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The min-sum algorithm (MSA) for decoding Low-Density Parity-Check (LDPC) code is an approximation algorithm that can
greatly reduce the computational complexity of the belief propagation algorithm (BPA). To reduce the error betweenMSA andBPA,
an improved MSA such as normalized min-sum algorithm (NMSA) that uses the normalization factor when updating the check
node is used in many LDPC decoders. When obtaining an optimal normalization factor, density evolution (DE) is usually used.
However, not only does the DEmethod require a large number of calculations, it may not be optimal for obtaining a normalization
factor due to the theoretical assumptions that need to be satisfied. This paper proposes a new method obtaining a normalization
factor for NMSA. We first examine the relationship between the minimum value of variable node messages’ magnitudes and
the magnitudes of check node outputs of BPA using the check node message distribution (CMD) chart. And then, we find a
normalization factor that minimizes the error between the magnitudes of check node output of NMSA and BPA. We use the least
square method (LSM) to minimize the error. Simulation on ATSC 3.0 LDPC codes demonstrates that the normalization factor
obtained by this proposed method shows better decoding performance than the normalization factor obtained by DE.

1. Introduction

Low-Density Parity-Check (LDPC) codes [1] proposed by
Gallager in the 1960s have been used for error correcting
codes for many communication standards showing the error
correcting capability close to the Shannon limit. However,
LDPC codes burdens the hardware since it must perform
many floating-point operations repeatedly during decoding.
Therefore, numerous researches have been carried out to
reduce the computational complexity of LDPC decoder. One
of the topics of the researches was to reduce the com-
putational complexity of the belief propagation algorithm
(BPA), known as an optimal message passing decoder for
LDPC codes in the binary symmetric channel. The BPA
involves great number of logarithmic and multiplicative
operations when updating the check node. In an effort to
reduce the computational complexity of the BPA, min-sum
algorithm (MSA) has been proposed [2]. MSA approximates
the exponential term of the check node update function

to the minimum value selector. However, MSA has large
performance degradation due to the approximation. To
improve decoding performances of MSA normalized min-
sum algorithm (NMSA), which normalizes the minimum
value of the variable node messages, has been introduced [3].

When selecting a normalization factor in the NMSA,
density evolution (DE) is usually used [4]. The DE is an
analytical tool used for LDPC codes with message passing
decoders. It is used to calculate the average probability density
function (pdf) of messages along the edges for a given
code ensemble and decoding algorithm. If the code length
and the number of iterative decoding approach infinity, DE
predicts the minimum signal-to-noise ratio (i.e., threshold)
for convergence of the bit error probability to zero [5].
However, this method requires the assumption that the
specific LDPC code is a tree structure and the algorithm
used for decoding should satisfy a symmetric condition.
Considering that the LDPC code is rarely a tree structure and
the approximation algorithm does not satisfy a symmetric
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condition, a normalization factor derived from DE may
not be optimal. Additionally, performing DE needs a lot of
computation when obtaining pdfs of messages [6].

For this reason, we introduce an alternative approach
obtaining a normalization factor. The main idea of the
proposed method is to find a factor that minimizes errors
between check node outputs of BPA and NMSA by observing
the distribution of check node messages of BPA with a graph
called check node message distribution (CMD) chart. Since
the BPA uses all the input messages of a check node when
processing a check node output, it is very hard to predict
the output using only a minimum input message. However,
if the signal-to-noise ratio (SNR) and the number of iteration
is fixed, we can easily see the trend of the error by plotting
the CMD chart with the minimum value of input messages’
magnitudes as the x-axis and the magnitudes of the check
node output of BPA as the y-axis. After observing the CMD
chart, the LSM is used to find a normalization factor that
minimizes the error.

The rest of this paper is organized as follows. In Section 2.1
we briefly introduce the check node update equation for var-
ious decoding algorithms of LDPC codes in the LLR domain.
In Section 2.2 we explain how to derive a normalization
factor using the CMD chart and the least squares method
(LSM). Lastly, we show simulation result with some of the
code rates on ATSC 3.0 LDPC codes that the normalization
factor derived from the proposed methods shows superior
decoding performance over factor using the DE method in
NMSA decoding.

2. Materials and Methods

2.1. Check Node Update of LDPC Codes. BPA, MSA, and
NMSA are identical during the decoding procedures but
not during the updating of check nodes [7]. Therefore, in
this paper, we show only the check node update process
for each algorithm. If the 𝑛𝑡ℎ variable node is 𝑉𝑛, and 𝑚𝑡ℎ
check node is 𝐶𝑚, the check node message of BPA 𝐿𝐵𝑃𝐴𝑚𝑛
is computed using (1) and (2) where 𝐿𝑛󸀠𝑚 denotes variable
node messages passing from 𝑉𝑛󸀠 to 𝐶𝑚. The notation 𝑛󸀠
denotes variable nodes connected to𝐶𝑚, excluding 𝑛, and the
notation 𝑑𝑐 denotes the number of variable nodes connected
to 𝐶𝑚. All algorithms covered in this chapter including BPA
calculate the sign of 𝐿𝐵𝑃𝐴𝑚𝑛 by multiplying all signs of variable
node messages except the node that passes the message. The
magnitudes of 𝐿𝐵𝑃𝐴𝑚𝑛 is calculated using Φ(𝑥) function in
(2), and this function consists of a transcendental function.
This algorithm needs the 2𝑑𝑐 floating point addition and2𝑑𝑐Φ(𝑥) operation to calculate the magnitudes of 𝑑𝑐 check
node output messages per one check node.

𝐿𝐵𝑃𝐴𝑚𝑛 = ∏
𝑛󸀠∈𝐶𝑚\𝑛

sign (𝐿𝑛󸀠𝑚)Φ( ∑
𝑛󸀠∈𝐶𝑚\𝑛

Φ(󵄨󵄨󵄨󵄨𝐿𝑛󸀠𝑚󵄨󵄨󵄨󵄨)) (1)

Φ (𝑥) = − ln(tanh (𝑥2)) (2)

Equation (3) is used to update the check node usingMSA.
𝐿𝑛󸀠𝑚 denotes a column vector whose elements are messages

from the variable nodes connected to 𝐶𝑚 except the message
from 𝑉𝑛. The sign of the check node output is calculated in
the same way as BPA. The magnitude of check node output
is processed by selecting the minimum value of variable
node messages’ magnitudes excluding the node that passes
the processed message. In contrast to BPA, this algorithm
only needs 2𝑑𝑐 floating point comparison to calculate the
magnitudes of check node outputs for one check node.

𝐿𝑀𝑆𝐴𝑚𝑛 = ∏
𝑛󸀠∈𝐶𝑚\𝑛

sign (𝐿𝑛󸀠𝑚) min
𝑛󸀠∈𝐶𝑚\𝑛

(󵄨󵄨󵄨󵄨𝐿𝑛󸀠𝑚󵄨󵄨󵄨󵄨) (3)

To compensate the large difference between the check
node output messages of BPA and MSA, the NMSA scales
the selected minimum value as in (4). By using a proper
normalization factor, the NMSA can achieve performances
very close to the BPA [4].This algorithmneeds one additional
floating-point multiplier per one check node compare to
MSA, but it can greatly improve the decoding performance.

𝐿𝑁𝑀𝑆𝐴𝑚𝑛 = 𝛼 ⋅ ∏
𝑛󸀠∈𝐶𝑚\𝑛

sign (𝐿𝑛󸀠𝑚) min
𝑛󸀠∈𝐶𝑚\𝑛

(󵄨󵄨󵄨󵄨𝐿𝑛󸀠𝑚󵄨󵄨󵄨󵄨) (4)

2.2. The Method of Obtaining the Normalization Factor Using
the CMD Chart. In the previous section, we mentioned that
the MSA can significantly reduce the number of computa-
tions for obtaining the magnitudes of a check node message
by approximating the transcendental function to a minimum
selecting function. Also, NMSA can bridge the gap between
the check node output of BPA and MSA by scaling the
minimum value. In this chapter, we visualize how NMSA
bridges the gap by showing an example of a CMD chart that
we propose in this paper.This chart can be further used to get
a normalization factor. CMD chart is short for check node
message distribution chart, which plots the magnitudes of
check node output messages as the y axis, and the minimum
value of input variable nodemessages’ magnitudes connected
to a check node excluding 𝑛𝑡ℎ variable node (min(|𝐿𝑛󸀠𝑚|)).
Figure 1 shows an example of the CMD chart simulated
using (n, j, k) = (𝑛, 𝑑V, 𝑑𝑐) = (20, 3, 4) regular LDPC code
where n denotes number of encoded bits and 𝑑V denotes
the number of check node connected to one variable node.
The parity check matrix was constructed using the Gallager
method [1]. In this simulation, SNR=-5[dB] AWGN was
added to the BPSK mapped signal. After demapping, 20
log-likelihood ratios (LLRs) were set as the initial value of
variable node messages and check node output messages
are obtained using each decoding algorithm. Data points on
Figure 1 are the magnitudes of a check node output messages
for the same (min(|𝐿𝑛󸀠𝑚|)). To explain in detail, we pick out
one check node then follow the message calculation and
plotting process. One check node 𝐶𝑚 receives four variable
node messages 𝐿𝑛𝑚 = [1.49, 0.97, −0.40, 0.52]. Then, the
check node processes output messages using BPA using Eq.
(1) and Eq. (2). The four check node output messages are
𝐿
𝐵𝑃𝐴
𝑚𝑛 = [−0.04, −0.06, 0.14, −0.11]. Meanwhile, the minimum

values of the variable node messages are min(|𝐿𝑛󸀠𝑚|) =[−0.40, −0.40, 0.52, −0.40] and this vector is equal to the
check node output message vector of MSA (𝐿𝑀𝑆𝐴𝑚𝑛 ). We can
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Figure 1: CMD chart according to 𝑑𝑐 = 3, 𝐸𝑠/𝑁0 = −5[dB].

plot the data points (min(|𝐿𝑛󸀠𝑚|), |𝐿𝐵𝑃𝐴𝑚𝑛 |) as shown in Figure 1
(∗).We can easily notice that the check node outputmessages,
obtained using MSA, are very different from the messages
obtained using BPA because data points (I, ◻) are distant
from each other. Furthermore, we can guess that this causes
a large performance gap between the two algorithms. We can
also see how NMSA improves the performance in the CMD
chart. In the case of setting the normalization factor as 0.26,
the check node output message vector of NMSA is 𝐿𝑁𝑀𝑆𝐴𝑚𝑛 =[−0.10, −0.10, 0.14, −0.10]. NMSA is expected to achieve
performances close to that of BPA with the error being
reduced from [0.36, 0.34, 0.38, 0.29] to [0.06, 0.04, 0.01, 0.01].
In this way, we find the normalization factor which best
approximates the check node output of BPA. To obtain the
appropriate normalization factor, we first examine how the
appropriate normalization factor varies with dc and SNR in
Section 2.2.1.Thenwe propose a newmethod tominimize the
error between BPA and NMSA by using LSM in Section 2.2.2.

2.2.1. Check Node Message Distribution Chart. The CMD
chart shows the magnitudes of check node messages of a
specific decoding algorithm against the minimum value of|𝐿𝑛󸀠𝑚|. In this chapter, we introduce more examples of CMD
chart and explain the characteristics of check node output
messages of BPA decoder using the chart. We first show how
the distribution of the data points in CMD charts changes
in a different SNR. Then, we show how the distribution
changes when the number of variable nodes connected to
one check node (𝑑𝑐) changes. The distribution also changes
as the iteration proceeds. However, since the processing of
iteration can be considered as an increase in SNR, we skip
the subject and cover it in detail in Section 2.2.2. These
examples will help us to get a sense of, which values of
normalization factor will improve the decoding performance.
Figure 2 shows CMD chart for different SNR (𝐸𝑠/𝑁0).
The check node messages are obtained through the Monte

Carlo simulation. We first generated the random bits and
modulated using QPSK. We then calculated the check node
messages, assuming that one check node is connected to
three variable nodes (𝑑𝑐 = 3). In Figure 2(a), the simulation
shows that values of check node output messages of two
algorithms are very similar in a high SNR. In the lowest SNR,
as shown in Figure 2(c), the differences are relatively large.
This change of distribution in the different SNRs is caused
by the characteristics of error between BPA and MSA. The
check node update function of the BPA can be divided into
two terms, which are sign computing and minimum value
selecting term, and error term as in Eq. (5) [8]. Since the sign
computing and the minimum value selecting term is equal
to the check node update function of the MSA, the error
between the check node output messages of the BPA and
MSA can be calculated using the error term. This error can
have values between ln((1 + 𝑒−|∞|)/(1 + 𝑒−|0|)) ≈ −ln(2) and
ln((1 + 𝑒−|0|)/(1 + 𝑒−|∞|)) ≈ ln(2). In other words, regardless
of the values of variable node messages, the error is bound
to give a value between −ln(2) and ln(2). In conclusion, the
initial variable node messages have large values in a high
SNR environment, so min(|𝐿𝑛󸀠𝑚|) is also high, resulting in
the bounded error showing a relatively small value com-
pared to min(|𝐿𝑛󸀠𝑚|). Therefore, the data points of BPA are
distributed closely to that of MSA in a high SNR. Using
this information, we can understand that relatively small
normalization factor will improve decoding performance
in low SNR, and MSA shows great performance in high
SNR.

𝐿𝐵𝑃𝐴𝑚𝑛3 = sign (𝐿𝑛1𝑚) sign (𝐿𝑛2𝑚)min (󵄨󵄨󵄨󵄨󵄨𝐿𝑛1𝑚󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝐿𝑛2𝑚󵄨󵄨󵄨󵄨󵄨)
+ ln(1 + 𝑒−|𝐿𝑛1𝑚+𝐿𝑛2𝑚 |1 + 𝑒−|𝐿𝑛1𝑚−𝐿𝑛2𝑚 |)

(5)

Figure 3 shows the CMD chart according to 𝑑𝑐. As shown
in the figure, when 𝑑𝑐 becomes larger, the output value of
the check node becomes smaller. This can be explained by
the characteristics of Φ(𝑥) function of (2) which is used
to update the check node with BPA. The function Φ(𝑥)
has characteristics, which is that input and output of the
function are defined only for positive real values and that
they are inversely proportional. Since Φ(|𝐿𝑛󸀠𝑚|) from (1) is
always positive, when they are summed, the large 𝑑𝑐 yields
a small output of the check node. Therefore, for the NMSA
to approximate the BPA well, in lower SNR or larger 𝑑𝑐
conditions, the normalization factor should have a small
value.

2.2.2. Obtaining Normalization Factors Using the Least Square
Method. The LSM is used to derive the parameters of the
curve, which minimizes the square sum (L2 norm) of the
shortest distance between the curve and the given data
points. It is used to remove noise from data points or to
characterize the data set. We use this method to obtain a
normalization factor that minimizes the error between the
check node messages of BPA and NMSA. We use data points(min(|𝐿𝑛󸀠𝑚|), |𝐿𝐵𝑃𝐴𝑚𝑛 |) for 𝑛󸀠 ∈ 𝐶𝑚 \ 𝑛, and 𝑚 ∈ [1,𝑀]
where 𝑀 is the number of the check node. If we define a
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Figure 2: CMD charts according to 𝐸𝑠/𝑁0. (a) 𝐸𝑠/𝑁0 = 5 [dB]. (b) 𝐸𝑠/𝑁0 = 0 [dB]. (c) 𝐸𝑠/𝑁0 = −5 [dB].
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Figure 3: CMD charts according to 𝑑𝑐. (a) 𝑑𝑐 = 3, (b) 𝑑𝑐 = 6, and (c) 𝑑𝑐 = 9.

set of min(|𝐿𝑛󸀠𝑚|) as the column vector 𝑋 and a column
vector |𝐿𝐵𝑃𝐴𝑚𝑛 | as the vector 𝑌, the normalization factor can be
obtained from equation (6) as follows.

𝛼 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (6)

Figure 4 is a graph showing the bit error rate of four
different decoding algorithms when the maximum number
of iterations is set to 1. The simulation is conducted on the
ATSC 3.0 LDPC code rate of 2/15 and the frame size of
64800 while using QPSK mapping. An average value for the
normalization factor is derived through repetitive simulation
and used for decoding in each SNR. As shown in Figure 4,
the decoding performance of the proposed method is close
to that of BPA than the DE method [9], especially in low
SNR.

When the number of iterations is higher than one, we
need to obtain an appropriate 𝛼 for each iteration. So we
rewrite (6) to (7) where 𝛼(𝑙) denotes a normalization factor

for 𝑙th iteration and𝑋(𝑙) and𝑌(𝑙) denote vectors for data points(min(|𝐿𝑛󸀠𝑚|), |𝐿𝐵𝑃𝐴𝑚𝑛 |) at 𝑙th iteration.
𝛼(𝑙) = (𝑋T(𝑙)𝑋(𝑙))−1𝑋𝑇(𝑙)𝑌(𝑙) (7)

Figure 5 shows a computer simulation block diagram
for obtaining a set of normalization factors 𝛼(𝑙). In the
simulation, we get vectors 𝑋(𝑙) and 𝑌(𝑙) assuming that the(𝑙 − 1)𝑡ℎ iteration is correctly decoded using BPA and find𝛼(𝑙) that has the least square sum with the given data points.
Since the decoding tends to proceed well, irrespective of the
decoding algorithm in high SNR, the SNR to get 𝛼(𝑙) is set
to a minimum error free SNR for the BPA algorithm so that
the check node messages can be well approximated in a low
SNR. The simulation result of obtaining the set of 𝛼(𝑙) for
each iteration is shown in Figure 6. The maximum iteration
number is set as 40 in the simulation. In early iterations,
the magnitudes of LLR values of the variable node messages
have small values, which means that the messages have high
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a bit error probability. So, the CMD chart shows similar
distribution as Figure 2(c), and the appropriate normalization
factor is comparatively small. As the iteration progresses, the
magnitudes of LLR values of the variable node messages get
larger and their distribution becomes closer to theCMDchart
of Figure 2(a). At the completion of iterative decoding, the
normalization factor converges to 1 and the NMSA becomes
equal to the MSA.

By using the set of normalization factors derived from
this simulation, we can obtain good decoding performance
by changing the normalization factor for each iteration.
However, for the sakeof computational efficiency, we need
to derive a single normalization factor for all iterations.
When the 𝛼(𝑙) obtained from early iterations is used as
a single normalization factor, the error free SNR is high
because it does not properly approximate BPA as iteration
proceeds. On the other hand, if the 𝛼(𝑙) obtained from the
end of iterations is selected as a single factor, the message
is exaggerated at the beginning of decoding, and as a result
the error free SNR is high. Therefore, it is appropriate to
use an intermediate normalization factor. So, we derived the
best normalization factor for the entire iteration through
simulation. The simulation result is shown in Figure 7. In
the case of code rate 2/15, Figure 7(a), the normalization
factor obtained from the eighth iteration 𝛼(8) ≈ 0.5538
showed the lowest error free SNR. Likewise, in the case of
code rate 3/15, Figure 7(b), the normalization factor obtained
from the fourth iteration 𝛼(4) ≈ 0.5576 showed the lowest
error free SNR. As a result, we specify the normalization
factor 𝛼(8) ≈ 0.5538 as a single coefficient at code rate
2/15 and 𝛼(4) ≈ 0.5576 as a single coefficient at code rate
3/15.

The proposed method can efficiently obtain normaliza-
tion factor for each iteration by using CMD chart and LSM.
This method is much easier to implement than DE method
since it does not require infinitely repeated pdf calculation to
get a single normalization factor [10, 11]. Also, the proposed

method needs fixed number (i.e., the maximum iteration
number) of 𝛼 verifications to derive a single alpha for the
entire iteration, whereas the DE method needs full search of
alpha in range from 0 to 1 [11].

3. Results and Discussion

In this section, we show computer simulation results on
ATSC 3.0 LDPC codes that compare the BPA, NMSA with
the normalization factor proposed in [9] ([9]-𝛼NMSA), and
NMSA with the single normalization factor proposed in this
paper.

Figure 8 shows the simulation result, when themaximum
iteration is set as 40 on both ATSC 3.0 LDPC 2/15 and 3/15
codes for a code length of 64800, when layered decoding
and QPSK mapping are used. As shown in Figure 8(a), the
BPA showed the best performance that -6.35 [dB] of Es/𝑁0
is required to have BER under 10−6. The NMSA which uses
the normalization factor derived in [9] (𝛼 = 0.63) (◻) has
a performance gap of 0.75 [dB] compared to BPA. Whereas
the NMSA, using the proposed 𝛼(≈ 0.5538), showed a
performance gap of 0.50 [dB] (�). The simulation on code
rate 3/15 also showed that the NMSAusing the proposed𝛼 (≈0.5576)showed better performance by 0.15 [dB] compared to
the NMSA that uses the normalization factor derived in [9](𝛼 ≈ 0.63) (◻) as shown in Figure 8(b).

4. Conclusions

In this paper, we introduced the CMD chart and proposed
a new method to obtain a single normalization factor using
the chart and LSM. In addition, we showed that the NMSA
using the normalization factor derived from the proposed
method showed far superior decoding performance than the
NMSA employing the normalization factor of the conven-
tional scheme [9]. Furthermore, the proposed method can be
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Figure 8: Bit error rate of code rate (a) 2/15 and (b) 3/15.

used to obtain the correction coefficients of other decoding
algorithms that approximate the BPA algorithm.
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