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With the surging demand on high-quality mobile video services and the unabated development of new network technology,
including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for
various network optimization designs. A good QOE, especially when measured as engagement, is an important optimization goal
for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service
(QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled
from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well
as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first
propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our
empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model.
Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over
the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling

strategies in various network scenarios, especially in the fog computing context.

1. Introduction

The past two decades have witnessed the growth and popu-
larity of Video-on-Demand (VoD) applications on both PCs
and mobile devices, and the trend is moving from basic video
offering toward better quality of user experiences (QoE) in
both industry and academia [1]. In video streaming services,
the traditional Mean Opinion Score (MOS) is now replaced
by user engagement, which more directly impacts the return
for investment from stakeholders of a network ecosystem
(2, 3].

The requirement of a good QoE for optimizing returns
has led to a rapid development of network services and
the emergence of new technology, including fog computing
which could achieve real-time processing and feedback of
high-volume video streaming and scalability of service on
low-bandwidth output data [4].

As the first step to optimize user engagement, there is
an urgent need for a general engagement model that could
provide insight for diverse network environments, especially
for the up-to-date fog computing context. There are several
studies on understanding and modeling engagement in prior
works where the quality of service (QoS) together with
some objective context factors, such as location, device,
and temporal attributes, have always been regarded as the
fundamental factors related to engagement. The relationship
of user engagement and QoS, either at the application level
(e.g., startup delay, buffer frequency, and bitrate) or at the
network level (e.g., throughout, signal strength) has been
widely explored in related works.

However, most of the related works ignored another
important factor-subjective human factors, such as users’
personalized interest in a specific video. In fact, the new
era of customization raises the aesthetic and personal needs
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of users, especially in mobile video services where users
typically present predictable features and service demand [5].
Accordingly, user engagement, as a reflection of “the degree
of delight or annoyance of the user of an application or
service [6]”, cannot be satisfied only by high-quality delivery.
Thus, sessions with the same buffer frequency sometimes
have different user engagement due to the divergence of user
interest in the video content. However, most of the prior
works ignore or exclude the impact of the subjective factors
as it is difficult to quantify them. Some works consider video
popularity as a subjective human factor in QoE models [2,
7, 8], but video popularity could only roughly describe users’
average preferences but without any personalization. Only a
few works [9-11] at a macrolevel evaluate subjective human
factors for each viewing session from psychological and
cognitive perspectives. In these works, the subjective factors
are obtained by extensive experiments and surveys with a
very large population of subjects; however, such experiments
and survey are expensive to conduct and not suitable for
streaming applications in VoD systems.

An engagement model based on both QoS and user
interest is not only necessary for accurately understanding
and predicting user engagement, but also beneficial for
optimizing system resource allocation and for providing
better personalized services. On the one hand, finding out
how the subjective factor impacts user engagement could
help designers to deploy appropriate bandwidth resources for
optimizing user engagement. On the other hand, recommen-
dation system (RS) could make a tradeoft decision between
the QoS factors and the human factors to recommend to users
the videos that they are interested in and also that have good
QoS and finally that they can enjoy for a longer time. Hence, it
is critical to understand the relationship between engagement
and the human factors as well as QoS in order to shed light
on how best to allocate resources and customize services.

A challenge prior to building such a model is how to
quantify the degree of a user’s interest in a video. In prior
recommender systems, user interest is measured either to be
explicit ratings by user study or roughly to be implicit ratings,
e.g., user engagement. However, the former measurement
method is accuracy but is impossible to be collected in time-
sensitive applications. Instead, the later one is inaccurate, as
user engagement is sometimes not the reaction to his/her
pure interest in the video but also impacted by other factors,
e.g., quality issues like startup delay.

Another challenge is how to characterize the relation-
ships between user engagement and the two factors in a
unified model to provide insight for practical applications.
Intuitively, the two factors impact user engagement but
not independently, which is beyond the scope of a linear
regression model. For example, user interest not only impacts
user engagement itself but also impacts users’ patience with
the QoS problem. Machine learning (ML) algorithms, e.g.,
decision trees and Naive Bayes [2, 12], can characterize
such a dependent relationship but not in a concise formula
and therefore could not provide clear insight for practical
applications.
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We devote this paper to respond to these two challenges.
We propose an Extraction-Inference (E-I) algorithm to esti-
mate the user interest from easily obtained user behaviors.
Through a measurement on a real-world VoD system, we ana-
lyze the relationship of user engagement with both QoS and
user interest. Based on our empirical analysis on a large-scale
dataset, we build aQoS and user Interest based Engagement
(QI-E) regression model. Our empirical evaluation shows that
the incorporation of human factors brings an improvement
of 9.99% in prediction accuracy over the baseline model
based on only QoS factors. Finally, we discuss the application
potential of the proposed model and the future work.

2. Related Work

2.1. MOS versus Engagement Metrics. User engagement
instead of Mean Opinion Score (MOS) is widely employed as
QoE metric in streaming applications. As a standard metric in
the ITU-T recommendations, MOS is a numeric value from 1
to 5 (i.e., poor to excellent) obtained through user studies or
surveys [13]. There are many analyses on its influential factors
in the domain of web services, E-commerce, multimedia,
and so on [7, 13, 14]. However, since conducting a survey
or user study is expensive, time- consuming, and without
repeatability, MOS cannot be directly used in video streaming
applications [13], especially in the fog computing context
where the real-time response (real-time sensing and data
processing) is required [5]. These limitations motivate the
development of objective metrics, such as user engagement
which quantifies a user’s behavior as the reaction to the level
of QoE. In video applications, user engagement is usually
measured as session length [8, 15], abandonment rate [12, 15],
number of visits [2], or skip rate [12]. These user behavior
metrics are more directly relevant to increasing opportunities
for advertising and upselling, leading to greater revenues [8].

2.2. QoS Parameters. QoS parameters are often studied as
primary factors related to QoE since they can be controlled
by the platform at least partially [9]. The specific QoS metrics
vary across different domains [7], including the metrics on
the application level, e.g., startup delay, buffer frequency,
buffer ratio, and bitrate [2, 8, 16] and also including the
metrics on the network level, e.g., flow throughput, flow
duration, handover rate, and signal strength [12, 15]. Due
to uncertainty of network conditions, QoS metrics on the
application level capture the quality perceived by the users
more closely than those on the network level.

Sometimes QoS metrics compete with or conflict each
other and require a tradeoff in system design. For example,
prior works [17, 18] point out the competing relationship
between the initial time and the buffer event. Moreover, the
tradeoff between the bitrate and the buffer event is often
studied in bitrate adaptation schemes [17].

There are also several techniques proposed to adjust QoS
parameters at the client, at the server, or in the network [19].
Those techniques include bitrate adaptation [20], prefetching
[21, 22], transport protocol selection [14], and cache deploy-
ment [23].
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F1GURE 1: Illustration of a typical video streaming session.

2.3. Other Influential Factors. Recently, it has been realized
that QoS factors alone cannot determine users’ satisfaction
and other potential “confounding” factors need to be explored
[7]. The considered factors can be classified into context
information such as connectivity and temporal effects [2],
content attribute such as types and popularity [2], user
attribute such as location [24], device, and gender [8].

However, user interests are often ignored. A few works
addressed human factors (similar with user interest defined
in this paper in essence) [9, 10] from psychological and
cognitive perspectives and some attempted to integrate all
kinds of factors including human ones [11, 25]. However,
conducting such works is expensive, requiring a long period
and the participation of both technicians and psychologists
[9]. Identifying human subjective factors which are suitable
for real-time streaming applications is still an open problem.

In terms of understanding the impact of human factors
(e.g., user interest) on system design, one study [26] exploits
individual interest to optimize the storage resource allocation
in CDN. However, this study does not consider quality factors
and hence it cannot help making a tradeoft decision on user
interest and QoS.

2.4. Predicting User Interest. Predicting a user’s interest in a
specific item is the target problem addressed in a personalized
recommendation system (RS), which is a hot topic in the
face of information overload over the last decade [27, 28]. As
one popular kind of recommendation algorithms, Collabora-
tive Filtering (CF) algorithms, such as K-Nearest Neighbor,
Bayesian belief nets, and Matrix Factorization, have been
widely studied [27, 29-34]. As CF algorithms do not need
data referring to item content, they are applicable to the video
systems where explicit content descriptions of items (i.e.,
videos) are difficult to be obtained.

In addition, how to obtain and quantify user interest is
also under study [35]. Most works ask users for explicit ratings
after they purchase items, watch videos, or browse website.
This method is accurate but not practical in time-sensitive
applications like online VoD systems. Instead, user behaviors,
such as the time spent on a page, scrolling and clicks on web
pages [36, 37], time spent on a video [38, 39], and purchases in
the past [40], are used as implicit ratings in some applications.

User behaviors are sometimes capable of serving as reliable
implicit ratings as proved in [41], but in VoD systems they are
still quite noisy [42]. For example, as we address in this paper,
user behavior depends on not only user interest but also the
QoS during the watching time. As far as we know, such noise
in implicit rating has not yet been considered in existing VoD
recommendation systems.

3. Problem and Definition

This section defines the scope of the problem we focus on
and then provides the definition of the metrics of the factors
considered in the target model.

3.1. Problem Statement. The main objective in this paper
is to propose a practical engagement model based on the
objective QoS factors and the subjective individual interest
factor in VoD systems. For clarity, we omit the impact of other
confounding factors, such as the type of video, device, and
temporal attributes.

Thus, the objective is to build a model expressed as

E=f(Qr) @

where 7, E, and Qk € Q, respectively, denote user interest
level, user engagement, and the value of the k-th QoS metric
in a session for a user w. To make the model clear for practical
applications, the dependency function f(e) should be in a
clear and concise form.

3.2. Metrics Definition. This section defines the metrics of
the factors in our model. To clarify the definitions, we first
introduce the terminologies of a viewing session by Figure 1.

A typical viewing session starts when a user initiates a
request and ends when he/she finishes viewing the content or
changes to another one or closes the client agent. At the very
beginning, most users may experience a period of advertise-
ment and sometimes a startup delay. During viewing, users
may suffer from a frozen delay due to congestion or speed
limit in network. Also, users can trigger a pause or drag the
process bar to a new position. If the user drags to a new
position where the content has not been prefetched already,
he/she may experience a restartup delay.



According to the definition of a viewing session, we now
define the metrics of three factors.

3.2.1. The Metric of Engagement. We define user engagement
as the valid watching ratio in this paper, which measures how
much the video has really played. It is computed as the ratio of
the playback time to the video length. Here, the playback time
is referred to as the time of a session excluding startup delay,
restartup delay, buffering, pause, and advertisement time. In
general, the range of engagement value is restricted within 0%
to 120%.

3.2.2. The Metric of QoS. In this paper, we consider the
application-level QoS metrics which capture delivery-related
effects on the client-side. Specifically, we focus on the follow-
ing metrics.

Startup Delay. It is the time before a video starts playing and
immediately after the user initiates a request, exclusive of the
time taken by advertisements. It is measured in seconds.

Buffer Frequency. It is the ratio of the number of buffering
events to the total time of buffering and playing. It is
measured in the number of times per minute.

Buffering Ratio. It is the ratio of the time spent on buffering
or restartup buffering occurring in a session to the total time
of buffering and playing. It is measured in percentage.

As an extension of the study in [2], we also consider
another new quality metric, average buffer length.

Average Buffer Length. It is the average time the user has to
spend in buffering once a buffer event occurs. It is computed
as the ratio of the buffering ratio to the buffering frequency. It is
anew metric we propose to complement the buffer frequency.

We do not discriminate between buffering and restartup
buffering event and do not discuss another usually-used
quality metric, bitrate, due to data absence. But this omission
does notlessen the value of our study because the point here is
not to study the relationship between quality metrics, but to
address the competing or conflicting relationships between
quality and user interest. If necessary or once the data is
available, the model can be extended.

Compared with network-level QoS metrics, the metrics
at application level are more generally applicable in diverse
network contexts. They can manage the application-level
QoS metrics through respective technology, such as service
selection in content delivery network (CDN) [2], prepushing
scheme in P2P network [43, 44], and caching technique in fog
computing [4, 45, 46], and then optimize user engagement
based on the application-level QoS metrics involved in the
QoE model.

3.2.3. The Metric of User Interest. User interest is a user’s
subjective sense of concerning with and curiosity about the
content of a specific video. We regard user interest to be
a nondimensional parameter between 1 to 10. As discussed
earlier in this paper, it is difficult to ask users for explicit
ratings and directly using implicit ratings measured by user
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FIGURE 2: The distributions of user engagement in the buffering
sessions and that in the smooth sessions. For clarity, we do not
present the distribution of the engagement larger than 120% that are
in the tiny minority.

behaviors may lead to inaccuracies. Thus, we propose an
inference algorithm to obtain user interest, which will be
depicted in Section 4.

3.3. Dataset. To build a data-driven model, we collect a large-
scale dataset from the client-end of PPTV [47], a typical
commercial P2P streaming system in China. The anonymous
user logs range from 23th March to 28th March in 2011 with
75 million requests covering over 130,000 unique videos and
6 million users. The logs record viewing sessions of all the
behavior-related, quality-related information for each user-
item pair.

To filter the impact of other confounding factors (e.g.,
device, temporal attribute and the type of video), we only
consider the sessions collected from client-end, during the
periods of 7 p.m. to 12 p.m. and related to the videos of
movie type in our analysis. But the method proposed here
is not limited to these contexts and can be extended to other
context, e.g., mobile device or other video types.

4. User Interest Inference

In this section, through the analysis of our dataset, we first
show that user engagement is impacted not only by user
interest but also by QoS. This means mapping the engagement
time into user interest level is inaccurate. We then develop
anExtraction-Inference (E-I) interest estimation algorithm
and evaluate it on our dataset.

4.1. Measurement and Analysis. We compare the distribution
of user engagement in the sessions with/without buffering
events or startup delay (called buffering sessions/smooth
sessions, respectively).

As the plots given in Figure 2 show, there are significant
gaps, which show that the engagement alone fails to describe a
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Step I (extraction). Extract users interest from their engagement records in the Smooth sessions
where users did not experience any quality problems including buffering event or start-up delay.
Step IT (inference). Based on the extracted interest records in Step I, infer users’ interest in other sessions.

AvrcoriTHM l: Extraction and Inference (E-I) interest estimation algorithm.

TABLE 1: Inference methods of Baseline II.

Gmean the global average of all users’ interest levels in the training sessions.
Uavg/lavg the average of the interest level of the active user/the active video.

Ulavg the geometric mean of the active user’s and the active video’s average interest levels.
KNN the average of the interest of the active user’s K nearest neighbors who have the

most similar interest in other videos with her.

user’s interest accurately, as user engagement is also impacted
by quality problems. As shown, the buffering event makes
the distribution of the engagement more even in the entire
range. Without experiencing any buffering events, most users
either finish watching the entire video (accounting for 32% of
the sessions) or abandon the session quite early before 5% of
the entire video is viewed (for 38%); on the contrary, in the
buffering sessions, these two extreme cases account for below
22% together.

The gap of the distributions in Figure 2 is attributed to
the quality problems that, on the one hand, impair users’
watching experience and reduce the probability of the long
engagement time and, on the other hand, indicate that the
users still have a certain interest in the videos rather than
abandoning the sessions at the beginning even before any
buffering events.

4.2. Extraction-Inference (E-I) Algorithm. We propose a
heuristicExtraction and Inference (E-I) interest estimation
algorithm based on the following two assumptions: (1) given
the QoS and the seeking state, a user’s engagement time
only depends on her interest level in the video and (2) a
user’s preference remains consistent during a short period, as
widely accepted in recommendation systems. We develop this
algorithm in two steps as shown in Algorithm 1.

First, in the selected sessions, QoS and the seeking state
are determined; i.e., all the values of the QoS metrics and the
seeking state are equal to zero. Accordingly, the engagement
time in these sessions is decided by users interest. We
uniformly map user engagement in smooth sessions into 10
bins referred to the user’s interest implicit rating (where 1
represents poor and 10 excellent).

Based on the collected users” interest in the selected
sessions, we next use Matrix Factorization (MF) [33, 34],
a typical Collaborative Filtering (CF) algorithm [35-38], to
infer their interest in other sessions. Compared with some
other typical CF algorithms, e.g., KNN algorithm [35, 36],
the MF algorithm is better at dealing with the data sparsity
[36] and, in our experiments, the data used for training is
quite sparse. The selected sessions (used for both training and
testing) only account for 23% of the sessions in our dataset.

The MF algorithm supposes that users’ interest can be
explained by characterizing both the users and the videos to a

joint latent factor space. In this space, users and videos should
be represented to be M-dimensional latent factor vectors. For
a user u, provided with her vector p, and a video v’s vector
qQy» her interest in this video T, , can be predicted to be the
product of these two vectors in addition to the global average
interest y, the user’s bias b, and the videos bias b,. That
is, T,, = p+b, +b, + quv. In practice, the latent factor
vectors, p, and q,, and the biases, b, and b,, are learned by
the stochastic gradient descent (SGD) algorithm [14] looping
through the training dataset to minimize a utility function;

ie., miny, , ZFU)VET(?U,V —u—=b,—b, —prg,)? + Alp.l* +

||qv||2 + b, 2y ||bv||2). Here T denotes the set of the historical
interest records.

4.3. Evaluation. We exploit the data in smooth sessions for
training and evaluation. Via 10-fold cross validation, we fix
the parameters, A and M, in the E-I algorithm to be 0.05 and
30, respectively.

For comparisons, we propose two types of baseline
methods. The first type (namely, Baseline I) modifies Step I of
the E-I algorithm. It directly maps user engagement into user
interestin all the sessions (regardless of the quality problems).
The second type (namely, Baseline II) replaces the inference
algorithm, the MF algorithm, with some statistical methods
and another CF algorithm, K-Nearest Neighbors (KNN), as
defined in Table 1.

We evaluate the engagement prediction accuracy (mea-
sured by Root Mean Square Error (RMSE) [39]) of the
algorithms on the “selected” sessions of the test dataset where
the engagement records do represent users’ pure interest.

According to the results listed in Table 2, E-I algorithm
improves the engagement prediction accuracy by 18% on
Baseline I, 27% on Gmean, 7.26% on Uavg, 8.9% on lavg,
6.3% on Ulavg, and 4.8% on KNN. The positive results of
our proposed E-I algorithm confirm that it is necessary to
eliminate the effect of the other relevant factors when we
extract user interest from their engagement records.

5. Engagement Predictive Model

In this section, we measure the relationships of user engage-
ment with user interest and QoS, respectively, and then
propose the engagement predictive model.
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TABLE 2: Estimation accuracy of user interest inference models and the improvement achieved by E-I algorithm on the baseline methods.

The evaluation is conducted in the smooth sessions.

Baseline IT E-T algorithm

Methods Baseline I

Gmean Uavg lavg Ulavg KNN
RMSE 3.63 4.07 3.19 3.25 3.16 3.11 2.96
Improvement (%) 18.4 27.2 7.2 8.9 6.3 4.8 --
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FIGURE 3: Cumulative distribution plots for QoS metrics.

5.1. User Engagement versus QoS Metrics

5.11. QoS Distribution. We first look at the distributions of
the values of the various QoS metrics. As shown in Figure 3,
we find that the system has a good quality generally although
the quality problems are not trivial in some sessions. 43.5%
of the sessions in our dataset have not endured any quality
problems. Specifically, 70% of the sessions have not endured a
buffer event and 50% have not experienced startup delay. Still,
there are some sessions having endured quite poor quality
situations. For example, 5% of the sessions endure a buffering
ratio over 10%. 5% of the sessions have more than 5 buffering
events in their 100-second playing time.

The generally good quality situation restrains the usage
range of the traditional engagement models that consider
QoS only. These models could not differentiate the sessions
without quality problems, although the QoS metrics should
be taken into account as relevant factors as shown earlier.

5.1.2. Correlation Analysis. Next, we examine the expecta-
tions of user engagement conditional on various quality
metrics. Given a quality value Q = ¢, the conditional
expectation of user engagement is calculated tobe E(E | Q =
q) = XY.epm ¢P(E = ¢ | Q = q), where P(E = ¢ | Q = q)
is the conditional probability and D(E) is the range of the
engagement value as defined in Section 3.2.

The plots of the conditional expectations are shown in
Figure 4. in the dominant range of buffer frequency ([0, 18%]
as shown in Figure 3(b)), as an example, the engagement
generally decreases log-linearly as the quality becomes poorer
as expected, as shown in Figure 4(b), which means that the
decrease rate slows down with a larger buffer frequency. This
result supports the intuition that users are less sensitive to a
worse quality situation once they have suffered a bad one. The
relationship between user engagement and the buffering ratio
shows the similar characteristics. But with a larger average
buffering length or startup delay, as shown in Figures 4(d)
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FIGURE 4: Expectations of user engagement against diverse QoS metrics. (a) Buffering ratio, (b) buffering frequency, (c) startup delay, and (d)

average buffer length.

TaBLE 3: Correlation coefficients of user engagement with QoS and user interest, respectively. The values of the QoS metrics are measured in
logarithmic scale. *The correlation coefficient of user engagement with user interest will be introduced in Section 5.2, while those with QoS

metrics are introduced in Section 5.1.

Correlation metric Buffer ratio Buffer frequency Average buffer length Startup delay Interests
Pearson -0.2363 -0.3332 -0.0985 -0.1195 0.3374
Spearman -0.2273 -0.3435 -0.1034 -0.1447 0.3595

and 4(c), user engagement decreases not as smoothly, which
means a weaker correlation between user engagement and
these two metrics.

Furthermore, we quantify the correlation coefhicients
of the logarithmical values of the QoS metrics with the
conditional expectations of engagement. To alleviate value 0
in the logarithm operators, all the QoS values are increased
by L ie, Q' = In(Q + 1), where Q is the original QoS value
and Q' is the logarithmical one. We employ the correlation
metrics Pearson correlation coefficient t [36] and Spearman
rank coefficient [39]. The first metric could identify the linear
relationship with some Gaussian noise while the second one
emphasizes the monotonicity between variables. As shown in
Table 3, the results confirm that, among all the QoS metrics,
buffer frequency and restartup buffer ratio show the strongest
log-linear correlations with engagement, which means the

largest weight should be assigned to these two metrics in the
engagement predictive model.

5.2. User Engagement versus User Interest. 'We now examine
the relationship of user engagement and user interest. As
shown in Figure 5(a), user engagement increases linearly with
an increasing interest level, except for that at the head ([1,
2]) and the tail ([9.7,10]). Fortunately, the ranges of the head
and tail only account for 0.9% of the sessions. Thus, the linear
characteristic still dominates the relationship.

Moreover, the correlation coefficient between user
engagement and user interest is stronger than that with most
of the QoS metrics, as listed in Table 1. The results confirm
that individual interest has a roughly linear dependence on
the engagement.
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FIGURE 5: The expectations of user engagement conditional on (a) the user interest level and those on (b) the buffering frequency in the
sessions where users are, respectively, strongly and weakly interested in the videos.

5.3. User Engagement versus QoS versus User Interest. Intu-
itively, QoS metrics and user interest may not independently
impact user engagement. For example, users may have differ-
ent tolerance to the quality issues when they have divergent
interest degree towards the videos.

To confirm this intuition, we compare the engagement-
QoS relationship under the strong-interest level and that
under the weak-interest level, respectively, as shown in
Figure 5(b). We use buffer frequency here as an example of
the QoS metrics. In statistics, we split the logarithmical value
of buffer frequency into 10 bins and denote the binned buffer
frequency with a score between 0 and 10. The interval is set to
be 1 score for statistic.

The boundary between the strong- and the weak-interest
level is set to be the median of all the users’ interest levels.

As shown, when the users are more interested in the
video, the engagement decreases more quickly against an
increasing buffer frequency. In other words, users with a
stronger interest tend to be more sensitive to the quality
problem. The significant difference between these two cases
indicates the existence of the multiplicative effect of user
interest and the QoS on user engagement.

6. Model Building and Evaluation

6.1. Engagement Model. According to the measurement
results above, we propose aQoS and user Interest based
Engagement (QI-E) regression model. In this model, for user
u with an interest rating R with video v, we predict his/her
engagement E for this video to be

E=f(Q.,R)=60,Q +0,R+r0,,Q +6,  (2)

where Q' = [Q;, . ,Q,'(, e Qk] is a QoS vector where the
element Q,'( is the logarithmical value of the kth QoS metric;
ie., QL = In(Qy + 1), where Qy is the original QoS value.
All the QoS metrics are involved in the vector, and then

K = 4.0, € 0 are the weight parameters to be learned by
experiments.

Based on this model, the expectation of user engagement
conditional on the kth QoS metric with a logarithmical value

of Q'™ = g can be derived to be
E(EIQW=9)=E®+1)g+cER +c (3

where E(R) is the expectation of user interest rating. ¢ =
Zgzl & [E(Q'(k)) + 1 and Q'(k) is the logarithmical value of

the kth QoS metric but not the kth one. Both of them are
constants. For clarity, the parameters 0, € 0 are omitted in
the derivation.

From (3), we observe that the conditional expectation of
user engagement E(E | Q'® = q) is linearly proportional
to the logarithmical QoS value g, which is consistent with
the measurement result in Section 5.1. Furthermore, with a
larger interest rating R, there is a larger slope, E(R) + 1, in the
linear relationship, which is consistent with the measurement
result in Section 5.3. Similarly, through a deviation of user
engagement conditional on interest rating R = r, it is easy
to show that the model is consistent with the measurement
result in Section 5.2.

6.2. Model Evaluation. We randomly select 80% of the whole
dataset for training and the rest for testing. Via 10-fold cross
validation, we fix the parameters 0, in the QI-E model.

For comparison, we propose three groups of linear
regression models as baselines. In the first group, denoted by
BS-1, the models consider separate QoS metrics, respectively.
In the second baseline model, denoted by BS-2, we take into
account all the QoS metrics and the third one, denoted by BS-
3, considers user interest additionally.

In Table 4(a), we first evaluate the first group baselines
models. Among them, the model considering buffer frequency
has the smallest RMSE of 3.1553 as expected as this metric has
the largest correlation coeflicient with engagement as shown
in Table 3.
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TABLE 4: Performance of the engagement predictive models.
(a) Models BS-1 using each single QoS metric as input feature
Input Feature Buffer ratio Average buffer length Buffer frequency
RMSE 3.1727 3.1871 3.1553
(b) Models using quality factors and human factors
Model Input Feature RMSE Improvement
BS-2 All the QoS metrics 3.0926 --
BS-3 QoS, interest 2.9846 3.5%
QI-E QoS, interest (multiplicative item) 2.8588 7.6%

In Table 4(b), we evaluate the proposed QI-E model
compared with the model that consider all the QoS metrics.
As the results shown, when user interest is considered, there
is an improvement of 3.5%. When the multiplicative effect of
the two kinds of factors is considered in the QI-E model, the
improvement climbs up to 7.6%.

The positive results confirm the effectiveness of our
proposed engagement predictive model and demonstrate the
necessity of understanding how the QoS factors and user
interest impact user engagement. Although the experiment
is conducted on a dataset from an application on PC-clients,
our method and results are easy to be extended to the context
of mobile clients.

7. Summary and Discussion

71. Summary. In this paper we have shown that, in order to
optimize user engagement in VoD streaming systems directly,
an effective model of engagement incorporating both user
interest and perceptual quality factors in an explicit function
is needed. To this end, we have proposed an Extraction-
Inference (E-I) algorithm to estimate the user interest from
easily obtained user behaviors. Furthermore, we have built a
QoS and user Interest based Engagement (QI-E) regression
model based on an experimental analysis over a large-scale
dataset. This model offers an improvement in accuracy by
9.99% over the baseline model considering only QoS factors.
The positive results demonstrate that user interest as well as
QoS plays an important role in user engagement prediction.

7.2. Discussion for Implications. Our research on under-
standing and modeling user engagement can be applied to
most of the up-to-date network environments, including fog
computing. For example, it could help designers to make
tradeoffs between QoS factors under diverse user interest
through CDN selection, streaming decisions, and so on [48,
49].

Especially in the fog computing context, as provided with
fully explored localized user features and service demand,
user interest in this case is more predictable and users’
personalized requirement could be better satisfied [4, 46]. For
a goal of global optimization, based on our model, designers
could provide the users with higher interest with a priority
to the bandwidth optimization under a limited bandwidth
condition. As another example, in an engagement-oriented

recommendation system, designers can make a tradeoff
between videos that satisfy user interest and that provide a
better QoS.

In the future, we will further extend the model to
consider more factors. For example, some other kinds of user
behaviors like drag can help understand the user’s patience.
Moreover, we can design scheduling schemes specifically for
the fog computing context.
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