficiency could be employing distributed
computing techniques in AndroClass.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest re-
garding the publication of this paper.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (no. NREF-
2015R1ID1A1A02061946).

References

[1] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A re-
view on feature selection in mobile malware detection,” Digital
Investigation, vol. 13, pp. 22-37, 2015.

[2] S.Lee,]. Dolby, and S. Ryu, “HybriDroid: Static analysis frame-
work for android hybrid applications,” in Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering (ASE ’16), pp. 250-261, September 2016.

[3] W. Martin, E Sarro, Y. Jia, Y. Zhang, and M. Harman, “A sur-
vey of app store analysis for software engineering,” IEEE
Transactions on Soﬁware Engineering, vol. 43, no. 9, pp. 817-847,
2017.

[4] B.Sanz,I.Santos, C. Laorden, X. Ugarte-Pedrero, and P. G. Brin-

gas, “On the automatic categorisation of android applications,”

in Proceedings of the 9th Annual IEEE Consumer Communica-
tions and Networking Conference-Security and Content Protec-

tion (CCNC ’12), pp. 149-153, January 2012.

J. Crussell, C. Gibler, and H. Chen, “AnDarwin: scalable detec-

tion of android application clones based on semantics,” IEEE

Transactions on Mobile Computing, vol. 14, no. 10, pp. 2007-2019,

2015.

[6] P. Faruki, V. Laxmi, A. Bharmal, M. Gaur, and V. Ganmoor,
“Androsimilar: robust signature for detecting cariants of an-
droid malware,” Information Security and Applications, vol. 22,
pp. 66-80, 2015.

[7] J.-W. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim, “An-
dro-AutoPsy: anti-malware system based on similarity match-
ing of malware and malware creator-centric information,”
Digital Investigation, vol. 14, pp. 17-35, 2015.

[5

—_

20

[8] T.-E. Wei, H.-R. Tyan, A. B. Jeng, H.-M. Lee, H.-Y. M. Liao,
and J.-C. Wang, “DroidExec: root exploit malware recognition
against wide variability via folding redundant function-relation
graph,” in Proceedings of the 17th IEEE International Conference
on Advanced Communications Technology (ICACT ’I5), pp. 161-
169, July 2015.

[9] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“Drebin: effective and explainable detection of android malware
in your pocket,” in Proceedings of the 14st International Confer-
ence on Network and Distributed System Security Symposium,
pp- 1-12, February 2014.

[10] N. Chen, S. C. Hoi, S. Li, and X. Xiao, “Simapp: a framework for
detecting similar mobile applications by online kernel learning,”
in Proceedings of the 8th ACM International Conference on
Web Search and Data Mining, pp. 305-314, Shanghai, China,
Feburary 2015.

[11] P.Yin, P. Luo, W.-C. Lee, and M. Wang, “App recommendation:

a contest between satisfaction and temptation,” in Proceedings of

the 6th ACM International Conference on Web Search and Data

Mining (WSDM ’13), pp. 395-404, February 2013.

“Android developerssite;” https://developer.android.com/studio/

build/multidex.

[13] Q. Do, B. Martini, and K.-K. R. Choo, “Exfiltrating data from
Android devices,” Computers & Security, vol. 48, pp. 74-91, 2015.

[14] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level
features for robust malware detection in android,” in Proceed-
ings of the International Conference on Security and Privacy in
Communication Systems, pp. 86-103, 2013.

[15] A. Demontis, M. Melis, B. Biggio et al., “Yes, machine learning
can be more secure! A case study on android malware detec-
tion,” IEEE Transactions on Dependable and Secure Computing,
2017.

[16] P. Faruki, A. Bharmal, V. Laxmi et al., “Android security: a sur-
vey of issues, malware penetration, and defenses,” IEEE Com-
munications Surveys & Tutorials, vol. 17, no. 2, pp. 998-1022,
2015.

[17] E. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evalua-

tion of machine learning classifiers for mobile malware detec-

tion,” Soft Computing, vol. 20, no. 1, pp. 343-357, 2016.

V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluat-

ing android anti-malware against transformation attacks,” IEEE

Transactions on Information Forensics and Security, vol. 9, no. 1,

pp. 99-108, 2014.

B. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and L.

Molloy, “Android permissions: a perspective combining risks

and benefits,” in Proceedings of the 17th ACM Symposium on

Access Control Models and Technologies, pp. 13-22, ACM, June

2012.

[20] H. Shahriar and V. Clincy, “Anomalous android application
detection with latent semantic indexing,” in Proceedings of the
IEEE 40th Annual Computer Software and Applications Confer-
ence (COMPSAC ’I6), pp. 624-625, June 2016.

[21] K. Sokolova, C. Perez, and M. Lemercier, “Android application
classification and anomaly detection with graph-based permis-
sion patterns,” Decision Support Systems, vol. 93, pp. 62-76, 2017.

[22] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,
“DroidMat: android malware detection through manifest and
API calls tracing,” in Proceedings of the 7th Asia Joint Conference
on Information Security (AsiaJCIS ’12), pp. 62-69, August 2012.

[23] S. Y. Yerima, S. Sezer, G. McWilliams, and 1. Muttik, “New
android malware detection approach using Bayesian classifica-
tion,” in Proceedings of the 27th IEEE International Conference

(12

—
)
[r}

(19

Wireless Communications and Mobile Computing

on Advanced Information Networking and Applications (AINA
’13), pp. 121-128, March 2013.

[24] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
Android malware classification using weighted contextual API
dependency graphs,” in Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS ’14), pp. 1105-
1116, ACM, Scottsdale, AZ, USA, November 2014.

[25] W.Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in Proceedings of
the 3rd ACM Conference on Data and Application Security and
Privacy (CODASPY ’I3), pp. 185-195, February 2013.

[26] E Dong, Y. Guo, C. Li, G. Xu, and F. Wei, “ClassifyDroid: large
scale android applications classification using semi-supervised
multinomial naive bayes,” in Proceedings of the 4th IEEE
International Conference on Cloud Computing and Intelligence
Systems (CCIS ’16), pp. 77-81, August 2016.

[27] W. Wang, Y. Li, W. Xing, J. Liu, and Z. Xiangliang, “Detecting
android malicious apps and categorizing benign apps with
ensemble of classifiers,” Future Generation Computer Systems,
vol. 78, pp. 987-994, 2018.

[28] C. Z. Yang and M. H. Tu, “Lacta: an enhanced automatic soft-
ware categorization on the native code of android applications,”
in Proceedings of the International MultiConference of Engineers
and Computer Scientists, pp. 1-5, 2012.

[29] H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian, “Mobile app
classification with enriched contextual information,” IEEE
Transactions on Mobile Computing, vol. 13, no. 7, pp. 1550-1563,
2014.

[30] Y. Liao, J. Li, B. Li, G. Zhu, Y. Yin, and R. Cai, “Automated
detection and classification for packed android applications,” in
Proceedings of the IEEE 5th International Conference on Mobile
Services (MS ’16), pp. 200-203, July 2016.

[31] J. Escobar-Avila, M. Linares-Vdsquez, and S. Haiduc, “Unsuper-
vised software categorization using bytecode,” in Proceedings of
the 23rd IEEE International Conference on Program Comprehen-
sion (ICPC ’15), pp. 229-239, May 2015.

[32] C.McMillan, M. Linares-Védsquez, D. Poshyvanyk, and M. Gre-
chanik, “Categorizing software applications for maintenance,”
in Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM ’I1), pp. 343-352, September 2011.

[33] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: a signature
based analytic system to collect, extract, analyze and associate
android malware,” in Proceedings of the 12th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom ’13), pp. 163171, July 2013.

[34] J. Tang, S. Alelyani, and H. Liu, “Feature selection for clas-
sification: a review; in Data Classification: Algorithms and
Applications, 2014.

[35] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001,

[36] M. Ghorbanzadeh, Y. Chen, Z. Ma, T. C. Clancy, and R. McG-
wier, “A neural network approach to category validation of An-
droid applications,” in Proceedings of the International Confer-
ence on Computing, Networking and Communications (ICNC
’13), pp. 740-744, January 2013.

[37] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Tech-
niques, Elsevier, 2012.

[38] C. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval, Cambridge University Press, 2008.

[39] M. Yang and Q. Wen, “Detecting android malware by applying
classification techniques on images patterns,” in Proceedings of

https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex

Wireless Communications and Mobile Computing

the 2nd IEEE International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA ’17), pp. 344-347, April 2017.

[40] N.S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” The American Statistician, vol. 46,
no. 3, pp. 175-185, 1992.

[41] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice Hall, 2003.

[42] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436-444, 2015.

[44] “Dalvik executable format,” https://source.android.com/devices/
tech/dalvik/dex-format.

[45] . Levin, Android Internals - A Confectioner’s Cookbook, vol. I of
The Power User’s View, Cambridge, MA, USA, 2015.

[46] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: detect-
ing cloned applications on android markets,” in Proceedings of
the European Symposium on Research in Computer Security, pp.
37-54, 2012.

[47] O. E. David and N. S. Netanyahu, “DeepSign: deep learning
for automatic malware signature generation and classification,”
in Proceedings of the International Joint Conference on Neural
Networks (IJCNN ’15), pp. 1-8, July 2015.

[48] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: a deep
learning framework for intelligent malware detection,” in Pro-
ceedings of the International Conference on Data Mining, pp. 61-
67, 2016.

[49] E Pedregosa, G. Varoquaux, and A. Gramfort, “Scikit-learn:
machine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825-2830, 2011.

[50] M. Abadi, P. Barham, J. Chen, and Z. Chen, “Tensorflow: a sys-
tem for large-scale machine learning,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 265-283, 2016.

[51] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, New York, NY, USA, 2006.

[52] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: a
user-oriented behavior-based malware variants detection sys-
tem for android,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 5, pp. 1103-1112, 2017.

[53] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “EC2: en-
semble clustering and classification for predicting android mal-
ware families,” IEEE Transactions on Dependable and Secure
Computing, pp. 1-16, 2017.

21

https://source.android.com/devices/tech/dalvik/dex-format
https://source.android.com/devices/tech/dalvik/dex-format

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

