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A novel approach tomanaging a fully distributed cognitive radio network (CRN) is presented.This approach builds on the concept
of history-based spectrum access, in which cognitive base stations (BSs) independently estimate the system load using history
records and adaptively swap their occupied spectrum bands to ensure allocation fairness and high overall throughput. In addition,
cognitive BSs monitor primary user (PU) behavior in order to avoid interfering with active PUs. In this work, we address two
issues that afflict history-based access: the first is the high cost of the sensing devices needed at each cognitive BS to be able to
independently draw conclusions about the status of the CRN and the second is the unreliability inherent in practical sensing
hardware (such as energy detectors). Simulation results show that the proposed techniquemanages to solve the two abovementioned
issues without any noticeable drop in performance and without sacrificing the distributed nature of the protocol.

1. Introduction

Cognitive radio achieved prominence in recent years because
it promises to solve the radio spectrumunderutilization issue.
In cognitive radio networks (CRNs) two classes of users exist:
The first is primary users (PUs) who are licensed to use the
spectrum but many times leave the spectrum underutilized,
such as the case of terrestrial TV broadcasters in rural and
suburban areas [1].The second class of users is secondary users
(SUs), who are cognitive users that can sense the spectrum
bands left unused by PUs and can opportunistically utilize
this spectrum for their transmission needs [2, 3].

A large body of work has been dedicated to researching
the various aspects of CRN operations, such as spectrum
sensing to identify empty bands [4–11], channel allocation
among SUs [1, 12, 13], establishment and maintenance of a
common control channel (CCC) to allow persistent communi-
cations between different SUs [3, 14], and spectrum handoff
and mobility. A summary of relevant research is presented in
the next section.

A cognitive secondary user or a cognitive base station
(BS) typically operates in two stages. In the first stage a BS

must perform spectrum sensing, in which the cognitive BS
listens to the received signal on one or more frequency bands
that the BS wants to transmit on. The purpose of this sensing
is to determine whether a PU is currently transmitting on this
frequency or not. If a PU exists, the cognitive BS avoids this
band and attempts to sense another. If a PU is not detected,
the cognitive BS goes into the next phase (called channel
allocation), which decides whether the BS should access the
band for itself or leave it for other neighboring cognitive BSs,
for fair usage of the spectrum.

The conventional wisdom for running these two pro-
cesses in CRNs was to divide the time into frames (i.e., time
slots) and then divide each frame into two periods [3]: In
the first period, called the quiet period (QP), all cognitive
BSs refrain from transmitting and instead sense the bands
to listen to any active PUs (who keep transmitting as they
are unaware of the CRN existence). The longer the QP, the
more accurate the sensing results, because more samples
are collected for the received signal by the sensing devices
available at the cognitive BSs [6].

The second period of the frame is called the transmission
opportunity (TxOp) (see Figure 1(a)), in which the cognitive
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Figure 1: Illustration of the (a) conventional method of sensing
and accessing spectrum (using a QP followed by a TxOp) and (b)
the proposed procedure for simultaneous sensing/transmission over
multiple spectrum bands.

BSs start accessing the spectrum holes left by PUs. In a fully
distributed CRN, cognitive BSs do not coordinate with each
otherwhen accessing the spectrumduringTxOps.Thismight
lead to contention across spectrum bands. The traditional
technique for resolving such conflicts (when they arise) is
to use contention resolution techniques, such as CSMA with
exponential backoff [11, 15], which unfortunately exhibits
poor performance, in terms of both throughput and delay,
when increasing the number of BSs [16].

A departure from this conventional CRN access tech-
nique, in which QPs are followed by TxOps, is the work
presented in [17], called HOP-M,where a differentmethodol-
ogy for sensing and accessing the spectrum was introduced.
This new approach, designed for distributed CRNs, requires
cognitive BSs to continually swap access to spectrum bands
amongst themselves (at the end of what is calledmaintenance
periods), rather than aggressively contending for such bands
at the beginning of every TxOp. This significantly reduces
contention between competing cognitive BSs, as each BS
regularly and voluntarily gives up some of its acquired spec-
trum bands to the benefit of others, while contention only
happens at the time of the swap.

The above method also mitigates the need for QPs at
the beginning of every time slot, since the cognitive BSs
can keep transmitting until the time of the band swap. If a
PU starts transmitting in the band, it is easily detected by
the cognitive BS because the ensuing interferencewill prevent
proper acknowledgements (ACKs) from arriving at the BS,
which causes the cognitive BS to stop transmitting very
quickly to honor the PU's lawful right to the spectrum.
However, other cognitive BSs do not attempt to interfere with
the BS holding the band until the time of the swap. The
elimination of QPs within each frame increases the channel
utilization and greatly improves CRN performance, without

severely affecting PU operations. Our employment of the
above novel idea is explained thoroughly in Section 3.

Though this new HOP-M swapping approach has excel-
lent performance, it also has its own limitations.Themain one
is that it requires each cognitive BS to have a large number
of sensing devices at its disposal to be able to sense all
spectrum bands in the CRN, specifically the bands the BS is
not occupying at the moment. This allows the cognitive BS to
draw a clear picture about the system around it without the
need to communicate with other cognitive BSs or any dedi-
cated central authority. The need for this many sensing devi-
ces represents a large cost overhead that needs to be addressed.

In addition, thework in [17] assumes highly advanced and
sensitive sensors (such as cyclostationarity based detectors,
feature detectors, or eigenvalue-based sensors) that can per-
form almost perfectly when sensing the spectrum [1, 6], even
under noisy conditions. This increases the cost of the system
even further and is not preferred compared to the more cost-
conscious sensing devices.ManyCRNsmight want to employ
the simpler energy detectors (EDs), which are cheaper, albeit
not very accurate in their sensing abilities [1, 3].

In this work, we attempt to address the above two limi-
tations of the HOP-M technique. Hence, our contribution is
twofold: First, we modify several aspects of the HOP-M
algorithm to allow us to operate with a far smaller number
of sensing devices per cognitive BS, yet without any notice-
able drop in performance. The improvements we introduce
pertain to how this limited set of sensing devices can be used
to obtain almost a full picture of the system to help run our
proposed technique (named History-oriented Procedure for
spectrum Scheduling and Sensing, or HoPSS for short). This
contribution can significantly reduce hardware costs of the
sensing devices required for the CRN and, hence, make the
idea of swapping spectrum bands among cognitive BSs more
practical.

The second contribution of this paper involves new
extensions to the original protocol so that HoPSS can operate
properly even under unreliable sensing conditions, which are
typical for less sensitive (but cheaper) ED sensors. We show
that the performance penalty for using more-affordable (but
less-reliable) sensors is minimized for the HoPSS algorithm,
compared to the HOP-M technique. In short, the newHoPSS
technique can achieve excellent performance in terms of
throughput, stability, and quick reaction to PU behavior,
while using cheap ED sensors.

The rest of this paper is organized as follows: Section 2
offers some background research related to this work. Sec-
tion 3 describes the problem statement and details the pro-
posed spectrum sensing/allocation procedure, which we call
HoPSS. After that, Section 4 explains the simulated network
setup and the metrics used to evaluate the performance of
our technique. Finally, a discussion of the simulation results
is presented in Section 5, while Section 6 concludes with final
comments.

2. Background

Designing an efficient, fair, and robust channel allocation
mechanism is a major challenge for CRNs. This is why there
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is a wide body of research addressing this issue. Existing me-
chanisms for channel allocation can be generally classified
into centralized, distributed, and hybrid techniques.

Centralized policies for channel allocation can exhibit
better performance compared to distributed policies, which
are typically based on random selection executed by each
cognitive BS without communicating with the rest of the
network. Unfortunately, uncoordinated access to spectrum
bands in distributed CRNs can result in excessive collisions,
thus increasing delay and lowering throughput [15, 16]. Cen-
tralized mechanisms can provide a much higher throughput
and better levels of fairness (compared to distributed ones),
due to the help of a central coordinator.

Centralized techniques for spectrum access typically
involve running optimization algorithms to reach the desired
channel allocation strategy. Different approaches have been
proposed to solve such an optimization problem, such as
particle swarm optimization [18, 19], ant colony optimization
[20], genetic and evolutionary algorithms [12, 21, 22], fuzzy
logic [23], and neural networks [24]. However, centralized
optimization techniques suffer from some disadvantages,
such as a single point-of-failure, extra implementation com-
plexity, sensitivity to node or link failure, and the need to
preestablish a proper CCC between the cognitive BSs and the
controller.

Distributed CRNs, on the other hand, have also garnered
widespread interest due to their advantages. First, there are
no bottlenecks and no single point-of-failure. In addition,
there is no need to setup and maintain a CCC within the
unpredictable spectrum of the CRN. This greatly simplifies
the design and implementation of the system [3, 14]. Also,
distributed systems have inherent scalability and robustness
that cannot be matched in a centralized network [1, 25].

A popular class of distributed CRNs are the ones based
on game-theoretic models [26–30]. In such models, each
cognitive BS acts as a player in a game and hence follows
a strategy proper to that game to decide independently on
channel assignment. The cognitive BS can change its strategy
based on observations of spectrum usage. The goal of the
game is typically to reach aNash equilibrium, and one usually
defines a utility function to maximize certain performance
metrics at equilibrium, such as throughput or fairness.

3. HoPSS SpectrumManagement

3.1. System Model. We consider a set M of spectrum bands
numbered from 1 to𝑀 = |M|, where |M| is the cardinality of
set M. A set N of cognitive BSs in a CRN attempts to access
such spectrum bands in a fully distributed manner.These BSs
are numbered 1 to 𝑁 = |N|. Each BS 𝑛 ∈ N has a spectrum
demand 𝑆𝑛, which represents the number of spectrum bands
this BS would like to occupy successfully in order to serve the
various SUs attached to this BS.

As illustrated in Figure 1, time is divided into fixed-
length frames called time slots, each is equal to 𝜏 seconds.
During each time slot 𝑡 ∈ [1, 𝑇], a cognitive BS typically
occupies a subset of the M frequency bands. We denote the
set of spectrum bands successfully occupied by BS 𝑛 during a
particular time slot 𝑡 (i.e., without suffering from contention

due to other BSs and without interference from an active PU
in that band) using the symbol S𝑛(𝑡), where the number of
such successful bands is 𝑠𝑛(𝑡) = |S𝑛(𝑡)|. On the other hand, the
set of bands occupied by BS 𝑛 but suffering from contention
from other BSs or interference from a PU (during time slot𝑡) is represented by the set C𝑛(𝑡), where the number of such
collision bands is 𝑐𝑛(𝑡) = |C𝑛(𝑡)|. The whole set of occupied
bands (by BS 𝑛) during time slot 𝑡, whether successful or
under collision, is denoted by O𝑛(𝑡) = S𝑛(𝑡) ∪ C𝑛(𝑡). It is
mentioned shortly that BS 𝑛 can determine the status of any
of the occupied bands 𝑚 ∈ O𝑛(𝑡) via the correct reception
of an acknowledgement (ACK) or lack thereof. Hence, using
a dedicated sensing device (such as an ED) to sense these
occupied bands will not be necessary.

To reduce the overall system cost, each BS 𝑛 is assigned
a limited set of dedicated sensing devices (detectors), named
D𝑛, where the number of such devices per BS is 𝐷𝑛 = |D𝑛| ≤𝑀. For example, each of these sensing devices can be an
energy detector (ED) that can be assigned to sense one of the𝑀 available spectrum bands. BS 𝑛 will utilize such dedicated
devices during any time slot 𝑡 to sense a maximum of 𝐷𝑛
bands that are not currently being occupied by the BS (i.e.,
out-of-band sensing). This set of sensed bands is denoted by
V𝑛(𝑡) ⊂ M. BS 𝑛maintains the condition V𝑛(𝑡) ∩O𝑛(𝑡) = 0.

We note that the number of bands being sensed via out-
of-band sensing is V𝑛(𝑡) = |V𝑛(𝑡)| ≤ 𝐷𝑛 because in theory all𝑀 bands can be occupied by BS 𝑛 at a certain time slot, which
means out-of-band sensors can be deactivated in this case.
However, in reality the BS spectrum demand 𝑆𝑛 and, hence,
the number of occupied bands by the BS 𝑜𝑛(𝑡) = |O𝑛(𝑡)|
during any time slot 𝑡 are bothmuch smaller than the number
of available spectrum bands𝑀, which means that, typically,
the number of bands V𝑛(𝑡) being sensed by out-of-band
sensing devices is equal to the number of available detectors𝐷𝑛.

Not only to this extent, but since the number of available
detectors𝐷𝑛 is much smaller than𝑀 and due to the fact that
BS 𝑛 does not attempt to acquire all bands in the system, there
will be bands that are neither occupied nor sensed by the BS.
These are denoted by the set U𝑛(𝑡), which means that their
status is unknown to BS 𝑛 during time slot 𝑡. Surely it is easy to
see that, for any time slot 𝑡, we haveO𝑛(𝑡)∪V𝑛(𝑡)∪U𝑛(𝑡) = M.
The HOP-M technique presented in [17] assumes that 𝐷𝑛 =𝑀, which means that U𝑛(𝑡) = 0 for all times, thus simpli-
fying the process of identifying the system status as a whole.
Our proposed HoPSS technique, on the other hand, does not
have this luxury and has to be clever in utilizing the limited
set of 𝐷𝑛 detectors to glean a good picture of the system
status without needing extra help from other BSs or a central
coordinator.

3.2. Sensing and History. The action of BS 𝑛 in sensing the
V𝑛(𝑡) spectrum bands during time slot 𝑡 via its available
sensing devices is very similar to how traditional CRNs per-
form sensing in the QP. However, instead of sensing during
a QP, we assume that sensing is performed for the whole
duration 𝜏 of the time slot. This increases the number of
samples available to the sensing device compared to the
shorter QP, which improves detection performance (as seen
shortly).
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We also assume in HoPSS that simple energy detectors
(EDs) are used as sensing devices. Such detectors sample the
signal y(𝑡) received at the antenna of the BS sensing device
when tuned to a particular band. The BS needs to determine
which of the following two possibilities (hypotheses) is
correct:

H1: y (𝑡) = x (𝑡) +w (𝑡)
H0: y (𝑡) = w (𝑡) , (1)

wherew(𝑡) is an additive white Gaussian noise (AWGN)
signal and x(𝑡) is the signal transmitted by a nearby PU or
another BS. A typical energy detector (ED) would obtain 𝐾
samples of the received signaly(𝑡) and then use these samples
to calculate a test statistic to estimate the received signal ener-
gy as follows:

Θ (𝐾) = 1𝐾 𝐾∑
𝑘=1

|y (𝑘)|2 . (2)

This statistic Θ(𝐾) is then compared to a threshold 𝜃 (see
below) to decide on the spectrum status. For Θ(𝐾) > 𝜃, the
band is considered busy; otherwise it is considered empty.
However, there is a possibility that the signalx(𝑡) is weakened
because of shadowing or fading in the wireless channel. In
addition, there is a possibility that w(𝑡) spikes temporarily
due to an extra burst of noise. In such cases, the ED can make
a wrong determination of the status of the band. Typically,
the performance of the sensor device is expressed in terms of
two probabilities: probability of false alarm, denoted by 𝑃𝑓𝑎,
and probability of misdetection, represented by 𝑃𝑚𝑑 [5].

The probability of misdetection is when a PU (or another
BS) signal is truly present but cannot be seen due to shadow-
ing or deep fades. This probability is given by

𝑃𝑚𝑑 = 𝑃 (Θ (𝐾) ≤ 𝜃 |H1) . (3)

On the other hand, the probability of false alarm is the
probability that the detector incorrectly infers that the PU (or
another BS) is present when it is actually not, probably due to
excessive noise, and is defined by

𝑃𝑓𝑎 = 𝑃 (Θ (𝐾) > 𝜃 |H0) . (4)

To understand the factors effecting the above perform-
ance metrics, we present a quick derivation of these probabil-
ities under the following common assumptions (adopted by
several researches [5, 9]). First, we assume that the samples
of the received PU (or BS) signal x(𝑘) are independent and
normally distributed with mean 0 and variance 𝜂2x. This
variance represents the average power of the received signal.
In addition, the samples of the additive white Gaussian noise
w(𝑘) are independent and identically distributed (iid) with
zero mean and variance 𝜂2w. The received signal and white
noise are considered statistically independent.

Since the test statistic Θ(𝐾) in (2) is the sum of the
squares of a finite number 𝐾 of independent normally
distributed random variables, by definition we get a chi-
squared distribution for Θ(𝐾) as follows:

Θ (𝐾) ∼ {{{
𝜒2𝐾 (𝛾) , H1𝜒2𝐾, H0, (5)

where 𝜒2𝐾 and 𝜒2𝐾(𝛾) represent the central and noncentral
chi-squared distributions, respectively, with 𝐾 degrees of
freedom (and noncentrality parameter of 𝛾 in the latter case).
Here, 𝛾 = 𝜂2x/𝜂2w is the signal-to-noise ratio (SNR) of the re-
ceived signal y(𝑡) as perceived by the energy detector.

When the threshold 𝜃 used for comparison is a single
fixed-value threshold, the false alarm probability for the
energy detector can be evaluated by finding the area under
the tail of the H0 distribution above the threshold as follows
[31]:

𝑃𝑓𝑎 = ∫∞
𝜃
𝜒2𝐾𝑑𝑧 = Γ (𝐾, 𝜃/2)Γ (𝐾) , (6)

where Γ(.) and Γ(., .) denote the complete and incomplete
gamma functions, respectively [7]. On the other hand, the
probability of misdetection can be obtained from theH1 dis-
tribution as follows [31]:

𝑃𝑚𝑑 = ∫𝜃
−∞
𝜒2𝐾 (𝛾) 𝑑𝑧 = 1 − 𝑄𝑀 (√2𝛾,√𝜃) , (7)

where 𝑄𝑀(., .) is the generalized Marcum Q-function. Sim-
pler equations for the above probabilities can be found when
the number of samples 𝐾 obtained by the sensor increases
to a large enough value (which is the case in our proposed
HoPSS technique). Under this condition, we can use the cen-
tral limit theorem to asymptotically approximate the chi-
squared distribution using the Gaussian distribution as [31]

Θ (𝐾) ∼ {{{{{
N(𝜂2w (1 + 𝛾) , 2𝜂4w (1 + 2𝛾)𝐾 ) , H1

N (𝜂2w, 2𝜂4w/𝐾) , H0, (8)

whereN(𝜆, 𝜂2) indicates the normal distribution with mean𝜆 and variance 𝜂2.
Therefore, using the Gaussian complementary function𝑄(𝑥) = 1/√2𝜋∫∞

𝑥
exp (−𝑡2/2)𝑑𝑡, we can calculate the area

under the tail of the normal distribution in (8).This gives the
false alarm probability for the energy detector using a thre-
shold 𝜃 by [9, 32]

𝑃𝑓𝑎 = 𝑄( 𝜃 − 𝜂2w𝜂2w√2/𝐾) . (9)

On the other hand, the probability of misdetection be-
comes

𝑃𝑚𝑑 = 1 − 𝑄( 𝜃 − 𝜂2w (1 + 𝛾)𝜂2w√2 (1 + 2𝛾) /𝐾) . (10)

Note that 𝑃𝑓𝑎 does not depend on the power of the PU
signal; thus it remains the same if a fading channel (Rayleigh,
Rician, Nakagami, etc.) is considered. On the other hand,
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𝑃𝑚𝑑 can be easily affected by the received power from the
PU, which in turn depends on the fading channel response
[10, 11]. It is also clear that increasing the number of samples𝐾obtained by the energy detector can reduce𝑃𝑓𝑎 . In addition,
increasing the SNR value 𝛾 of the PU at the receiver can
reduce 𝑃𝑚𝑑.

Since the spectrum sensing performance depends on the
chosen threshold 𝜃, we need to determine this threshold to
minimize sensing error [32]. In a Neyman–Pearson detector,
the selected threshold 𝜃 is based solely on the distribution of
the test statistic underH0 [3]. Hence, from (9) the detection
threshold for ED is

𝜃 = 𝜂2w (1 + 𝑄−1 (𝑃𝑓𝑎)√ 2𝐾) . (11)

A major drawback of the above ED scheme is its poor
performance under low SNR conditions, or when the noise
level at the sensor is unknown a priori, a condition known as
noise uncertainty [6, 32].

Several ideas were proposed to improve ED performance,
including adaptive ED, in which the detection threshold 𝜃 is
calculated from (11) based on an estimated noise power 𝜂2w.
The sensor updates this estimate every calibration period [10]
and keeps updating the threshold as the noise power changes
in the environment. Another proposed method to enhance
ED performance is the use of two detection thresholds [32],
wherein if the test statisticΘ(𝐾) is below a lower threshold 𝜃1,
hypothesis H0 is declared. However when Θ(𝐾) is between
the lower threshold 𝜃1 and an upper threshold 𝜃2, the sensing
device repeats its sensing for another round to improve the
reliability of the result.

In addition to the above modifications to the ED, several
othermore advanced sensing deviceswere developed that can
improve sensing performance by reducing 𝑃𝑓𝑎 and 𝑃𝑚𝑑, albeit
with the disadvantage of higher hardware cost. These include
matched filter detectors, waveform detectors, cyclostationary
detectors, and eigenvalue-based detectors [6, 32].

Energy detection (ED) based schemes, however, are still
preferred in cognitive radio spectrum sensing due to their
computational efficiency [3]. Employing good detector hard-
ware design and increasing the sensing interval so that more
samples are gathered by the sensing devicemean that formost
(general) conditions 𝑃𝑓𝑎 and 𝑃𝑚𝑑 are small enough prob-
abilities [5]. This prevents underutilization of transmission
possibilities due to false alarms and also prevents excessive
interference on PUs and other BSs due to signal misdetection.
It is worth mentioning that the proposed HoPSS technique
works well with both perfect sensors and unreliable sensors.

We do not fail to mention that BSs in both the original
HOP-M and the proposed HoPSS techniques do not stop
transmission when occupying a spectrum band, as there is no
QP defined within the frame (see Figure 1). Hence, a sensing
device cannot determine whether the received signal in a
certain band is due to a PU or another BS.This limitation will
be resolved later within our proposed algorithm. However,
the sensing device of BS 𝑛 can render a decision ℎ𝑚𝑛 (𝑡) on the
observed status of each spectrum band 𝑚 ∈ V𝑛(𝑡) as being
either empty, denoted by ℎ𝑚𝑛 (𝑡) = e, which corresponds to

hypothesis H0, or busy (due to another PU or another BS
using the band during this time slot). The latter case is de-
noted by the status ℎ𝑚𝑛 (𝑡) = b and corresponds to hypothesis
H1.

Now we move our attention to the set of bandsO𝑛(𝑡) cur-
rently occupied by BS 𝑛. Instead of introducing a QP for such
bands in which cognitive BSs suspend their transmission,
each BS in our proposed technique transmits for the duration
of the frame and pauses only at the end to wait for an ACK. If
an ACK arrives, this means that no interference (from any
source whether a PU or another BS) occurred during that
transmission. In such case, BS 𝑛 records that the band status
was a successful acquisition of the band, denoted by ℎ𝑚𝑛 (𝑡) = s.

The other possibility is when anACKdoes not arrive at BS𝑛 after a transmission, most probably due to an interference
from an active PU or another BS who is contending for this
band at the same time. In this scenario, BS 𝑛 records that the
band status was acquisition under collision, or ℎ𝑚𝑛 (𝑡) = c. Of
course, this case can also happen if a burst of noise garbles
the transmission of the BS or the corresponding ACK. In such
case, BS 𝑛 might think that the band was under contention,
while truly it was under noisy conditions. We will denote the
probability of this occurring by 𝑃𝑛. Due to the reliability of
modern digital hardware against noise (especially when using
adaptive modulation and forward error correction techni-
ques), we can safely assume that this probability is quite small
[33].

The reliance on the presence or absence of an ACK to
indicate the presence of PUs is a reliable indicator. This is
because when collisions persist for a few consecutive time
slots, it ismostly likely due to an active PU, not a randomburst
of noise. Consequently, we design the HoPSS protocol to dis-
courage the BSs from leaving immediately a band under non-
persistent collisions since a PU might not be active in that
band.

Finally we mention that the status of every band within
the set of bands U𝑛(𝑡) (which cannot be sensed directly or
indirectly by BS 𝑛) is recorded as ℎ𝑚𝑛 (𝑡) = u, indicating an
unknown status.

To reiterate, the status of a particular spectrum band
as seen by BS 𝑛 during time slot 𝑡 can be in one of five
possibilities: ℎ𝑚𝑛 (𝑡) = e, b, s, c, or u. In HoPSS, this state is re-
corded in a moving history table maintained by BS 𝑛. This
moving history is similar to how one would manage amoving
average record. The record length of the history table is 𝐻𝑛
time slots, where 𝐻𝑛 can be selected to strike a balance be-
tween performance and memory requirements at the BS.

3.3. HoPSS Operations. The proposed HoPSS algorithm is an
extension of the HOP-M technique and hence borrows some
of its operations. However, these operations are modified to
allow HoPSS to operate using a small number of sensing
devices 𝐷𝑛 ≤ 𝑀 and under unreliable sensing conditions.

We assume that each cognitive BS 𝑛 attempts to occupy
a certain number of spectrum bands to satisfy its demand𝑆𝑛. However, every number 𝑊𝑛 of time slots (called the
maintenance window for BS 𝑛), the BS leaves voluntarily one
of its occupied bands for the benefit of other cognitive BSs.
Other BSs contend for the band only after it is released, not
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while a BS (or PU for that matter) is using that band. Hence,
contention amongBSs is possible only at the instant of acquir-
ing a new spectrum band and ends shortly thereafter. This
significantly minimizes wasted spectrum due to contention.

HoPSS shares with HOP-M three decisions BS 𝑛 has to
undertake (albeit with several modifications) specifically (a)
when to leave a successfully occupied s band, (b) when to
leave an occupied band under collision c, and (c) when to
occupy (join) a new empty e band. Notice that BSs in HoPSS
do not attempt to disturb busy b bands or occupy unknown
u bands.

The reader is reminded that the older HOP-M technique
does not have unknown u bands since it has a total of𝐷𝑛 = 𝑀
sensing devices available to sense all M spectrum bands. On
the other hand, HoPSS has a smaller number of sensors𝐷𝑛 ≤𝑀. Hence, we introduce in HoPSS two new operational pro-
cedures, namely, (i) when to let a sensing device 𝑑𝑛 ∈ D𝑛 stop
sensing a particular band 𝑚 and (ii) to which new band 𝑚
this sensing device should move after it has stopped sensing
band 𝑚. These two decisions have to be executed carefully
to allow a small number of sensing devices 𝐷𝑛 to perform
equally well as a large number of sensing devices, whether we
have reliable (perfect) sensing hardware or cheaper (unreli-
able) energy detectors.

To assist the proposed HoPSS algorithm in its decisions,
three counters are maintained by BS 𝑛 using the help of the
history table mentioned in the above subsection. The first of
these counters is the number of time slots 𝜖𝑚𝑛 (𝑡) in which
band𝑚was observed by BS 𝑛 to be empty during its recorded
history up to time slot 𝑡, which is calculated as follows:

𝜖𝑚𝑛 (𝑡) = 𝑡∑
𝑡=𝑡−𝐻𝑛+1

[ℎ𝑚𝑛 (𝑡) = e] , (12)

where the notation [𝜓]means 1 if the condition 𝜓 is true and
0 otherwise. Notice that the band-empty count 𝜖𝑚𝑛 (𝑡) is an
integer that assumes the range [0,𝐻𝑛], where the high value
of 𝜖𝑚𝑛 (𝑡) = 𝐻𝑛 is obtained if band 𝑚 is consistently sensed to
be empty by BS 𝑛; otherwise 𝜖𝑚𝑛 (𝑡) assumes a smaller value.

The second counter we maintain is the number of history
time slots 𝜎𝑚𝑛 (𝑡) in which band 𝑚 was observed to be
successfully occupied by BS 𝑛 (up to time slot 𝑡), which is

𝜎𝑚𝑛 (𝑡) = 𝑡∑
𝑡=𝑡−𝐻𝑛+1

[ℎ𝑚𝑛 (𝑡) = s] . (13)

And, finally, the third counter needed is the number of
history time slots 𝜇𝑚𝑛 (𝑡) in which band𝑚 status was unknown
to BS 𝑛. This is

𝜇𝑚𝑛 (𝑡) = 𝑡∑
𝑡=𝑡−𝐻𝑛+1

[ℎ𝑚𝑛 (𝑡) = u] . (14)

The five procedures implemented by the proposedHoPSS
technique and the way they make use of the above counters
are explained in detail in the following subsections.

3.4. Leaving a Successful Band. To ensure fairness within the
CRN,we require that eachBS 𝑛 abandons someof its acquired

bands from time to time for the benefit of others. BS 𝑛 only
abandons one successfully occupied band at a time, and it can
do that only at the end of its maintenance window.Thewidth
of suchmaintenance window starts at an initial value of𝑊𝑛 =𝑤 time slots (or𝑊𝑛 = 𝑤 × 𝜏 seconds), but the BS can change
the maintenance window length 𝑊𝑛 later to adapt to system
conditions.

To minimize the possibility of BSs continuously aban-
doning their bands and then acquiring new ones, which
represents an unnecessary burden on the system, we require
that BS 𝑛 leaves its successfully occupied bands only when the
load on the system is observed to be high, which ismanifested
by the unavailability of empty bands. To that end, BS 𝑛
calculates a load estimate Λ 𝑛(𝑡) at the end of its maintenance
window as follows:

Λ 𝑛 (𝑡) = 𝑀 × ∑𝑀𝑚=1 𝜖𝑚𝑛 (𝑡)𝑀 ×𝐻𝑛 − ∑𝑀𝑚=1 𝜇𝑚𝑛 (𝑡) . (15)

Obtaining a value Λ 𝑛(𝑡) ≥ 1 indicates to BS 𝑛 that its
history records show that, out of all the bands it has sensed,
on average one or more empty spectrum bands exist. In such
case, BS 𝑛 does not give up any of its successfully occupied
bands because other cognitive BSs have one or more empty
bands available for them. On the other hand, whenΛ 𝑛(𝑡) < 1,
then history indicates that the system is overloaded because
the sensed bands are mostly busy. Hence, BS 𝑛 regularly
releases one of its spectrum bands to help other BSs.

To ensure fairness among BSs and to also minimize freq-
uency switching overhead for the altruistic BS, a probabilistic
coin flip is performed by BS 𝑛 to decide to leave a band at
the end of the current maintenance window or not, where the
leave probability 𝐿𝑛(𝑡) is calculated as follows:

𝐿𝑛 (𝑡) = min(𝑠𝑛 (𝑡)𝑆𝑛 , 1) . (16)

Equation (16) is designed to let BSs that have satisfied
their spectrum demand (i.e., 𝑠𝑛(𝑡) ≈ 𝑆𝑛) be more willing to
give up one of their bands compared to those that did not
satisfy their demand yet (i.e., 𝑠𝑛(𝑡) ≪ 𝑆𝑛). This ensures fair-
ness in a fully distributed system.

When the coin flip forces BS 𝑛 to leave a band by the end
of the current maintenance window, the abandoned band is
selected as the band with the minimum successful utilization
count𝜎𝑚𝑛 (𝑡).This helps in reducing frequency switching over-
head seen by the BS. In addition, when BS 𝑛 concedes one of
its successful bands, it then elongates itsmaintenancewindow
to

𝑊𝑛 = ⌈1 + 𝑎𝑑 × 𝑠𝑛 (𝑡)𝑆𝑛 ⌉ × 𝑤 (slots) . (17)

This gives time for other BSs in the network to reciprocate
by giving some of their successfully occupied bands before
BS 𝑛 has to give up another band. From (17) we can see that
when the system is overloaded (i.e., when 𝑠𝑛(𝑡)/𝑆𝑛 ≪ 1)
the maintenance window will be shortened to allow BSs
that really need a band to obtain one. The control parameter
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𝑎𝑑 > 0 and the initial maintenance window length 𝑤 both
allow us to obtain a balance between system throughput and
stability, byminimizing swapping of spectrumbands, while at
the same time forcing quick stabilization of the system after
a disturbance (say after a PU is activated), where some BSs
affected by the disturbance will need new spectrum bands
[17].

Finally, we mention that if BS 𝑛 decides not to give up any
of its bands by the end of the current maintenance window
(which can happen with probability 1 − 𝐿𝑛(𝑡)), the BS resets
the next maintenance window length to the original value𝑊𝑛 = 𝑤 × 𝜏 seconds.
3.5. Leaving a Collision Band. When a band is released by
the end of a maintenance window (or was originally empty),
multiple cognitive BSs may attempt to occupy it at the
same time, causing a collision. In addition, when a PU gets
activated, the interference from the PU also shows up as a
collision for the cognitive BS. To resolve these situations, BS𝑛 counts the number of time slots in which BS 𝑛 sensed band𝑚 under collision, denoted by 𝑖𝑚𝑛 (𝑡). BS 𝑛 does not concede
the band before aminimum contention time 𝐼𝑛 has passed. In
other words, BS 𝑛 does not give up the band if the collision
count is 𝑖𝑚𝑛 (𝑡) < 𝐼𝑛. A benefit of not leaving a collision band
immediately is that bursts of random noise can seem like a
collision to a BS. Waiting for a few consecutive time slots can
tell the BS if this was transient noise or a recently activated
PU.

On the other hand, if 𝑖𝑚𝑛 (𝑡) ≥ 𝐼𝑛, then BS 𝑛 concedes this
collision band probabilistically with a leaving probability of

𝑅𝑚𝑛 (𝑡) = min(𝑎𝑖 × 𝑖𝑚𝑛 (𝑡)𝐼𝑛 + (1 − 𝑎𝑖) × 𝑠𝑛 (𝑡)𝑆𝑛 , 1) , (18)

where 𝐼𝑛 is the contention time limit for BS 𝑛. Both of the con-
trol parameters 𝑎𝑖 ∈ [0, 1] and 𝐼𝑛 allow a tradeoff to be struck
between minimizing the time wasted due to collisions (by
leaving the contended band quickly) thus improving through-
put and at the same time ensuring, on the other hand, that
BSs that did not meet their demand just yet will compete
harder for the contended band. Once a contention is resolved,
the winning BS considers the occupied band successful and
retains exclusive use of it until the end of its maintenance
window, at which time the BS has to decide to keep (or
leave) one of its occupied bands (including the most recent
acquisition).

3.6. Occupying an Empty Band. BS 𝑛 can join any new band𝑚 at any time slot 𝑡 + 1, so long as the band was sensed to be
consistently empty during the previous time slot 𝑡 plus during
an additional 𝐸𝑛 time slots before that. The reason we require
that a band be empty for 𝐸𝑛 + 1 consecutive time slots before
declaring it truly empty is to mitigate the problem that fading
can cause, since deep fades can cause misdetection of a PU
(or another BS), which fools BS 𝑛 into thinking the band is
empty, while it is actually not.

The decision to join a new empty band (once emptiness
is confirmed) is based on the observed load on the system.

When Λ 𝑛(𝑡) ≥ 1 (which indicates low load), BS 𝑛 contends
for one of the bands sensed to be empty if and only if𝑜𝑛 (𝑡)𝑆𝑛 × (1 − 𝑎𝑠 × Λ 𝑛 (𝑡)𝑀 ) ≤ 1, (19)

where 𝑜𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑐𝑛(𝑡) is the total number of bands occu-
pied byBS 𝑛 during time slot 𝑡.Theband to be acquired is cho-
sen to have the highest observed successful count 𝜎𝑚𝑛 (𝑡) out of
all bands verified to be empty by the BS history table. If (19) is
not true, BS 𝑛 does not contend for any new bands.This equa-
tion attempts to force the BS to keep occupying bands until𝑜𝑛(𝑡) = 𝑠𝑛(𝑡) + 𝑐𝑛(𝑡) ≈ 𝑆𝑛. The 𝑎𝑠 ∈ [0, 1] weighting param-
eter represents an optional feature that permits BSs in an
underloaded system to occupy more bands than their de-
mand, rather than keeping those bands empty.

The band occupying behavior is slightly modified whenΛ 𝑛(𝑡) < 1 indicating an overloaded system. In this case, BS 𝑛
flips a coin to occupy an empty band using the join probability

𝐽𝑛 (𝑡) = max(1 − 𝑜𝑛 (𝑡)𝑆𝑛 , 0) . (20)

Equation (20) maintains fairness in the system and
reduces contention between multiple cognitive BSs, because
it requires that BSs that occupy a number of bands closer to
their demand join new empty bands less frequently. If BS 𝑛
decides to contend for an empty band, it picks the band with
the highest success count 𝜎𝑚𝑛 (𝑡) or picks one at random from
the set of bands with the same highest 𝜎𝑚𝑛 (𝑡).
3.7. Moving a Sensing Device. Sensing devices within BS 𝑛 are
a valuable asset since they are needed when the BS wants to
occupy a new empty band or when it wants to estimate the
overall system load. The proposed HoPSS technique is very
careful in using such available sensing devices since their
number is limited.

Firstly, to limit the number of required sensors, HoPSS
cleverly utilizes the presence or absence of ACKs as an indi-
rect method for sensing the set of occupied bandsO𝑛(𝑡).This
mitigates the need for an extra 𝑜𝑛(𝑡) direct sensing devices,
which would have been needed had ACKs not been em-
ployed.

Secondly, HoPSS keeps moving the𝐷𝑛 out-of-band sens-
ing devices around to perform direct sensing of appropriate
bands in an attempt to obtain a clear picture of the envi-
ronment around the BS, including the ability to estimate the
system load.

To effectively utilize such limited number of sensors,
HoPSS is designed to veer the sensors towards empty spec-
trum bands. Empty bands provide a good indicator of the
system load, since such bands quickly deplete as the system
load increases. In addition, any band that the BS needs to join
in a future time slot has to be an empty band, as busy bands
carry the risk of having a PU (or another BS) active within
them.

In HoPSS, we propose that each one of the active sensing
devices 𝑑𝑛 ∈ D𝑛, which is currently sensing spectrum band𝑚 ∈ V𝑛(𝑡), maintains a counter 𝛿𝑚𝑛 that starts at zero for
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that device as soon as it starts sensing band 𝑚. The counter
is incremented by one for every time slot in which this band
is actively sensed and its status is found to be busy (b) by this
sensing device. When the sensed band status changes from
busy to empty in the next time slot (before the sensing device
leaves the band), the counter 𝛿𝑚𝑛 is reset to zero.

The device 𝑑𝑛 stops sensing band𝑚 and leaves to another
band 𝑚 when the corresponding counter reaches a preset
limit Δ 𝑛 (i.e., when we reach 𝛿𝑚𝑛 ≥ Δ 𝑛). In other words when
a band is sensed to be busy for Δ 𝑛 consecutive time slots,
the sensing device assumes the band is occupied by a PU or
another BS and that PU or BS will stay there for some time
(for example, for one full maintenance window).

Setting Δ 𝑛 to a large value prevents the sensing device
from leaving a particular busy band even if it stays busy for
a long time, thus wasting an opportunity to discover a new
empty band. A small value of Δ 𝑛, on the other hand, risks the
sensor leaving an empty band quickly due to isolated events
of false alarms. We chose a value of Δ 𝑛 ≈ 𝐼𝑛 to achieve a
good balance between the above two factors. For example, if
we set Δ 𝑛 = 𝐼𝑛 = 3 time slots, then three consecutive busy
periods will rule out random bursts of noise (which typically
do not generate three consecutive false alarms). In addition,
if a collision occurs between two BSs on a sensed band, this
collision will probably clear during about 𝐼𝑛 consecutive time
slots, allowing the sensing device to observe if that band goes
back to the empty state or not.

However, once the band is confirmed to be busy to a high
degree of certainty (i.e., once 𝛿𝑚𝑛 ≥ Δ 𝑛), then there is no point
of sensing the band further since the PU (or another BS) that
occupied the band probably needs to use the band for some
time, and hence we move that sensing device 𝑑𝑛 to attempt to
find a new empty band.

Needless to say, if an empty band being sensed by BS 𝑛 is
occupied (at a later point) by BS 𝑛 itself (i.e., the band moves
from the V𝑛(𝑡) set to the O𝑛(𝑡) set), the sensing device for BS𝑛 also decides to stop direct sensing of that band and moves
somewhere else, as the band can be easily sensed indirectly
using ACKs once it is occupied. However, if a band remains
empty and is not occupied by BS 𝑛, the sensing device stays
attached to that band indefinitely.

3.8. Picking a New Band to Sense. After making a decision to
move a sensing device 𝑑𝑛 from its current band𝑚 at time slot𝑡, HoPSS has to decide which band 𝑚 from the unknown
bands set U𝑛(𝑡) to pick for direct sensing using this device
starting in the next time slot 𝑡 + 1. Our proposed technique
for picking a new band for sensing follows a few criteria
explained next (see the pseudocode in Algorithm 1).

First, the new band 𝑚 to be sensed should not be the
same as band 𝑚 that the sensor just left because band 𝑚 was
busy for Δ 𝑛 consecutive time slots. Second, the new band𝑚 to be sensed should neither be a band that is currently
occupied by BS 𝑛 (i.e., 𝑚 ∉ O𝑛(𝑡)) nor be a band that is
currently being directly sensed by another sensing device (i.e.,𝑚 ∉ V𝑛(𝑡)). In other words, the new band should be picked
from the set U𝑛(𝑡).

When a band is no longer sensed directly via a sensing
device or indirectly via ACKs (i.e., when the band moves

from the V𝑛(𝑡) or O𝑛(𝑡) set to the U𝑛(𝑡) set), BS 𝑛 starts a
counter 𝜁𝑚𝑛 (𝑡) for that band and increments the counter every
consecutive time slot that band status remains unknown.This
timer represents the time period in which the band status is
unknown to BS 𝑛.

A sensing device does not go back to an unknown band𝑚
until 𝜁𝑚𝑛 (𝑡) exceeds the minimum maintenance window size
(i.e., until 𝜁𝑚𝑛 (𝑡) > 𝑤). This gives some time for the PU or BS
occupying that unknown band to leave it and also prevents
the sensing device from jumping back and forth between
busy and unknown spectrum bands. The above condition,
however, is not a stringent condition, because if BS 𝑛 cannot
find any band 𝑚 ∈ U𝑛(𝑡) that satisfies 𝜁𝑚𝑛 (𝑡) > 𝑤, this condi-
tion is simply ignored.

Out of the U𝑛(𝑡) spectrum bands that satisfy the above
condition, the band with the maximum success history count𝜎𝑚𝑛 (𝑡) is picked for sensing. If multiple bands have the same
maximum success count 𝜎𝑚𝑛 (𝑡), one of such bands is picked at
random. Randomness in distributing the different BS sensors
over multiple bands helps minimize collisions when BSs
eventually decide to acquire such bands.

Notice that the maximum success count 𝜎𝑚𝑛 (𝑡) is used to
pick the band to be sensed. This is similar to the criterion
for joining a new band explained earlier in Section 3.6. The
choicemakes sense because picking a band to sense is the first
stage to acquiring that band, and if we pick bands to sense that
have the potential to limit band switching overhead between
BSs, we will eventually pick such bands for acquisition. This
harmony of picking bands for sensing and then picking
bands for acquisition is what provides us with remarkable
performance for the proposed HoPSS technique, even with
a small number of sensing devices. Algorithm 1 shows the
procedure for picking a new band to sense.

4. Algorithm Performance

4.1. Simulation Setup. To test HoPSS performance, a dis-
tributed CRN is simulated with 𝑁 = 10 cognitive BSs
attempting access to 𝑀 = 100 unlicensed spectrum bands.
The simulation is run for a total of 𝑇 = 20, 000 time slots.
The key control parameters used for both HoPSS andHOP-M
protocols are summarized inTable 1.We assume the spectrum
demand for all BSs is identical 𝑆𝑛 = 𝑆, ∀𝑛 ∈ N, and we vary
this demand from 𝑆 = 5 bands to 𝑆 = 15 bands to control
system load, which is 𝐿 = 𝑁 × 𝑆/𝑀. Hence, the system load
varies between 𝐿 = 50% and 150%.

It is worth noting that in our simulations of the HoPSS
protocol we only utilize 𝐷𝑛 = 20 sensing devices per BS.
Compare this to the number of devices required by the HOP-
M technique, which is 𝐷𝑛 = 100 per BS. This illustrates
the cost savings potential of HoPSS. We demonstrate later
the comparable performance for the two techniques though
HoPSS uses only one-fifth of the number of sensors used by
HOP-M.

We also note in Table 1 the extra three HoPSS parameters
that provide it with more resistance to the unreliability of
practical sensing devices, namely, minimum contention time𝐼𝑛, empty verification period 𝐸𝑛, and busy verification period
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Algorithm: Pick new band𝑚 for sensing by BS 𝑛
1. Leave band𝑚 in time slot 𝑡
2. Identify eligible bands setQ = U𝑛(𝑡)
3. Remove band𝑚 from eligible bands setQ
4. Remove bands �̃� with 𝜁𝑚𝑛 (𝑡) ≤ 𝑤 from setQ
5. if Q ̸= 0 then /∗ possible bands ∗/
6. Ω

𝑡
← max∀𝑚∈Q 𝜎𝑚𝑛 (𝑡) /∗maximum success ∗/

7. Candidates B← {�̂� : �̂� ∈ Q ∧ 𝜎𝑚𝑛 (𝑡) = Ω𝑡}
8. Pick band𝑚 at random from candidatesB
9. else /∗ Q = 0 no eligible bands in first round ∗/
10. Identify eligible bands setQ = U𝑛(𝑡)
11. Remove band𝑚 from eligible bands setQ
12. if Q ̸= 0 then /∗ relaxing condition worked ∗/
13. Ω

𝑡
← max∀𝑚∈Q 𝜎𝑚𝑛 (𝑡) /∗maximum success ∗/

14. Candidates B← {�̂� : �̂� ∈ Q ∧ 𝜎𝑚𝑛 (𝑡) = Ω𝑡}
15. Pick band𝑚 at random from candidatesB
16. else /∗ Q = 0 still no eligible bands ∗/
17. Pick band𝑚 for sensing /∗ last resort ∗/
18. end
19. end

Algorithm 1: Pseudocode for picking a new band𝑚 for sensing by BS 𝑛 at slot 𝑡. Actual sensing starts in the next time slot 𝑡 + 1.
Table 1: Main simulation parameters.

Parameter HoPSS HOP-M
Out-of-band sensing devices𝐷𝑛 20 100
Initial maintenance window 𝑤 30 30
History record length𝐻𝑛 200 200
Constant 𝑎𝑑 4.0 4.0
Minimum contention time 𝐼𝑛 2 N/A
Contention time limit 𝐼𝑛 3 3
Constant 𝑎𝑖 0.3 0.3
Empty verification period 𝐸𝑛 2 N/A
Constant 𝑎𝑠 0.1 0.1
Busy verification period Δ 𝑛 3 N/A

Δ 𝑛. The minimum contention time 𝐼𝑛 protects BSs from the
effects of false alarms, where bursts of randomnoise can seem
like a collision to a BS, forcing it to leave prematurely a suc-
cessfully occupied band. On the other hand, the empty verifi-
cation period𝐸𝑛mitigates the problem of fading causing mis-
detection of a PU (or another BS), hence tempting a new-
comer BS to join a band thinking it was empty, while it is
actually not. Finally, the busy verification period Δ 𝑛 allows a
sensing device 𝑑𝑛 to verify that a band 𝑚 is truly busy, ruling
out the case of random bursts of noise masquerading as a
PU transmission. This allows the sensing device to leave to
another band𝑚 comfortably knowing that band𝑚was truly
busy.

In our simulations, we consider two scenarios for both
HoPSS and HOP-M. The first is when the BSs employ
very complex and accurate hardware for sensing (which, of
course, is expensive). In this case sensing accuracy is almost
ideal, and we assume a false alarm probability 𝑃𝑓𝑎 = 0.0 and

a misdetection probability 𝑃𝑚𝑑 = 0.0. We also consider lost
ACKprobability to be𝑃𝑛 = 0.0.This is called the perfect sens-
ing case. The other scenario we consider is the case when the
sensing devices employed are the cheaper and less-reliable
EDs, which deliver the inferior performance of 𝑃𝑓𝑎 = 0.1,𝑃𝑚𝑑 = 0.1, and 𝑃𝑛 = 0.01.

We will hold a comparison between our proposed HoPSS
technique and the following methods: (a) history-based
HOP-M technique [17], which is assumed to have 𝐷𝑛 = 100
dedicated sensing devices per BS available at its disposal, and
(b) an ideal centralized system, which distributes spectrum
bands among BSs according to their demand 𝑆𝑛. This is per-
formed with the help of a centralized authority and one
dedicated common control channel (CCC) for communica-
tions between the controller and the cognitive BSs. For this
idealistic case, we will assume perfect sensing performance,
which allows this setup to represent an upper bound on
performance. Another system we compare to is (c) a random
fully distributed allocation technique, which corresponds to
a lower bound on performance. Here, cognitive BSs blindly
select at the beginning of each time slot in a random fashion,
as well as with equal probability, ⌈𝑆𝑛⌉ bands from the𝑀 exist-
ing bands. Due to the absence of prior sensing in this case,
excessive collisions can occur between BSs themselves and
between BSs and PUs.

One last system we simulate is (d) the gradient ascent
learning algorithm described in [30]. This technique utilizes
a distributed game theory approach to perform channel
assignment. In such technique, BSs behave as players who go
through a gradual learning process. Each BS 𝑛 calculates a
probability vector 𝜋𝑚𝑛 (𝑡), describing the probability of BS 𝑛
joining any band 𝑚 ∈ M during time slot 𝑡. This vector re-
presents BS 𝑛 strategy for the game during that time slot.

Theprobability vectors from the variousBSs are broadcast
at the end of the time slot to other BSs, so they can adapt
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their future game strategies. Each BS believes that, by varying
its own probabilities in a particular round, other BSs will
reciprocate by altering their own probabilities (future game
strategies) in response to its own strategy change.This is done
by calculating the next iteration of probabilities 𝜋𝑚𝑛 (𝑡+1).The
calculations are determined by solving a data transmission
optimization problem as explained in [30]. Because sensing is
used here only to detect PUs and not to resolve contention, we
will assumeperfect sensing is available for this technique at all
times.The parameters we use for gradient ascent are based on
the recommendations in [30]; specifically we set belief factors𝛼𝑛,𝑚 to be uniformly distributed between𝑁 and 2×𝑁×𝑀−1
and the step size 𝛽𝑛 = 1/(2 ×𝑁×𝑀−1). The initial value for𝜋𝑚𝑛 (1) is 1/𝑀, but then BS 𝑛 adapts these probabilities based
on the gradient ascent learning algorithm.

4.2. Performance Metrics. The following performance met-
rics are used to compare the performance of the proposed
HoPSS technique to the HOP-M procedure, the purely ran-
dom algorithm, the gradient ascent learning method, and the
perfect centralized technique.

BS Successful Bands. The number of successfully occupied
bands by BS 𝑛 during time slot 𝑡, 𝑠𝑛(𝑡), is recorded. When
unreliable sensing is utilized, 𝑠𝑛(𝑡) is the value observed by BS𝑛, which is the same as the actual value, as confirmed by the
arrival of an ACK. If a collision occurs with a PU or another
BS, or when a burst of noise corrupts transmission and
prevents an ACK from being received, such situation does
not count as a successful transmission. We use the symbol 𝑆𝑛
to represent the average of 𝑠𝑛(𝑡) for BS 𝑛 over the whole simu-
lation time, while denoting by 𝑆𝑡 = ∑𝑁𝑛=1 𝑠𝑛(𝑡)/𝑁 the average
of 𝑠𝑛(𝑡) for all BSs over one particular time slot 𝑡. Finally,
the average of 𝑠𝑛(𝑡) for all BSs over the whole simulation time
is designated by 𝑆.
BS Collision Bands. This is the number of spectrum bands
acquired by BS 𝑛 under collision during time slot 𝑡, 𝑐𝑛(𝑡).
Collisions on a BS include all three possibilities: interference
from a PU, contention from another BS, or a noise burst
preventing an ACK from arriving. We will label the average
of 𝑐𝑛(𝑡) over simulation time for one BS 𝑛 as 𝐶𝑛, the average
of 𝑐𝑛(𝑡) for all BSs over one time slot 𝑡 as 𝐶𝑡, and the average
of 𝑐𝑛(𝑡) for all BSs over the whole simulation time as 𝐶.
PU Interference Time. This is defined as the number of con-
secutive time slots that a cognitive BS takes to stop interfering
with a PU after the PU gets activated. We denote this value by𝑇𝑖.
Settling Time. This is the number of consecutive time slots
needed for 𝑠𝑛(𝑡) of a disturbed BS 𝑛 to return to its steady-
state average value 𝑆𝑛 after a disturbance to the CRN occurs.
The settling time is denoted by 𝑇𝑠 and represents a measure
of the system convergence time after a disturbance, such as
when a PU gets activated causing some BSs to lose some of
the bands they are occupying to the benefit of the PU.

Spectrum Occupancy Rank Diagram. To show the amount of
band swapping (frequency switching) overhead the cognitive

BSs suffer from, we show the spectrum occupancy rank dia-
gram, which displays the occupancy frequency 𝑓𝑛(𝑚) in which
BS 𝑛 successfully occupied band 𝑚 throughout the simu-
lation period. In other words, 𝑓𝑛(𝑚) is the ratio of successful
acquisition time of band 𝑚 divided by the total simulation
time 𝑇. For better visuals, the x-axis in this diagram will
show the rank of the spectrum band 𝑟𝑚 (rather than its index𝑚), where the most frequently occupied band is given rank𝑟𝑚 = 1, the second most occupied band is 𝑟𝑚 = 2, and so on
(see Figure 4).

A spectrum occupancy rank diagram that is compact in
shape means that the BS limits itself to occupying a small set
of spectrum bands, while a smeared-out curve means the BS
keeps switching its operating frequency between a large set of
bands [17].

5. Results and Discussion

To illustrate the various aspects of the HoPSS technique, we
simulated a group of scenarios, the results of which are ex-
plained below.

5.1. Homogeneous Network. In the first experiment, all cog-
nitive BSs have the same spectrum demand, 𝑆𝑛 = 𝑆, ∀𝑛 ∈ N,
where 𝑆 is varied between 5 and 15 bands to attain a system
load of 𝐿 = 50%−150%. For now, PUs are not activatedwithin
the CRN just yet. The behavior of the BSs when occupying
bands under both low and high load conditions and under
both perfect and unreliable sensing is investigated. We set
HoPSS to use only 𝐷𝑛 = 20 sensing devices, which is signif-
icantly smaller than what HOP-Muses (𝐷𝑛 = 100 to be speci-
fic).

Thebehavior of theHoPSS algorithmunder both low load
and high load scenarios (and perfect sensing) is illustrated in
Figure 2, which shows the number of successfully acquired
bands 𝑠7(𝑡) for BS7, as an example, versus time. In the case of
lower load (𝐿 = 75%), HoPSS manages to provide the desir-
able stability for the BS, which quickly acquires its desired
spectrum demand and stays in such bands without enduring
band swapping overhead, since the BS notices that there are
enough empty bands in the system for everyone to use. The
ability of HoPSS to accurately estimate the load on the system
without the need for a large number of sensing devices is
quite impressive. This capability carries over as the load on
the system increases to 𝐿 = 100% and 𝐿 = 125%, in which
the BSs are able to sense that increase in load and respond by
moving into the band swapping mode to allow various BSs to
obtain bands fairly (see Figures 2 and 6).

The behavior of HoPSS remains consistent even when
unreliable sensors are used, which is the case shown in
Figure 3. Of course, perfect stability is not possible in this case
due to false alarms and instances ofmisdetection, which affect
the number of empty bands observed by the BS, and hence
can slightly change the load estimate obtained byHoPSS.This
occasionally pushes HoPSS into the band swapping mode.
However, moving into this mode does not mean a drop in
performance since the average number of bands obtained by
BS7, denoted by 𝑆7, is almost identical to that of the perfect
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Figure 2:Number of bands successfully acquired byBS7 versus time
under different system loads when sensing is perfect (𝑃𝑓𝑎 = 0.0,𝑃𝑚𝑑 = 0.0, and 𝑃𝑛 = 0.0).
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Figure 3:Number of bands successfully acquired byBS7 versus time
under different system loads when sensing is unreliable (𝑃𝑓𝑎 = 0.1,𝑃𝑚𝑑 = 0.1, and 𝑃𝑛 = 0.01).

sensing case under system loads of 𝐿 = 100% and 𝐿 = 125%,
which is quite remarkable. In the case of 𝐿 = 75%,where each
BS spectrum demand was 𝑆 = 7.5 bands, BS7 got more bands
than it requested in both the perfect and unreliable sensing
cases.
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Figure 4: BS7 spectrumoccupancy rank diagramat𝐿 = 100%when
sensing is perfect.

To elaborate on the spectrum switching overhead in-
curred by HoPSS, we compare its behavior to other tech-
niques in Figures 4 and 5, which show the spectrum occu-
pancy rank diagram for BS7 under both perfect and unreli-
able sensing, respectively. It is clear from the figures that the
performance of HoPSS is very close to that of HOP-M in both
cases, as both techniques try to limit BSs from jumping back
and forth between different bands. It is significant that HoPSS
can achieve this reduction in frequency switching overhead
while using a small number of sensing devices.

Now we turn our attention to test for fairness of HoPSS
in distributing the frequency bands between competing cog-
nitive BSs. Figures 6 and 7 show the average number of
successfully acquired bands 𝑆𝑛 by the different BSs under a
fully loaded system (i.e., 𝐿 = 100%). Figure 6 shows the case
of perfect sensing, while Figure 7 shows the case of unreliable
sensing.The performance of HoPSS is compared to the differ-
ent spectrum sharing techniques we tested.

Interestingly, HoPSS managed to distribute the spectrum
bands evenly between the different BSs, just like HOP-M
did, even though it had one-fifth of the number of sensors
available to HOP-M and even though it is a fully distributed
protocol. Even more remarkable is the fact that HoPSS man-
aged to overcome the limitations of the unreliable sensors
(providing wrong readings of the spectrum) because HoPSS
delivered an average of 𝑆 = 9.82 bands per BS, while HOP-M
performance dipped slightly due to the less-reliable sensing
hardware, giving an average of 𝑆 = 9.21 bands per BS. In this
regard, the performance of HoPSS is closer to the ideal cen-
tralized system (compared to other tested methods) because
it employs a clever methodology for accessing the spec-
trum.

This performance is consistent under all load conditions,
as illustrated in Figures 8 and 9, which show the average
number of successfully acquired bands per BS when we vary
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Figure 5: BS7 spectrumoccupancy rank diagram at𝐿 = 100%when
sensing is unreliable.
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Figure 6: Successfully occupied bands by each BS when sensing is
perfect and 𝐿 = 100%.
the system load between 50% and 150%. Only when sensing
is perfect does the HOP-M protocol manage to provide the
same superior throughput provided by the proposed HoPSS
technique, but HOP-M performance dips below that of
HoPSS for the unreliable sensing case.

To show how resilient HoPSS is to the surrounding envi-
ronment, we show inFigure 10 the average number of success-
fully acquired bands per BS (i.e., 𝑆) when varying the number
of employed sensing devices for HoPSS and the load on
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Figure 7: Successfully occupied bands by each BS when sensing is
unreliable and 𝐿 = 100%.

the system. The figure clearly shows that the performance is
almost insensitive to the number of sensors𝐷𝑛 utilized, irres-
pective of system load. Even if we use a very small number of
sensing devices (as low as 𝐷𝑛 = 5 sensors), the throughput
drop is almost negligible (see 𝐿 = 75% case), which opens the
door formore savings in hardware cost.The little degradation
in performance when the number of sensors is increased in
HoPSS is an artifact of (15), in which the sum∑𝑀𝑚=1 𝜇𝑚𝑛 (𝑡) be-
comes smaller when the number of sensors increases, which
slightly changes the system load estimate Λ 𝑛(𝑡) that the
HoPSS algorithm calculates, but not in any significant man-
ner.

Finally, Figures 11 and 12 show the average number of
successfully acquired bands per BS for both HoPSS andHOP-
Mwhen varying the false alarm andmisdetection probability,
respectively. In Figure 11 we vary 𝑃𝑓𝑎 between 0.0 and 0.25,
while maintaining 𝑃𝑚𝑑 = 0.1 and 𝑃𝑛 = 0.01. In Figure 12, on
the other hand, we vary 𝑃𝑚𝑑 between 0.0 and 0.25 but main-
tain 𝑃𝑓𝑎 = 0.1 and 𝑃𝑛 = 0.01. It is evident from the results that
HoPSS ismore resilient to degradation in sensor performance
compared to HOP-M, allowing HoPSS to easily work with
cheaper hardware.

5.2. PU Disturbance. The experiment conducted here is very
similar to the previous experiment, with only one difference:
the network has multiple PUs that get activated in the middle
of the simulation time, and such PUs cannibalize all spectrum
bands successfully occupied by BS1. This experiment allows
us to study the behavior of the victim BS1 as well as other BSs
when PUs get activated.
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Figure 8: Average number of successfully acquired bands per BS for
different system loads when sensing is perfect.
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Figure 9: Average number of successfully acquired bands per BS for
different system loads when sensing is unreliable.

Figure 13 shows that BS1 quickly vacates the bands occu-
pied by PUs in themiddle of the simulation, as the count of its
successfully occupied bands 𝑠1(𝑡) drops quickly to zero. This
behavior is the one required from cognitive BSs in a CRN
network. The interference time on PUs is limited to about𝑇𝑖 = 8 time slots when 𝐿 = 100%, which is very small (see
also Figures 14 and 15). Once BS1 leaves its bands it starts
looking for empty bands in the system, while its neighboring
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Figure 10: Average number of successfully acquired bands per
BS when varying the number of sensing devices under unreliable
sensing regime.
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Figure 11: Average number of successfully acquired bands per BS
when varying the false alarm probability 𝑃𝑓𝑎 for 𝐿 = 100%.
cognitive BSs slowly relinquish some of their bands to the
benefit of BS1 so it can get its fair share of the spectrum.

Both the BS settling time 𝑇𝑠 and PU interference time 𝑇𝑖
for HoPSS are compared to those for HOP-M in Figures 14
and 15 as we vary the system load. We show both cases when
sensing is perfect andwhen sensing is unreliable, respectively.
Themost important observation is how small the PU interfer-
ence time𝑇𝑖 is, irrespective of the load on the system, and this
is true for both perfect and unreliable sensing.

The second observation is that HOP-Mhas better settling
times compared to HoPSS, which is to be expected since BSs
in HoPSS refuse to join new bands before waiting for at least
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Figure 12: Average number of successfully acquired bands per BS
when varying the misdetection probability 𝑃𝑚𝑑 for 𝐿 = 100%.
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Figure 13: Number of spectrum bands occupied by BS1 versus time
at 𝐿 = 100% and under unreliable sensing regime.

𝐸𝑛 + 1 time slots to make sure the bands are actually empty,
which is not the behavior of HOP-M.However, the difference
in settling time is not a big disadvantage since it only
manifests itself in overloaded systems (𝐿 ≥ 100%), which is
not a typical operating scenario in real-life networks. For the
more practical case of lower loads (𝐿 < 100%), the settling
time is negligible for both HOP-M and HoPSS.

To put things into perspective, consider a typical frame
length (i.e., time slot) of 10 milliseconds [33]; a maximum of𝑇𝑠 = 1600 time slots means that BS1 can stabilize within only
16 seconds at such an overloaded system. Other BSs stabilize
much faster. In addition, this settling time drops significantly
for lower loads on the system.
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Figure 14: Settling time andPU interference time versus system load
for perfect sensing.
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6. Conclusions

History-based spectrum access represents a promising
approach to CRNs. In such technique, cognitive BSs inde-
pendently estimate the system load and adaptively swap their
occupied spectrum bands to ensure allocation fairness and
high overall throughput. In this paper, we introduced several
extensions to the history-based HOP-M protocol, which
allow significant reduction in hardware cost required by
HOP-M.
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Our approach, calledHoPSS, can use less than one-fifthof
the sensing devices required by HOP-M, without noticeable
penalty in performance, especially at moderate system loads.
In addition, the HoPSS algorithm works seamlessly with un-
reliable sensing. Not only that, but also when unreliable sens-
ing devices are employed, the throughput obtained by HoPSS
exceeds that of HOP-M at a fraction of the cost. Finally,
HoPSS retains the distributed nature of HOP-M and hence
has all the advantages of not requiring a centralized controller
or a common control channel (CCC).
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